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Abstract 

Upon a diagnosis, the clinical team faces two main questions: what treatment, and at what dose? Clinical trials’ 
results provide the basis for guidance and support for official protocols that clinicians use to base their decisions. 
However, individuals do not consistently demonstrate the reported response from relevant clinical trials. The deci-
sion complexity increases with combination treatments where drugs administered together can interact with each 
other, which is often the case. Additionally, the individual’s response to the treatment varies with the changes in their 
condition. In practice, the drug and the dose selection depend significantly on the medical protocol and the medi-
cal team’s experience. As such, the results are inherently varied and often suboptimal. Big data and Artificial Intel-
ligence (AI) approaches have emerged as excellent decision-making tools, but multiple challenges limit their applica-
tion. AI is a rapidly evolving and dynamic field with the potential to revolutionize various aspects of human life. AI 
has become increasingly crucial in drug discovery and development. AI enhances decision-making across different 
disciplines, such as medicinal chemistry, molecular and cell biology, pharmacology, pathology, and clinical practice. In 
addition to these, AI contributes to patient population selection and stratification. The need for AI in healthcare is evi-
dent as it aids in enhancing data accuracy and ensuring the quality care necessary for effective patient treatment. AI 
is pivotal in improving success rates in clinical practice. The increasing significance of AI in drug discovery, develop-
ment, and clinical trials is underscored by many scientific publications. Despite the numerous advantages of AI, such 
as enhancing and advancing Precision Medicine (PM) and remote patient monitoring, unlocking its full potential 
in healthcare requires addressing fundamental concerns. These concerns include data quality, the lack of well-anno-
tated large datasets, data privacy and safety issues, biases in AI algorithms, legal and ethical challenges, and obstacles 
related to cost and implementation. Nevertheless, integrating AI in clinical medicine will improve diagnostic accuracy 
and treatment outcomes, contribute to more efficient healthcare delivery, reduce costs, and facilitate better patient 
experiences, making healthcare more sustainable. This article reviews AI applications in drug development and clini-
cal practice, making healthcare more sustainable, and highlights concerns and limitations in applying AI.
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Introduction
The past 10 years have seen a remarkable acceptance of 
Artificial intelligence (AI) and Machine Learning (ML), 
which can help medical innovation for a more sustain-
able Precision Medicine (PM). The advantage of adopt-
ing AI and ML allows the analysis of extensive complex 
data, opening a new era for more sustainable healthcare. 
The potential of AI to generate insights from multi-
dimensional data sets can support the use of PM in vari-
ous diseases to discover new diagnostic and prognostic 
biomarkers.

AI works through ML, allowing computers to learn 
without being explicitly programmed for a specific task 
[1]. Indeed, if you feed the algorithm with enough good-
quality data, ML will generate strategies for excelling at 
that task. However, so far, the power of AI to recognize 
sophisticated patterns and hidden structures has been 
limited to imaging and histopathology in the medical 
field.

With increasing costs, public pressure, and policy 
imperatives to manage patients across care episodes, the 
need to aggregate data across departments within and 
across different healthcare organizations is still an unmet 
medical need. The rapid explosion of AI has introduced 
the possibility of using aggregated healthcare data to pro-
duce robust models that can automate diagnosis [1] and 
also enable an increasing PM approach by tailoring treat-
ments and targeting resources with maximum effective-
ness on time (IBM and Partners to transform personal 
health with Watson and open cloud < https://​www-​
03ibm.​com/​us/​en/​press​relea​se/​46580 was > 2015; [2]. The 
digitalization of healthcare data and the rapid uptake in 
technology are fueling transformation in the develop-
ment and use of AI in healthcare [3].

However, "the truth" is that, at present, the algorithms 
that feature prominently in research are, in fact, not exe-
cutable in clinical practice. This is happening for several 
reasons: 1. AI innovations do not re-engineer the incen-
tives supporting existing working methods; 2 adding AI 
applications to an already fragmented healthcare system 
will not create sustainable healthcare changes; 3. most 
healthcare organizations lack the infrastructure required 
to collect the data to optimally train algorithms to (a) 
“fit” the local population and/or the local medical prac-
tice patterns, a requirement before the deployment rarely 
highlighted by current AI publications; (b) interrogate 
them for potential biases to guarantee that the algorithms 
perform consistently across patient cohorts, especially 
those who may not have been adequately represented in 
the training cohort [4]. An algorithm trained on mostly 
Caucasian patients is not expected to have the same 
accuracy when applied to minorities [5]. Rigorous evalu-
ation and re-calibration must be done to capture those 

patient demographics that change over time [6]. Health-
care, with its abundance of data, is, in theory, well-poised 
to benefit from growth in cloud computing. The largest 
and most valuable store of data in healthcare rests in 
Electronic Medical Records (EMR). However, clinicians’ 
satisfaction with EMRs remains low, resulting in variable 
completeness and data entry quality, and provider inter-
operability remains elusive [6]. The typical lament of cli-
nicians is still, “Why is my EMR still inaccurate, and why 
don’t all these systems just talk to each other?”.

To value the potential of AI across health systems, 
more fundamental issues must be addressed: 1. who 
owns health data; 2. who is responsible for them; 3. who 
can use them? The potential of AI is well described in 
the literature [7]. However, in reality, health systems are 
faced with a choice to significantly downgrade the enthu-
siasm regarding the potential of AI in everyday clinical 
practice or to resolve data ownership and trust issues and 
invest in the data infrastructure to realize it.

AI and ML platforms have been extensively used in 
basic and clinical research spanning from drug discov-
ery and development, diagnostic imaging, and genomic 
to other multi-omics data analysis, as reported recently 
by Liebman [8]. The utilization of AI technologies has 
become increasingly significant in accelerating various 
areas of biomedical research, including drug discovery 
and development, image-based disease diagnosis, and 
the analysis of large datasets, consequently enhancing 
decision-making processes across a wide range of fields 
and disciplines such as drug discovery, molecular biology, 
imaging, pathology, toxicology, and clinical medicine.

In particular, AI is on the rise in drug discovery and 
development. While advocates highlight the potential 
that these tools bring. Detractors, instead, adopt a more 
cautious approach, seeking solid evidence on the impact 
on drug discovery initiatives [9].

The right approach most likely lies right in the middle 
between those opposite views. Advances in the compu-
tational capability of AI have prompted concerns that AI 
technologies might replace physicians.

AI in medicine
The real question is whether chatbots and large language 
model AI systems can reshape modern medicine or will 
lead to the opening of a Pandora’s Box. Li et al. [10] con-
sider different levels of healthcare applications for large 
language model AI systems, evaluating their capabilities 
and limitations, enable new workflows and models of 
care delivery, and shift the boundaries between human 
expertise vs artificial intelligence expertise. Li et al. [10] 
concluded that emerging AI systems could help to reduce 
the burden of laborious tasks in modern medicine, ena-
bling physicians to devote their time to treating people.

https://www-03ibm.com/us/en/pressrelease/46580
https://www-03ibm.com/us/en/pressrelease/46580
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Among the wide range of fields with possible appli-
cations of AI, medicine stands out as one with signifi-
cant potential and substantial challenges. AI tools have 
become increasingly used in analyzing and interpreting 
large research databases ranging from laboratory find-
ings to clinical data. All these tools offer the potential 
for increased efficiency and may unravel insights that are 
difficult to attain with traditional data-analysis methods. 
Despite a growing interest in deploying AI technolo-
gies in domains critical for sustainability, like healthcare, 
very few reports in the literature describe the potential 
systemic risks in depth [11, 12]. Unfortunately, using AI 
is not without strings, with social and ethical challenges 
to security, privacy, and human rights [13–15]. Dispari-
ties in disease care are due to the lack of affordable and 
inconsistent accessibility of patient data, especially in 
undeveloped countries. ML models are usually built on 
historical Caucasian data. Consequently, groups his-
torically sidelined or experienced barriers to care can be 
affected by data, analytic and algorithmic bias. ML mod-
els in health care should be developed so that protected 
and non-protected demographic groups derive equal 
clinical benefits performing equally between the groups. 
During the evaluation phase of the algorithm, model 
performance should be assessed across different patient 
population groups. In addition, historical data on which 
the model is predicated should be assessed to determine 
whether these data would amplify and perpetuate racial 
bias. Unfortunately, only a handful of practical examples 
of AI medical use exist. However, the hype around this 
topic is unprecedented [7] with many AI papers pub-
lished each year. Nevertheless, AI technology is still in its 
infancy in healthcare, and a short guiding medical profes-
sional to which clinicians can refer back is still lacking. 
Moreover, the proofs and evidence in favor of AI are yet 
to be convincing before AI gets adopted in medical prac-
tice extensively [7].

