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Abstract

Upon a diagnosis, the clinical team faces two main questions: what treatment, and at what dose? Clinical trials’
results provide the basis for guidance and support for official protocols that clinicians use to base their decisions.
However, individuals do not consistently demonstrate the reported response from relevant clinical trials. The deci-
sion complexity increases with combination treatments where drugs administered together can interact with each
other, which is often the case. Additionally, the individual’s response to the treatment varies with the changes in their
condition. In practice, the drug and the dose selection depend significantly on the medical protocol and the medi-
cal team’s experience. As such, the results are inherently varied and often suboptimal. Big data and Artificial Intel-
ligence (Al) approaches have emerged as excellent decision-making tools, but multiple challenges limit their applica-
tion. Al is a rapidly evolving and dynamic field with the potential to revolutionize various aspects of human life. Al

has become increasingly crucial in drug discovery and development. Al enhances decision-making across different
disciplines, such as medicinal chemistry, molecular and cell biology, pharmacology, pathology, and clinical practice. In
addition to these, Al contributes to patient population selection and stratification. The need for Al in healthcare is evi-
dent as it aids in enhancing data accuracy and ensuring the quality care necessary for effective patient treatment. Al
is pivotal in improving success rates in clinical practice. The increasing significance of Alin drug discovery, develop-
ment, and clinical trials is underscored by many scientific publications. Despite the numerous advantages of Al, such
as enhancing and advancing Precision Medicine (PM) and remote patient monitoring, unlocking its full potential

in healthcare requires addressing fundamental concerns. These concerns include data quality, the lack of well-anno-
tated large datasets, data privacy and safety issues, biases in Al algorithms, legal and ethical challenges, and obstacles
related to cost and implementation. Nevertheless, integrating Al in clinical medicine will improve diagnostic accuracy
and treatment outcomes, contribute to more efficient healthcare delivery, reduce costs, and facilitate better patient
experiences, making healthcare more sustainable. This article reviews Al applications in drug development and clini-
cal practice, making healthcare more sustainable, and highlights concerns and limitations in applying Al.
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Introduction

The past 10 years have seen a remarkable acceptance of
Artificial intelligence (AI) and Machine Learning (ML),
which can help medical innovation for a more sustain-
able Precision Medicine (PM). The advantage of adopt-
ing AI and ML allows the analysis of extensive complex
data, opening a new era for more sustainable healthcare.
The potential of Al to generate insights from multi-
dimensional data sets can support the use of PM in vari-
ous diseases to discover new diagnostic and prognostic
biomarkers.

Al works through ML, allowing computers to learn
without being explicitly programmed for a specific task
[1]. Indeed, if you feed the algorithm with enough good-
quality data, ML will generate strategies for excelling at
that task. However, so far, the power of Al to recognize
sophisticated patterns and hidden structures has been
limited to imaging and histopathology in the medical
field.

With increasing costs, public pressure, and policy
imperatives to manage patients across care episodes, the
need to aggregate data across departments within and
across different healthcare organizations is still an unmet
medical need. The rapid explosion of Al has introduced
the possibility of using aggregated healthcare data to pro-
duce robust models that can automate diagnosis [1] and
also enable an increasing PM approach by tailoring treat-
ments and targeting resources with maximum effective-
ness on time (IBM and Partners to transform personal
health with Watson and open cloud<https://www-
03ibm.com/us/en/pressrelease/46580 was > 2015; [2]. The
digitalization of healthcare data and the rapid uptake in
technology are fueling transformation in the develop-
ment and use of Al in healthcare [3].

However, "the truth" is that, at present, the algorithms
that feature prominently in research are, in fact, not exe-
cutable in clinical practice. This is happening for several
reasons: 1. Al innovations do not re-engineer the incen-
tives supporting existing working methods; 2 adding Al
applications to an already fragmented healthcare system
will not create sustainable healthcare changes; 3. most
healthcare organizations lack the infrastructure required
to collect the data to optimally train algorithms to (a)
“fit” the local population and/or the local medical prac-
tice patterns, a requirement before the deployment rarely
highlighted by current AI publications; (b) interrogate
them for potential biases to guarantee that the algorithms
perform consistently across patient cohorts, especially
those who may not have been adequately represented in
the training cohort [4]. An algorithm trained on mostly
Caucasian patients is not expected to have the same
accuracy when applied to minorities [5]. Rigorous evalu-
ation and re-calibration must be done to capture those
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patient demographics that change over time [6]. Health-
care, with its abundance of data, is, in theory, well-poised
to benefit from growth in cloud computing. The largest
and most valuable store of data in healthcare rests in
Electronic Medical Records (EMR). However, clinicians’
satisfaction with EMRs remains low, resulting in variable
completeness and data entry quality, and provider inter-
operability remains elusive [6]. The typical lament of cli-
nicians is still, “Why is my EMR still inaccurate, and why
don't all these systems just talk to each other?”.