Undoubtedly, AI might benefit healthcare only when 
the medical community can assess its value and potential 
opportunities and acknowledge the limitations in treat-
ing different diseases [16]. Immunotherapy is now the 
standard treatment for cancer patients. However, many 
cancer patients do not respond to immune checkpoint 
inhibitors (ICI) treatment [17]. Predicting a response to 

ICI is still an unmet medical need. Identifying AI predic-
tive biomarkers that can stratify ICI-treated patients in 
responders and non-responders is needed. AI biomark-
ers should be able to optimize patient stratification and 
minimize undesirable toxicities.

The power of AI technologies to recognize sophisti-
cated patterns and hidden structures has enabled many 
image-based detection and diagnostic systems to per-
form as well as clinicians [18, 19].

However, whether AI enables clinical decisions and 
reduces diagnostic errors by assisting clinicians with 
EMR data extraction is yet to be proven [20, 21].

As highlighted in the recent AACR Cancer Progress 
Report 2022 [22], one area of intense research and rapid 
progress in recent years has been the use of AI and ML 
to analyze large amounts of imaging data collected for 
cancer screening. These technologies help recognize pat-
terns that are often difficult to discern, even by trained 
experts. While further research is necessary, some AI-
based medical devices and software systems have dem-
onstrated high accuracy and effectiveness in clinical 
trials. For instance, between August 1, 2021, and July 31, 
2022, the FDA approved several AI-enhanced software 
systems to assist clinicians in early cancer detection [22]. 
Table  1 illustrates a few examples of AI-based devices 
and software systems developed for detecting various 
types of cancers, including GI Genius for colorectal can-
cer, Paige Prostate for prostate cancer, Lunit INSIGHT 
MMG for breast cancer, and EndoScreener for colorectal 
cancer detection. For example, a breast cancer predicting 
algorithm, trained on 38,444 mammogram images from 
9611 women, was the first to combine imaging and EMR 
data with associated health records. This algorithm could 
predict biopsy malignancy and differentiate between nor-
mal and abnormal screening results. The algorithm can 
be applied to assess breast cancer at a level comparable 
to radiologists, as well as having the potential to reduce 
missed diagnoses of breast cancer substantially [23]. 
Table  1 presents examples of several AI-enhanced soft-
ware systems recently approved by the FDA to assist cli-
nicians in early cancer detection [22].

Table  2 illustrates the examples of PubMed search 
results of published work in various cancer research fields 
that use AI in these publications. The words shown in the 

Table 1  Examples of AI-based devices and software systems in cancer detection [22]

GI Genius A medical device that uses AI-based software to assist clinicians in identifying precancerous lesions or polyps that may not be 
detectable during routine colonoscopy

Pelge Prostate An AI-based software that reviews digitally scanned slide images from prostate biopsies to assist pathologists in the detection 
of areas that may be cancerous

Lunit INSIGHT MMG An AI-based software that analyzes mammography images and provides the location of lesions suspected of being cancerous

Endoscreener An AI-based software that identifies potentially precancerous polyps during a colonoscopy
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Table 2  Use of AI in various research fields from 1960s to 10-22-2023. Number of publications in various cancer research fields 
reported in PubMed ranging from 1960s to 10-22-2023. Data sources in the PubMed search included abstracts, original research 
articles, review articles, clinical trials, books and documents, meta-analyses

Disease fields Number of publications (date range 1960s-
Oct. 22, 2023)

Growth of AI use (1960s-Oct. 22, 2023)

Cancer research 17,395

Healthcare 15,276

Radiology 21,380

5347

Drug discovery 4885
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Table 2  (continued)

Disease fields Number of publications (date range 1960s-
Oct. 22, 2023)

Growth of AI use (1960s-Oct. 22, 2023)

Drug development 78,791

Medicinal chemistry 2579

Toxicology 1133

Medical toxicology 373

Drug design 3862
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Table 2  (continued)

Disease fields Number of publications (date range 1960s-
Oct. 22, 2023)

Growth of AI use (1960s-Oct. 22, 2023)

Drug combination therapy 847

Drug toxicity 1853

Pharmacology 13,123

Drug toxicity and safety 380

Pharmacometrics 98
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Table 2  (continued)

Disease fields Number of publications (date range 1960s-
Oct. 22, 2023)

Growth of AI use (1960s-Oct. 22, 2023)

Pharmacokinetics 3110

Pharmacodynamics 13,202

Biomarkers 10043

Diagnostics 96,726

Predictive 62,170
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left column of the table have increased significantly since 
the first use of AI in any of the selected fields of medical 
research, including drug discovery, development, medici-
nal chemistry, cancer research, PM, etc. Data sources in 
the PubMed search included abstracts, original research 
articles, review articles, clinical trials, books and docu-
ments, and meta-analyses) (1960s-Oct. 22, 2023).

Notably, there is exponential growth in the use of AI in 
all these fields. The first recorded use of automated pat-
tern recognition goes back to a report published in the 
Lancet in 1960 [24].

Given the significance of AI in genomics and its poten-
tial impact on human health, a recent study [25] sought 
to evaluate factors that could improve the clinical appli-
cation of AI in this field. The study has concluded that 
there is a significant need for informatics research and 
development to fully realize the clinical potential of these 
technologies. The creation of larger datasets is deemed 
essential to replicate the success seen by AI in other 

fields. It is imperative that AI techniques help to lessen 
rather than exacerbate the socioeconomic, racial, and 
ethnic divides that already exist. Establishing genomic 
data standards becomes imperative for the effective scal-
ability of such technologies across institutions. Given 
the considerable uncertainty, complexity, and novelty in 
genomics and medicine, coupled with an evolving regu-
latory environment, the current emphasis should be on 
utilizing these technologies in collaboration with cli-
nicians, highlighting the value each brings to clinical 
decision-making.

AI in precision medicine
As reported in the literature [26–30] and illustrated in 
Fig. 1, one way to improve the value and efficiency of can-
cer and other disease therapy is by making PM an integral 
part of the approach to population health management. 
One-third of the EU adult population is currently affected 

Table 2  (continued)

Disease fields Number of publications (date range 1960s-
Oct. 22, 2023)

Growth of AI use (1960s-Oct. 22, 2023)

Prognostic 4466

Patient recruitment 2238

Patient care 14,168
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by at least one chronic disease that contributes to 75% of 
mortality, and on average, 18 years of the last period of 
life are spent with at least one disability [31].

Approaches to PM are already being implemented for 
diseases like cancer, both in the diagnosis and treatment. 
Regrettably, we are still in the infancy of preventing and 
predicting diseases in healthy individuals. Several PM 
applications can have the potential for more effective pre-
vention of chronic diseases, postponing the onset of dis-
abilities and reducing healthcare costs [32]. Over the last 
twenty years, the incredible progress in genotyping tech-
nology, the reduction in genome sequencing costs, and 
the advent of digital technologies in healthcare, includ-
ing wearable devices to monitor health, have initiated a 
third revolution in medicine. In this context, there is an 
increasing interest in finding informative markers that 
indicate the disease risk before the symptomatic manifes-
tations of the disease occur (primary prevention) or for 
early disease detection (secondary prevention).

Clinicians have used genotype information as a guide-
line to help determine the correct dose of warfarin [33]. 
The Clinical Pharmacogenetics Implementation Con-
sortium published genotype-based drug guidelines to 

help clinicians optimize drug therapies with genetic test 
results. [34]. Genomic profiling of tumors can inform 
targeted therapy plans for patients with breast or lung 
cancer [35]. PM and AI integrated into healthcare have 
the potential to yield more precise diagnoses, predict dis-
ease risk before symptoms occur, and design customized 
treatment plans that maximize safety and efficiency.

As previously reported by Johnson, 2021 [5], the 
trend toward enabling the use of PM by establishing 
data repositories is not restricted to the United States; 
examples from Biobanks in many countries, such as the 
UK Biobank, [36], BioBank Japan, [37], and Australian 
Genomics Health Alliance [38] demonstrate the power of 
changing attitudes toward PM globally. It is known that 
there is a certain synergy between AI and PM. They both 
impact the goal of personalizing care in several ways: 
therapy planning using clinical, genomic, or social and 
behavioral determinants of health and risk prediction/
diagnosis using genomic or other variables.

Although there is much promise for AI and PM, more 
work still needs to be done to test, validate, and change 
treatment practices. Researchers face challenges in 
adopting unified data formats (e.g., Fast Healthcare 

Fig. 1  Precision medicine paradigm. Current approaches for precision medicine often involve assessment of various cancer drugs 
including chemotherapy, targeted therapies, or immunotherapy and others using patient derived tissue cancer cells or models such as spheroid 
or organoid as well as orthotopic murine xenograft models. With the rise of AI-based systems and technology platforms, it is anticipated that this 
process can be accelerated. Created with BioRender.com. (Accessed on 18 January 2024, 2024)
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Interoperability Resources), obtaining sufficient and 
high-quality labeled data for training algorithms, and 
addressing regulatory, privacy, and socio-cultural 
requirements.

AI in drug discovery and development
As illustrated in Figs. 2 and 3 and reported in the litera-
ture [22, 26–29, 39], the timeline from drug target and 
discovery to phase 1 human clinical trials and, ultimately, 
FDA approval, followed by Phase 4 studies indeed can go 
on for several years. Given that the costs and time neces-
sary to develop a drug have become unsustainable, there 
is an urgent need to accelerate drug discovery and devel-
opment and reduce the cost and time it takes to register 
a drug. 

In the upcoming years, the adoption and application of 
AI techniques (machine learning, deep neural networks, 
and multifaceted biomedical AI) is expected to acceler-
ate clinical research significantly. AI will affect drug dis-
covery transformation, enhancing image interpretation, 
streamlining electronic health records, optimizing work-
flow, and gradually progressing the field of public health.

As discussed in the literature, [27, 28, 39–42], AI-
based drug discovery and screening alongside laboratory 
automation could augment human drug design, chemi-
cal synthesis, drug screening, biological testing, and 
decision-making involved in drug discovery and devel-
opment, potentially overcoming low success rates, long 
drug development process, and high costs often associ-
ated with traditional drug discovery and development 
process (Fig. 2).

As highlighted in recent literature [42], with the 
advancement of therapeutic strategies [43], the field of 
drug discovery and development is adopting innova-
tive methodologies like data science, informatics, and 
AI, among others. These developments aim to improve 
efficiency, lower costs, and reduce reliance on ani-
mal testing, thus accelerating the creation of new and 
potent therapies. The intersection of big data and AI in 
drug discovery continues to attract considerable inter-
est [44]. Investors [45, 46], industry experts [47, 48], 
researchers [49, 50], and policymakers [51] are actively 

participating in discussions on the implications of AI 
for drug discovery.

The successful approval of a drug requires the con-
current optimization of various properties encompass-
ing pharmacokinetics (PK), pharmacodynamics (PD), 
and clinical outcomes. PK entails absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET), 
while PD aspects pertain to drug-target interactions 
and efficacy along with drug safety considerations. 
Clinical outcomes encompass therapeutic intentions, as 
delineated by the list of drug indications and off-label 
uses, as well as undesired effects such as side effects or 
adverse drug reactions.

Therefore, the successful campaign of a drug discovery 
program relies on three fundamental pillars: diseases, 
targets, and therapeutic modalities and AI influences 
most of these therapeutic modalities, such as antibod-
ies [52], gene therapy [53], oligonucleotide [54], targeted 
protein degradation [55], and vaccine [56] design.

In human clinical trial space, AI-based methods can 
help physicians leverage patients’ genomic data to iden-
tify drugs targeting those genomic aberrations. This 
approach offers enhanced drug effectiveness, improved 
safety profiles, decreased adverse reactions, expanded 
treatment choices, and a potential for saving lives 
(Fig. 2).

As discussed in the literature [9] and illustrated in 
Fig.  3 illustrates how integrating artificial intelligence 
and laboratory automation can enhance human deci-
sion-making and improve the processes of chemical 
synthesis and biological testing processes within the 
design-make-test-analyze cycles integral to drug discov-
ery. This collaborative intelligence, resulting from the 
synergy of human expertise and machine capabilities, is 
expected to lead to more informed decision-making.

The use of AI enabled drug discovery and develop-
ment, clinical trial design and enrollment through drug 
discovery, interpreting imaging, streamlining electronic 
health records, and improving workflow, advancing pub-
lic health over time. AI can help in many of these aspects 
at all stages of the drug development process, including 
the different phases of human clinical trials.

(See figure on next page.)
Fig. 2  AI-based technologies can accelerate the drug discovery and development process and reduce the cost. Left panel: AI-based techniques 
can accelerate the drug discovery and development process, potentially reducing the attrition rate, time, and the cost. AI-based drug discovery 
and screening alongside laboratory automation could augment human drug design, chemical synthesis, drug screening, biological testing, 
and decision-making in design–make–test–analyze cycles involved in drug discovery and development, potentially overcoming low success rates, 
long drug development process, and high-cost often associated with traditional drug discovery and development process. Right panel: in clinical 
trial space, AI-based techniques can help physicians to leverage patient’s genomic data to identify suitable drugs that target those genomic 
aberrations. This approach offers the potential for enhanced drug effectiveness, improved safety profiles, decreased adverse reactions, expanded 
treatment choices, and, ultimately, a potential for saving lives. Abbreviations: DNN, deep neural network; EHR, electronic health records; IoMT, 
internet of medical things; ML, machine learning. Created with BioRender.com. (Accessed on 18 January 2024, 2024).
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AI in clinical trials
As recently reported by Kumar et al. [57], many clinical 
trial studies have adopted AI to improve cancer screen-
ing/diagnosis and predict treatment outcomes. These 

studies rely on digital pathology, radiology, and genomic 
data to optimize the design of combination regimens 
and determine appropriate dosing of chemotherapy and 
immunotherapy [58–60]. As highlighted in the literature 

Fig. 2  (See legend on previous page.)
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[5], there are several challenges concerning AI systems 
that could affect the successful transition to real-world 
healthcare. These challenges include fairness and bias, 
socio-environmental factors, data safety, and privacy. 
Additionally, Table 3 presents various pros and cons of AI 
systems in precision medicine, emphasizing other critical 
points to consider.

As of October 18, 2023, there were (1584 clinical 
trials and 910 observational and 655 interventional) 
across various diseases reported on Clincaltrials.gov 
that used AI (Table  4). In the neurologic disorders, 
there were a total of 170 studies (94 of them observa-
tional and 76 interventional) across various neurologic 
disorders, including Alzheimer’s disease, Parkinson’s, 
CNS tumor, stroke, diabetic neuropathies, disease, 
and many others reported in Clincaltrials.gov that 
use AI. Rheumatic Diseases: Only 6 clinical trials (2 

observational and 4 interventional) across Rheumatic 
Diseases were reported in Clincaltrials.gov that use AI. 
Of which, studies. Cardiovascular Diseases: There were 
276 clinical trials (187 observational and 89 interven-
tional) in cardiovascular diseases (also searched for 
disorders, diagnoses, and conditions) reported on Clin-
caltrials.gov that used AI.

In the oncology field, there were 452 clinical trials 
(271 observational and 181 interventional) reported in 
Clincaltrials.gov that use AI. Notably, the documented 
applications of AI commonly involve the oncology field 
and are primarily used in recruitment [61]. As the trial 
outcomes continue to be realized if AI will ultimately 
change practice in oncology, several factors that extend 
far beyond technology and data will need to be explored.

As of October 18, 2023, only five studies were found 
for AI in cancer in Phase 1 and 15 studies were found in 

Fig. 3  AI in drug discovery and laboratory automation for preclinical testing. AI-based drug discovery and screening alongside laboratory 
automation could augment human drug design, chemical synthesis, drug screening, biological testing, and decision-making in design–make–test–
analyze cycles involved in drug discovery. Created with BioRender.com. (Accessed on 18 January 2024, 2024)
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Phase 2, and only 3 AI studies were found for cancer in 
Phase 3. On the other hand, no studies were found for AI 
in Phase 4 cancer trials. Notably, most of these studies 
noted above involved diagnostic tests, devices, and oth-
ers not included in the Phase 1–3 studies.

AI in cancer diagnosis
The utilization of AI in various fields has experienced 
exponential growth, with the first recorded automated 
use of pattern recognition dating back to a report pub-
lished in the Lancet in 1960 [24]. In the context of can-
cer diagnosis, current literature [22, 62, 63] reveals 
numerous studies exploring AI’s potential by compar-
ing their results to manual detection by pathologists. AI 
demonstrates a notable degree of accuracy, surpassing 
human pathologists in diagnosing specific types of can-
cer [64–67]. AI effectively detected precancerous colonic 
polyps, leading to a two-fold reduction in missed identi-
fications compared to pathologist diagnoses when using 
traditional colonoscopy [62]. The FDA’s recent approval 
of AI for cancer early detection and diagnosis under-
lines the efficacy of the AI approach. AI applications’ AI 
extends to predicting the likelihood of developing metas-
tasis, as demonstrated in a study on bone metastasis in 
breast cancer patients, where an AI algorithm correctly 
predicted bone metastasis likelihood in 88% of cases 
[68]. Ensuring accurate and equitable AI-based screen-
ing requires broad application across diverse groups, 
including racial and ethnic minorities. A meta-analysis of 
AI programs detecting melanoma revealed a lack of dis-
closure regarding skin type and race/ethnicity in many 
studies. Without inclusive data on darker skin colors and 
reporting of race and ethnicity, AI algorithms can lead to 
biased technologies with inconclusive or false diagnoses. 
Efforts must be made to reduce biases in technologies by 
incorporating a health equity lens early in development, 
increasing recruitment and representation of diverse 
populations in AI clinical trials, and implementing 
reporting standards and auditing [69–72]. Inclusive AI 
algorithms, such as Mirai which utilize data from global 
populations, demonstrate high accuracy in predicting 
breast cancer development across diverse countries [72]. 
Reducing biases in AI technologies is crucial for maxi-
mizing their effectiveness and ensuring health equity.

A recent study [73] has reported findings from an AI 
system trained to conduct medical interviews, demon-
strated performance equal to or exceeding that of human 
doctors in conversing with simulated patients and sug-
gesting possible diagnoses based on patients’ medical 
history. The chatbot, developed on Google’s large lan-
guage model (LLM), exhibited greater accuracy than 
board-certified primary-care physicians, particularly in 
diagnosing cardiovascular and respiratory conditions. 

During medical interviews, the AI system gathered a 
comparable volume of information to human doctors and 
demonstrated higher levels of empathy.

Barriers to the use of AI in cancer diagnosis
As previously reported by Johnson et  al. [5] here, we 
describe some of the main challenges involving AI systems 
that would impact the success of the transition to real‐world 
healthcare: “fairness and bias, socio‐environmental factors, 
data safety and privacy” as well as other points focusing of 
pros and cons of AI systems in PM highlighted in Table 3.

These statements highlight essential challenges and 
considerations in the intersection of AI, healthcare, and 
biomedical research. Let’s delve into some key points:

1. Bias in health data and AI models

•	 Challenges: Biases in health data, such as underrep-
resentation or missing values, can lead to biased AI 
models. This bias can result in unfair and unfavorable 
decisions for specific demographic groups.

•	 Solutions: Initiatives like the All of Us program, 
focusing on diverse participant recruitment, aim to 
enhance data diversity. The AI community is actively 
researching techniques to detect and address bias in 
models (source).

•	 Call to Action: Further exploration and collabora-
tion between the AI and biomedical communities are 
essential to understanding and mitigating bias in AI 
models trained on historical patient data.

2. Data safety and privacy
Challenges: Data safety and privacy are critical considera-
tions for an AI-driven system. As AI and PM intersect, 
collecting and integrating diverse data types, including 
genomics, medical history, behaviors, and social data cov-
ering individuals’ daily lives, will become more prevalent.

Because of this, privacy concerns among individuals 
are closely linked to trust in using AI-enabled services.

Solution: Establishing a secure and well-regulated 
ecosystem for data storage, management, and sharing is 
imperative.

Call to Action: Adopting new technologies, collabora-
tions, and developing innovative regulations and business 
models.

3. Domain‑specific considerations

•	 Challenges: Fairness and protected aspects are 
closely tied to the specific domain and applications. 
Biomedical research requires a nuanced examination 
of fairness and bias in AI models.
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•	 Solutions: Tailoring solutions to the context of bio-
medical research, acknowledging the unique chal-
lenges and considerations within the domain.

4. Social and environmental factors

•	 Challenges: environmental factors and deployment 
workflow can influence AI model performance. Pro-
spective studies, such as the one on diabetic retin-
opathy screening, highlight the impact of real-world 
conditions on AI system effectiveness.

•	 Issues faced: Diverse clinic conditions, internet con-
nectivity issues, and travel-related concerns can 
affect AI model performance and user participation.

•	 Solutions: Validation of AI models in real-world 
clinical settings, iterative feedback loops, and system 
enhancements based on user feedback are crucial for 
successful deployment. Examples reported by groups 
like Baowaly et  al. [74] demonstrate considerable 
promise, but additional AI research efforts are war-
ranted.

5. Iterative model validation and user feedback

•	 Importance: The example of the AI system for dia-
betic retinopathy screening emphasizes the signifi-
cance of ongoing validation in real-world scenarios 
and the incorporation of user feedback.

•	 Recommendation: Establishing iterative loops that 
gather user feedback can inform continuous learning 
and improvement of AI systems before widespread 
application.

In summary, addressing bias and considering real-
world conditions are crucial for ethically and effectively 
deploying AI models in healthcare. Collaborative efforts, 
ongoing validation, and context-specific solutions ensure 
fairness and optimal performance in biomedical AI 
applications.

AI in cancer treatment
As discussed in the literature [22, 57] and illustrated in 
Fig.  4, the prevailing PM approach takes into account a 
range of factors, including tumor-associated and inher-
ited genetic variations, environmental exposures, life-
style, general health, and medical history of patients, 
when determining the most suitable treatment plans for 
individual patients [75]. On the contrary, as AI gains trac-
tion in PM, we anticipate its expanding role across vari-
ous critical areas, from diagnosis to drug discovery and 
development, and in matching patients with targeted 
drugs tailored to their specific genomic or genetic altera-
tions (Figs. 4 and 5). Recent efforts to incorporate AI into 

PM have shown substantial promise and advancements 
in personalized care, clinical decision support systems, 
early disease detection, and disease monitoring. How-
ever, persistent challenges and issues related to technol-
ogy and ethics (such as fairness and bias, transparency 
and liability, trust, safety, and security as well as require-
ment of high quality large data, data deluge, and data 
drift) could impede the field’s progress and reliability, 
potentially delaying clinical implementation  (Fig.  5) [5, 
76]. 

For example, in a study utilizing AI to create a radio-
therapy regimen for prostate cancer, 89% of the radio-
therapy treatment plans generated for the 100 patients 
studied were deemed clinically acceptable. Impressively, 
72% of these plans were superior to those devised by 
human experts [77]. Another study applied AI to iden-
tify patients with head and neck cancers who would 
benefit from reducing the intensity of radiotherapy or 
chemotherapy. AI accurately predicted which patients 
would benefit from treatment de-escalation [78].

Examples of successful drug discovery efforts 
facilitated by AI
Recent literature [42, 79] highlights the demonstrated 
potential of AI in the three pillars of drug discovery: dis-
eases, targets, and therapeutic modalities, as evidenced 
by various studies.

Traditional drug discovery methods often depend on 
identifying and modifying existing compounds, a process 
that is slow, laborious, and costly. In contrast, AI-based 
approaches have the potential to facilitate the rapid, effi-
cient, and cost-effective discovery and design of novel 
compounds with desirable PK, PD, and ADME properties 
and activities. For instance, a DL algorithm was used to 
train a dataset containing known drug compounds and 
their associated properties. This resulted in the identifi-
cation of new therapeutic molecules with desirable traits 
such as solubility and activity, demonstrating the utility 
of these AI-based methods for rapidly, efficiently, and 
cost-effectively designing new drug candidates [80].

AlphaFold, a powerful algorithm that uses protein 
sequence data and AI to predict the proteins’ corre-
sponding three-dimensional structures [81] uses protein 
sequence data and AI to predict the proteins’ corre-
sponding three-dimensional structures which potentially 
can revolutionize personalized medicine and drug dis-
covery by providing unprecedented insights into protein 
structures.

For example, a recent study has demonstrated [67] the 
effectiveness of AI in uncovering novel cancer treatment 
compounds. They trained a DL algorithm on a large data-
set of known cancer-related compounds and their biolog-
ical activity. This approach yielded promising compounds 
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Fig. 4  Leveraging AI for personalized treatment. AI-focused workflow explores the opportunities and challenges of applying AI in digital pathology, 
drug discovery and development, and dynamic drug dosing. Created with BioRender.com. (Accessed on 18 January 2024, 2024)
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Fig. 5  Illustration of integration of AI into PM. Recent attempts to integrate AI into PM have demonstrated significant potential and progress 
in personalized care, clinical decision support systems, early disease detection, and disease monitoring. However, there are outstanding challenges 
and concerns involving technical challenges and ethical issues and concerns (e.g., fairness and bias, trust, transparency and liability, trust, safety 
and security, as well as requirement of high quality large data, data deluge, and data drift) that may hinder the progress and reliability of the field 
and delay clinical implementation. Created with BioRender.com. (Accessed on 18 January 2024, 2024)
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with potential for future cancer therapies, highlighting 
the method’s ability to identify new therapeutic options. 
Additionally, the use of machine learning to pinpoint 
small-molecule inhibitors of MEK, a potential cancer 
treatment target, has been documented [82]. Similarly, 
AI has been employed to identify inhibitors of beta-
secretase (BACE1), a protein associated with Alzheimer’s 
disease [83].

Moreover, AI has facilitated the discovery of new anti-
biotics, with a pioneering machine learning approach 
identifying potent antibiotic types from a pool of over 
100 million molecules, including compounds effective 
against tuberculosis and resistant bacterial strains [84, 
85].

In the realm of COVID-19 research, AI has emerged as 
a promising tool. For example, ML algorithms have been 
used to analyze large datasets of potential compounds to 
identify those with the greatest potential for treating the 
virus.

Notably, these AI-powered approaches have signifi-
cantly reduced the time needed to identify promising 
drug candidates compared to traditional methods [86–
91]. Numerous other examples highlight the capacity of 
AI-based methods to expedite drug screening and dis-
covery [92] and enhance the development of more effec-
tive therapies, drug combinations for drug synergies [93, 
94], and drug repurposing [88, 95–103] for various other 
diseases [104–110].

Furthermore, ML plays a significant role in predicting 
drug efficacy and toxicity. As highlighted in recent lit-
erature [79], a DL algorithm was recently trained using 
a dataset of known drug compounds alongside their cor-
responding biological activity [111]. Subsequently, the 
algorithm demonstrated high accuracy in predicting the 
activity of novel compounds. Significant progress has 
also been made in preventing the toxicity of potential 
drug compounds through intensive training using exten-
sive databases of known toxic and non-toxic compounds 
for using ML [112].

Another significant application of AI in drug discov-
ery involves identifying drug-drug interactions that 
occur when multiple drugs are combined for the same 
or different diseases in a single patient, potentially lead-
ing to altered effects or adverse reactions. This issue has 
recently been tackled by an ML algorithm, which accu-
rately predicts the interactions of novel drug pairs [113].

As highlighted in recent literature by groups like Has-
selgren and Oprea [42] ChatGPT, a conversational AI 
that has successfully passed the US Medical Licens-
ing Examination, to revolutionize research practices 
and publishing [114]. The GPT-4 technical report from 
March 14, 2023, demonstrates its capability to create new 
drugs, among other applications [115]. In an experiment, 

GPT-4 was prompted with the drug name dasatinib and 
tasked with modifying it, identifying similar compounds, 
locating vendors, and arranging custom synthesis if 
necessary.

Notable observations include GPT-4’s ability to gener-
ate valid chemical structures (Simplified Molecular Input 
Line Entry System, SMILES) output [116], demonstrat-
ing GPT-4’s capability to accurately perceive and modify 
chemical structures. Furthermore, it successfully identi-
fies molecules availability in the ZINC database [117], 
indicating their synthetically feasible nature. While the 
proposed molecule, desmethyl-imatinib, was not novel, 
GPT-4 successfully modified the molecule while retain-
ing its kinase inhibitor properties.

However, experimental validation is required to con-
firm whether the GPT-4-generated molecule shares the 
same mode of action as dasatinib. Although GPT-4 has 
general expertise and is not specifically tailored for drug 
discovery, tools like ChemCrow [118], a GPT-4-based 
tool demonstrate how external resources can enhance 
Large Language Models (LLM) effectiveness in chemis-
try-related tasks. Integration of more external resources 
with GPT-4 or its successors could further enhance their 
capabilities in chemistry-related domains.

Examples of big pharma engaging in AI‑driven 
drug discovery, development, and clinical trial 
efforts
As highlighted in recent literature [79], the utilization 
of AI algorithms to analyze data from large populations 
enables AI researchers and pharmaceutical scientists to 
uncover crucial trends and patterns. These insights aid 
in predicting the efficacy of potential drug candidates for 
specific patient populations, thus tailoring treatments to 
individual needs.

For example, the collaboration between Merck and 
Numerate, an AI company, exemplifies this approach, with 
a focus on developing AI-based strategies for medicinal 
chemistry [119]. In this rapidly growing research domain, 
numerous new companies are emerging, poised to make 
significant short-term impacts [120].

A recent study highlights successful partnerships 
between AI firms and the pharmaceutical industry in 
drug discovery and development [121]. For example, 11 
major pharmaceutical companies are leveraging AI plat-
forms to transform drug discovery, optimize clinical tri-
als, identify novel drug targets, generate lead compounds, 
and enhance manufacturing processes [120]. Sanofi has 
partnered with Aily Labs and a French startup AI com-
pany, Hillo. Pfizer has teamed up with IBM, and Novartis 
has partnered with Microsoft and NVIDIA. Janssen has 
introduced its Trials360.ai service. AstraZeneca has 
partnered with Oncoshot, and Bristol Myers Squibb and 
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Bayer have both joined forces with Exscientia. Merck has 
expanded its partnerships to include BenchSci, Atom-
wise, C4 Therapeutics, and ACMED, while GSK has part-
nered with Cloud Pharmaceuticals and Insilico Medicine. 
Roche has partnered with Recursion Pharmaceuticals, 
and Lilly has recently signed an AI partnership with 
Alphabet’s Isomorphic [122].

Such partnerships highlight the pharmaceutical indus-
try’s commitment to utilizing AI platforms to enhance 
efficiency, cut costs, and ultimately advance patient 
outcomes.

Through these collaborations, these entities can iden-
tify novel targets for drug development and improve the 
efficacy of existing treatments, thereby impacting clinical 
practice, and benefiting patients while enhancing their 
quality of life.

AI in drug‑matchmaking
An AI-based UK-based company, Exscientia, is testing 
a new patient-drug matchmaking technology that pairs 
individual patients with the precise drugs they need, con-
sidering the subtle biological differences between people 
[123].

The researchers used a small sample of tissue from a 
patient, dividing the sample, which included both nor-
mal cells and cancer cells, into more than a hundred 
pieces and exposing them to various cocktails of drugs. 
Using robotic automation and machine-learning models 
trained to identify small changes in cells led to an exhaus-
tive search for the right drug and identified a runner-up 
in the matchmaking process: a cancer drug marketed by 
the pharma giant Johnson & Johnson that was not effec-
tive at treating this type of cancer in previous cancer 
trials. This drug worked in a patient with a specific pat-
tern, and the patient was in complete remission for the 
last two years. In addition to matching patients up with 
existing approved or experimental drugs, the company 
uses machine learning to design new drugs, which could 
provide even more options when looking for a match. 
The first drugs designed with the help of AI are now in 
clinical trials to see if a treatment is safe and efficacious. 
Exscientia isn’t alone. There are now hundreds of startups 
exploring the use of machine learning in the pharmaceu-
tical industry.

On average, it takes more than 10 years and billions of 
dollars to develop a new drug. The AI-assisted approach 
can make drug discovery and testing faster and cheaper 
by predicting how potential drugs might behave in the 
body and selecting those with potential while eliminat-
ing those compounds that may fail before they leave the 
design stage. Machine-learning models can reduce the 
need for complex, long, and costly lab work. And there is 
always a need for new drugs.

AI leads to suspicions and optimism
As highlighted recently in Helio.com by Volansky R. 
[124] and in a recent paper by Li et  al., [10], there are 
several issues regarding using AI to analyze large batches 
of complicated data. One of the risks is rapidly propa-
gating false and biased information from these sources. 
In other words, AI is expected to interpret flawed data, 
generate inadequate results, and ultimately affect a treat-
ment strategy in the clinic. However, if inaccurate data 
are used in research, the results could cause a flawed 
conclusion about the efficacy and safety of a compound. 
Significant progress in health care has been made since 
2009 with the adoption of the electronic medical record 
(EMR) to recent advances in AI and ML [124]. But as AI 
and machine learning start to make their interpretation 
of data, the risk of medical malpractice will increase. A 
recent report [125] noted that the most significant ben-
efits of AI methods are seen with unstructured data 
frequently found in rheumatology, such as images and 
text, where traditional ML systems were not as effective 
in analyzing large amounts of information held within 
these data formats. In another recent study presented 
at the American College of Allergy, Asthma & Immu-
nology Annual Scientific Meeting, ChatGPT answered 
accurately or somewhat accurately 91% of the time when 
asked about 10 allergy myths [126]. In the same study, in 
a survey gauging the potential utility of ChatGPT, aller-
gists rated 70% of its responses to questions regarding 
allergy myths as accurate and 21% as precise somewhat 
[126]. Additionally, nearly half of the allergists intended 
to utilize chatbots for patient education [126].

Addressing the challenges posed by individual vari-
ations in treatment response and the complexities of 
combination therapies in clinical practice requires 
a multifaceted approach that integrates advances in 
AI, personalized medicine, and clinical research. Sev-
eral strategies must be considered to address those 
challenges.  Implement robust data quality assurance 
processes to ensure the accuracy, completeness, and reli-
ability of healthcare datasets that train and validate AI 
algorithms. This includes data cleaning, normalization, 
and validation procedures to identify and correct errors, 
inconsistencies, and missing values that may compromise 
the integrity of the data. Several parameters should be 
required when adopting AI: 1 Data quality and anonymi-
zation, encryption, and differential privacy are required 
to safeguard sensitive patient information and mitigate 
the risk of unauthorized access or data breaches; 2 Devel-
oping and implementing strategies to mitigate biases in 
AI algorithms and ensure fair and equitable treatment 
across diverse patient populations. This includes con-
ducting thorough algorithmic audits, evaluating model 
performance across different demographic groups, and 
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addressing training data biases through data augmenta-
tion, bias detection, and algorithmic fairness testing; 3 
Adhere to regulatory requirements and industry stand-
ards for the responsible development, validation, and 
deployment of AI technologies in healthcare; 4 Establish 
ethical guidelines and governance frameworks to guide 
AI’s responsible and ethical use in healthcare, including 
principles of beneficence, non-maleficence, autonomy, 
and justice; 5 Engage stakeholders from diverse back-
grounds, including patients, clinicians, ethicists, and 
policymakers, in developing ethical guidelines and deci-
sion-making frameworks that prioritize patient welfare 
and uphold ethical standards; 6 Implement continuous 
monitoring, evaluation, and feedback mechanisms to 
assess the performance, safety, and efficacy of AI-driven 
healthcare interventions in real-world clinical settings. 7 
Monitor key performance indicators, adverse events, and 
patient outcomes to identify potential risks, gaps, and 
areas for improvement in AI-enabled healthcare delivery.

AI and sustainable healthcare
Overcoming obstacles related to cost, implementation, 
and data annotation is crucial for maximizing AI’s ben-
efits in clinical medicine. Here are some tools and strat-
egies that can be employed to overcome obstacles: 1 
Open-source tools and libraries; 2 Cloud computing plat-
forms; 3 Transfer learning; 4 Collaborative annotation 
tools; 5 Clinical data registries; 6 Collaboration and part-
nerships. By leveraging these tools and strategies, health-
care organizations can address obstacles related to cost, 
implementation, and data annotation, thereby unlocking 
the full potential of AI in clinical medicine.

Controlling costs while maximizing the benefits of 
AI in medicine requires a combination of strategic 
approaches. Here, we listed some strategies that can be 
implemented to optimize AI benefits: 1 Identify and pri-
oritize AI applications in medicine that can potentially 
deliver significant benefits in terms of patient outcomes 
and cost savings. Targeting areas, such as medical imag-
ing interpretation and predictive analytics for disease 
diagnosis and treatment planning, can yield substantial 
returns on investment; 2 Collaborate with healthcare 
institutions, AI developers, researchers, and regulatory 
bodies to share resources, expertise, and best practices; 
3 Invest in robust data management infrastructure and 
interoperability standards to effectively collect, store, 
and integrate healthcare data from disparate sources; 4 
Implement mechanisms for continuous evaluation and 
improvement of AI systems to ensure their effective-
ness, safety, and cost-efficiency over time; 5 Design AI 
solutions that are scalable and reproducible across dif-
ferent healthcare settings and patient populations; 6 Stay 
abreast of regulatory requirements; 7 Invest in recruiting 

and training healthcare professionals with AI, data sci-
ence, and computational biology expertise to effectively 
leverage AI technologies in clinical practice.

By adopting these strategies, healthcare organizations 
can effectively manage costs while harnessing the trans-
formative potential of AI to improve medical diagnosis, 
treatment, and patient outcomes.

This indicates that medical innovation is unsustain-
able unless we adopt new strategies and change histori-
cal trends. Bioscience advances will not be translated into 
patient benefits as they should. The potential of advances 
in genomics and other cutting-edge technologies will go 
unrealized or realized with long delays and huge invest-
ments lost. There are several gaps in translation at every 
stage, i.e., from discovery through development, regula-
tory approval, and reimbursement. This translates to 
many innovations in a journey of more than 20 years.

A significant mindset change from all the key stake-
holders and actions is needed to implement sustainable 
healthcare, like integrated care across all health system 
levels. Patients and payers must be involved initially, 
not just at the end. Academicians must see themselves 
as part of an innovation process, not just as independ-
ent researchers. Regulators must be willing to accept 
more significant uncertainty. Companies and health sys-
tems should also focus on working together to ensure the 
proper treatment reaches the right patient at the right 
time rather than assuming a ‘free-for-all’ once marketing 
approval is granted.

AI has made many advances in healthcare efficiency. 
In particular, AI has improved the ability of physicians 
to diagnose diseases. According to the Institute of Medi-
cine and National Academy of Science, engineering and 
medicine diagnostic errors contribute to approx. 10% of 
patient deaths. AI aims to mimic human cognitive func-
tions and increase the availability of healthcare data.

The past few decades have seen considerable advances 
in diagnosing and treating cancer and other diseases. 
Yet, with the growing prevalence of cancer and other 
diseases and ongoing pressures on limited healthcare 
budgets, equal access to the latest scientific advances and 
their affordability have become a challenge. In the face 
of limited resources and increasing demand, we need to 
find better ways of allocating our resources and focus on 
what can make the most significant difference to patients. 
This results in eliminating interventions that offer limited 
benefit and prioritizing a patient stratification that gives 
the most critical benefit to patients, reducing inefficiency.

The need for AI in healthcare is clear. Healthcare 
relies on accuracy and intelligence with complex mecha-
nisms of action and quality care needed to treat patients 
affected by different diseases.



Page 24 of 31Carini and Seyhan ﻿Journal of Translational Medicine  (2024) 22:411

As referenced in World Economic Forum, in June 2023 
(“Emerging tech like AI is poised to make healthcare 
more accessible, accurate, and sustainable”, World Eco-
nomic Forum), and by Pastarino et al. [127], one key ele-
ment that will be essential for healthcare systems to pay 
attention to is whether adopting AI will make healthcare 
more sustainable.

This means that the technology should be designed 
with the purpose of longevity but also with the ability 
to adapt to a changing healthcare environment. In other 
words, a system designed for today’s needs will be differ-
ent from the needs of that same system in 20 years. This 
will require a consistent financial investment by institu-
tions that should commit to ever-greening AI infrastruc-
ture for the future. There are a lot of hopes that AI will 
be able to advise the healthcare sector in various ways, 
making healthcare more sustainable and serving as an 
assistant to clinicians. This hope has been fueled by some 
successful applications of AI in healthcare. However, 
when we look at AI and healthcare side by side, there are 
unrealistic expectations of what AI can do and what the 
landscape of the healthcare industry will look like in the 
future.

Regulatory considerations
As part of its digital strategy, the European Union (EU) 
seeks to regulate AI to create an environment for advanc-
ing and utilizing this groundbreaking technology. AI 
has the potential to yield a range of benefits, including 
enhanced healthcare, safer and more eco-friendly trans-
portation, increased manufacturing efficiency, and more 
cost-effective, sustainable energy solutions. In April 2021, 
the European Commission introduced the initial regu-
latory framework for AI within the EU, which involves 
assessing and classifying AI systems that have the poten-
tial for various applications based on the level of risk 
they present to users. The extent of regulation will vary 
depending on the assessed risk levels. Once endorsed, 
these regulations will represent the world’s pioneering 
rules concerning AI. The primary objective of the Euro-
pean Parliament is to ensure that AI systems utilized 
within the EU are safe, transparent, traceable, unbiased, 
and environmentally friendly. It is advocated that human 
oversight, as opposed to complete automation, be imple-
mented to avert adverse consequences. Furthermore, 
the Parliament aims to create a consistent, technology-
agnostic definition of AI that can be applied to future AI 
systems. The EU AI Draft proposes the first principles 
for Generative AI regulation; other countries will follow 
suit. The goal is to ensure that AI systems used in the EU 
are safe, transparent, traceable, non-discriminatory, and 
environmentally friendly (https://​www.​europ​arl.​europa.​

eu/​news/​en/​headl​ines/​socie​ty/​20230​601ST​O93804/​eu-​
ai-​act-​first-​regul​ation-​on-​artif​icial-​intel​ligen​ce).

Generative AI, like ChatGPT, would have to comply 
with transparency requirements such as disclosing AI-
generated content, designing the model to prevent it 
from generating illegal content, and publishing summa-
ries of copyrighted data for training.

As reported recently, AI and ML technologies have sig-
nificantly shaped many aspects of cancer care in recent 
years. Addressing the multiple sources of embedded bias 
to optimize these tools for cancer health equity requires 
a systemic, coordinated, and collaborative approach. 
Determinants of health and disease are multifactorial and 
complex, and our AI–ML technologies should reflect this 
complexity. Promoting health equity requires humanity, 
empathy, and transparency in data generation and AI–
ML implementation efforts [128].

Can AI facilitate faster and better healthcare?
The current debate about AI focuses on potential risks 
such as algorithmic bias and discrimination, loss of spe-
cific jobs, and other issues. Despite these dystopian sce-
narios, some scientists/physicians are focusing on the 
potential rewards of implementing AI. Some have argued 
that AI can solve some of the biggest and thorniest prob-
lems, drastically accelerating the pace of discovery in 
areas such as medicine, climate change, and green tech-
nology. Despite the challenges regarding the use of AI, 
two areas of research are promising. One is the so-called 
"literature-based discovery," which analyzes the scien-
tific literature using ChatGPT-style language analysis to 
look for new hypotheses or hypotheses that might have 
been overlooked. This approach has already shown some 
promise, suggesting potential research collaborators 
among different stakeholders. This, in turn, will encour-
age interdisciplinary collaborations. The second area is 
"robot scientists" or "self-driving labs," which are robotic 
systems that use AI to form new hypotheses based on 
analysis of existing data and literature and then test those 
hypotheses by performing thousands of experiments in 
different fields, including systems biology. Unlike human 
scientists, robots are less driven by biases. Most of all, 
robots could scale up experimental research, develop 
unexpected theories, and explore avenues human investi-
gators might have yet to consider. The idea that AI might 
transform scientific practice is feasible, though it will only 
happen for a while. One of the main barriers to the broad 
implementation of AI is that many scientists/physicians 
are concerned about possibly losing their jobs. Moreo-
ver, a recent report [129] showed that although Google 
Deepmind’s AlphaFold showed in 2020 that it could 

https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
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predict the 3D structure of proteins with high accuracy, 
recent findings demonstrated that AlphaFold’s prow-
ess doesn’t yet translate into solid leads for drug-binding 
sites. Despite all these limitations, Al is now increasingly 
embraced by researchers in different fields.

According to a recent review by Michael Liebman 
[8], drug design and development provide a significant 
opportunity to apply AI-based methods and technolo-
gies. This has the potential to enhance success rates, 
expedite time to market, and reduce the costs associated 
with drug development [8].

Progress in drug development using AI has been lim-
ited, but there are firm hopes for the future. The technol-
ogy needs to address specific critical challenges.

Target selection

•	 How accurately is the disease/condition diagnosed 
and stratified, ensuring a well-defined phenotype?

•	 How comprehensive is patient stratification, consid-
ering clinical history, comorbidities, lifestyle, envi-
ronmental factors, and genomics?

•	 Can the selected target be applied universally across 
the diverse real-world patient population, acknowl-
edging observed diversity?

Drug design/selection

•	 Can DL data be decoded effectively to interpret 
results?

•	 Considering comorbidities and polypharmacy in all 
patients, how are these factors considered?

•	 How effectively are pathway modulators being mod-
eled concerning individual targets and responses?

Clinical trials

•	 To what extent do inclusion and exclusion criteria 
reflect the characteristics of real-world patients?

•	 How does this impact the process of bringing a treat-
ment to the market post-approval?

•	 Can the stratification of diseases and/or populations 
lead to more effective and efficient directed clinical 
trials?

These questions underscore the importance of address-
ing critical challenges in target selection, drug design/
selection, and clinical trial design to harness the full 
potential of AI in drug discovery and development.

AI: myth versus reality
There is a lot of hope that AI will advance the health-
care sector in various ways, not just for patient diagno-
sis, patient prognosis, and drug discovery, but also to 
assist physicians and provide better and more personal-
ized treatment. This hope has been fueled by some suc-
cessful applications of AI in healthcare. Side-by-side, 
however, there are unrealistic expectations of what AI 
can do and what the landscape of the healthcare indus-
try will look like in the future.

Below, we listed two of the more common myths 
regarding the application of AI in healthcare:

1.	 AI will replace clinicians: While nobody can entirely 
predict the future, the fact is that physicians who 
understand the role of AI in healthcare likely have an 
advantage in their careers.

2.	 Programming knowledge is necessary to use AI suc-
cessfully: AI in any field of study consists of many 
components, and programming is just one of them. 
Physicians and data scientists must continue collabo-
rating to build meaningful AI systems for the contin-
ued growth, development, and success of AI applica-
tions in healthcare.

Like any other technology, AI comes with its advan-
tages and disadvantages. AI biomarkers have several 
conceptual limitations:

1.	 Data quality is the first limitation of using AI. If we 
train a model with noise or artefactual images, many 
more cases will be necessary for the model to con-
verge and achieve good performance [130]. To deploy 
AI models in medicine, large-scale validation studies 
with predefined performance metrics are required to 
guarantee model performance in the real world [131].

2.	 The training data must represent the real-world 
population [132]; if not, Deep Learning (DL) and 
Machine Learning (ML) models will fail. This is an 
issue in the medical context, where data distribu-
tions are markedly different between countries or 
hospitals. Without adequate precautions, such batch 
effects can inflate statistical results [132]. Mitigation 
strategies are to train on diverse datasets [133] or 
augment data [134].

3.	 AI models can be biased, meaning the performance 
depends on patient characteristics. To deploy AI 
models in medicine, large-scale validation studies 
with predefined performance metrics are required to 
guarantee model performance in the real world [131].
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4.	 The fourth limitation is bias. AI models can be 
biased, meaning that the performance can depend on 
patient characteristics like age, gender, or ethnicity 
[70].

5.	 The fifth limitation is the quality of the ground truth. 
The model’s performance will be limited to the estab-
lished molecular biomarker predictive capacity when 
developing a model using molecular biomarkers as a 
surrogate of response to cancer immunotherapy.

We believe isolating the AI misconceptions and evalu-
ating the future directions for AI in the medical field is 
essential. Not a day goes by with promising research 
studies on how to apply AI to the medical field. The term 
“artificial intelligence” itself might be misleading, given 
its meaning has been overinflated. An algorithm might 
perform very well on a pre-selected dataset. However, it 
should also be tested on real clinical data.

This issue in healthcare worldwide uses outdated 
infrastructure and technology Mi Ok Kim et al. [135] to 
address contemporary challenges and healthcare sus-
tainability, which results in failure. Notably, the idea of 
sustainability for AI and healthcare is multifaceted and 
dramatically impacts the success of AI technologies. This 
is why, if not considered at the outset during its develop-
ment, these challenges will fall to the management sys-
tem within healthcare delivery, which has shown to be 
poorly equipped to respond to ongoing changes in tech-
nology and patient needs.

Moreover, as recently reported in the literature [5], the 
success of AI systems in real‐world applications depends 
on the capability of working accurately in a safe, reliable, 
and generalizable manner.

AI: key limitations and outlook
It has been reported that increasing efforts to imple-
ment AI in PM to perform tasks such as disease diag-
nosis, predicting risks, and treatment responses are not 
without challenges. Indeed, many studies have shown 
promising experimental results (see Table 3). However, 
how AI improves health care still needs to be fully dem-
onstrated. The limitations outlined for AI biomarkers 
highlight numerous challenges that must be addressed 
to deploy these models successfully in the medical field. 
Below, we describe a detailed assessment of the limita-
tions and outlook of potential solutions:

The first limitation is data quality. Beyond the large 
amount of data that models require for achieving accu-
rate, generalizable results, this data must be of high 
quality [130]. Suppose we train a model with noisy or 
artefactual images. In that case, many more cases will be 
necessary to converge for the model to perform well. The 

second limitation is generalization. DL models can fail 
to generalize if the training data does not represent real-
world populations. This is especially an issue in a medical 
context, where data distributions vary markedly between 
countries or hospitals. Without adequate precautions, 
such batch effects can influence statistical performance 
[132]. There are mitigation strategies to train the training 
dataset on diverse datasets [133, 134].

The third limitation is bias. AI models can be biased, 
meaning that the performance can depend on patient 
characteristics like age, gender, or ethnicity [70]. To 
deploy AI models in medicine, large-scale valida-
tion studies with pre-defined performance metrics are 
required to guarantee model performance in the real 
world [131]. The fourth limitation is the quality of the 
ground truth. When developing a model using molecular 
biomarkers as a surrogate of response to immunotherapy, 
the model’s performance will be limited to the estab-
lished molecular biomarker predictive capacity.

Data quality

•	 Challenge: High-quality data is crucial for training 
accurate and reliable AI models. Noisy or artefac-
tual data can lead to biased or inaccurate predic-
tions.

•	 Outlook: Emphasis should be placed on rigorous 
data curation and quality control. Initiatives to 
standardize data collection processes and ensure 
data integrity can improve the overall quality of the 
datasets used for training AI models.

Generalization

•	 Challenge: Lack of representativeness in training data 
can result in poor generalization of AI models to 
diverse populations or real-world settings.

•	 Outlook: Strategies such as training on diverse data-
sets or augmenting data can help improve generaliza-
tion. Collaborative efforts to pool data from different 
sources and regions may contribute to more robust 
and widely applicable models.

Biases

•	 Challenge: AI models may exhibit biases based on 
patient characteristics, potentially leading to dispari-
ties in performance across different demographic 
groups.

•	 Outlook: Rigorous validation studies with diverse 
and well-characterized patient populations are essen-
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tial. Ongoing efforts to develop and adhere to stand-
ardized guidelines for assessing and mitigating biases 
in AI models are critical. Transparency in reporting 
potential biases is crucial for building trust in AI 
applications.

Quality of ground truth

•	 Challenge: The predictive capacity of AI models rely-
ing on molecular biomarkers is limited by the quality 
and reliability of the chosen biomarkers.

•	 Outlook: Continuous research and validation stud-
ies are necessary to establish and refine the predic-
tive capacity of molecular biomarkers. Collaboration 
between researchers, clinicians, and data scientists 
can facilitate the identification of robust biomarkers 
and improve the overall quality of the ground truth 
used in AI model development.

In addition to these limitations, ongoing interdiscipli-
nary collaboration, regulatory oversight, and ethical con-
siderations are crucial for the responsible development 
and deployment of AI biomarkers in healthcare. As the 
field advances, addressing these limitations will be essen-
tial to ensure AI models’ reliability, fairness, and general-
izability in diverse medical settings.

To further optimize the integration of AI in drug devel-
opment, clinical trials, and healthcare delivery, several 
future research directions and areas of innovation are 
recommended:

1.	 Deep Learning (DL) and Drug Discovery: Explore 
the application of DL techniques, such as deep neu-
ral networks and generative adversarial networks, in 
drug discovery. Research efforts can focus on virtual 
screening, de novo molecule design, and predicting 
drug-target interactions to accelerate the identifi-
cation and optimization of novel therapeutic com-
pounds.

2.	 Multi-Omics Data Integration: Investigate methods 
for integrating multi-omics data, including genom-
ics, transcriptomics, proteomics, metabolomics, and 
microbiomics, to gain comprehensive insights into 
disease mechanisms and drug responses. Develop 
AI-driven approaches to analyze and interpret com-
plex biological datasets, identify biomarkers, and 
personalize treatment strategies based on individual 
molecular profiles.

3.	 Clinical Trial Optimization with AI: Develop AI-
driven algorithms for optimizing clinical trial design, 
patient recruitment, and endpoint selection. Explore 
methods for leveraging real-world evidence, elec-

tronic health records, wearable sensors, and mobile 
health technologies to streamline clinical trial opera-
tions, improve patient engagement, and enhance data 
quality and regulatory compliance.

4.	 Real-Time Monitoring and Predictive Analytics: 
Develop AI-driven systems for real-time monitor-
ing, predictive analytics, and early warning systems 
in healthcare delivery settings. Research efforts can 
focus on developing algorithms for predicting patient 
deterioration, adverse events, and hospital readmis-
sions, enabling proactive interventions and personal-
ized care delivery.

5.	 Natural Language Processing (NLP) in Healthcare: 
Advance the application of natural language process-
ing (NLP) techniques in healthcare for extracting 
insights from unstructured clinical notes, medical 
literature, and patient-generated content. Develop 
NLP models for clinical decision support, automated 
coding and documentation, and population health 
management, improving information retrieval and 
knowledge discovery in healthcare settings.

6.	 Federated Learning and Privacy-Preserving AI: 
Investigate federated learning and privacy-preserving 
AI techniques for collaborative model training and 
knowledge sharing across healthcare institutions 
while preserving patient privacy and data security. 
Develop secure and scalable frameworks for aggre-
gating decentralized data sources, training robust 
models, and ensuring regulatory compliance in 
multi-institutional research collaborations.

7.	 Interoperability and Semantic Integration: Address 
interoperability challenges and semantic integration 
barriers in healthcare data systems to enable seamless 
exchange and integration of structured and unstruc-
tured data from diverse sources. Develop standards-
based approaches for data representation, metadata 
management, and ontology mapping to facilitate data 
interoperability, semantic enrichment, and knowl-
edge discovery across heterogeneous healthcare 
datasets.

8.	 Ethical, Legal, and Regulatory Frameworks: Develop 
ethical, legal, and regulatory frameworks for the 
responsible and transparent use of AI in drug devel-
opment, clinical trials, and healthcare delivery. 
Address algorithmic bias, data privacy, informed 
consent, liability, and accountability concerns to 
ensure patient safety, equity, and trustworthiness in 
AI-enabled healthcare systems.

By prioritizing these research directions and foster-
ing interdisciplinary collaborations between academia, 
industry, healthcare providers, and regulatory agen-
cies, stakeholders can unlock the full potential of AI to 
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transform drug development, clinical trials, and health-
care delivery, ultimately improving patient outcomes and 
advancing public healthcare.

Conclusions
We are entering a new era characterized by an overflow 
of information but a need for more time and genuine 
human interaction. Technological advancements in AI 
algorithms equipped with PM have already resulted in 
an unprecedented acceleration of precision therapy, early 
disease detection, and personalized disease prevention 
strategies. The drug design and development field are 
poised to remain at the forefront of adopting emerging 
technologies. However, the critical question is whether 
these technologies should be integrated into the drug 
development process to improve existing pipelines and 
processes or restructure these processes considering 
these advancements. Overall, the synergy between AI and 
PM could ultimately decrease the disease burden for the 
public and, therefore, the cost, making preventive health 
care sustainable for all. However, we should remain vigi-
lant in applying ethics and equity to ensure that these 
advancements do not increase health-related disparities, 
exacerbate existing inequities, or create new divides in 
care or health-related outcomes. The last pivotal element 
for successfully integrating AI and PM involves engag-
ing all stakeholders, including researchers, healthcare 
professionals, citizens, and patients. This necessitates an 
investment in literacy, education, and capacity building 
to integrate AI into PM practices seamlessly.

Review criteria
Publicly available information such as PubMed and the 
Internet were used for the literature review. We focused 
on identifying articles published on using AI and PM and 
sustainable health care. The research was restricted to the 
most recent studies in this field, and all research was lim-
ited to human studies published in English.
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