To value the potential of Al across health systems,
more fundamental issues must be addressed: 1. who
owns health data; 2. who is responsible for them; 3. who
can use them? The potential of Al is well described in
the literature [7]. However, in reality, health systems are
faced with a choice to significantly downgrade the enthu-
siasm regarding the potential of Al in everyday clinical
practice or to resolve data ownership and trust issues and
invest in the data infrastructure to realize it.

AI and ML platforms have been extensively used in
basic and clinical research spanning from drug discov-
ery and development, diagnostic imaging, and genomic
to other multi-omics data analysis, as reported recently
by Liebman [8]. The utilization of Al technologies has
become increasingly significant in accelerating various
areas of biomedical research, including drug discovery
and development, image-based disease diagnosis, and
the analysis of large datasets, consequently enhancing
decision-making processes across a wide range of fields
and disciplines such as drug discovery, molecular biology,
imaging, pathology, toxicology, and clinical medicine.

In particular, Al is on the rise in drug discovery and
development. While advocates highlight the potential
that these tools bring. Detractors, instead, adopt a more
cautious approach, seeking solid evidence on the impact
on drug discovery initiatives [9].

The right approach most likely lies right in the middle
between those opposite views. Advances in the compu-
tational capability of Al have prompted concerns that Al
technologies might replace physicians.

Al in medicine

The real question is whether chatbots and large language
model Al systems can reshape modern medicine or will
lead to the opening of a Pandora’s Box. Li et al. [10] con-
sider different levels of healthcare applications for large
language model Al systems, evaluating their capabilities
and limitations, enable new workflows and models of
care delivery, and shift the boundaries between human
expertise vs artificial intelligence expertise. Li et al. [10]
concluded that emerging Al systems could help to reduce
the burden of laborious tasks in modern medicine, ena-
bling physicians to devote their time to treating people.
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Among the wide range of fields with possible appli-
cations of Al, medicine stands out as one with signifi-
cant potential and substantial challenges. Al tools have
become increasingly used in analyzing and interpreting
large research databases ranging from laboratory find-
ings to clinical data. All these tools offer the potential
for increased efficiency and may unravel insights that are
difficult to attain with traditional data-analysis methods.
Despite a growing interest in deploying Al technolo-
gies in domains critical for sustainability, like healthcare,
very few reports in the literature describe the potential
systemic risks in depth [11, 12]. Unfortunately, using Al
is not without strings, with social and ethical challenges
to security, privacy, and human rights [13-15]. Dispari-
ties in disease care are due to the lack of affordable and
inconsistent accessibility of patient data, especially in
undeveloped countries. ML models are usually built on
historical Caucasian data. Consequently, groups his-
torically sidelined or experienced barriers to care can be
affected by data, analytic and algorithmic bias. ML mod-
els in health care should be developed so that protected
and non-protected demographic groups derive equal
clinical benefits performing equally between the groups.
During the evaluation phase of the algorithm, model
performance should be assessed across different patient
population groups. In addition, historical data on which
the model is predicated should be assessed to determine
whether these data would amplify and perpetuate racial
bias. Unfortunately, only a handful of practical examples
of Al medical use exist. However, the hype around this
topic is unprecedented [7] with many AI papers pub-
lished each year. Nevertheless, Al technology is still in its
infancy in healthcare, and a short guiding medical profes-
sional to which clinicians can refer back is still lacking.
Moreover, the proofs and evidence in favor of Al are yet
to be convincing before Al gets adopted in medical prac-
tice extensively [7].

Undoubtedly, AI might benefit healthcare only when
the medical community can assess its value and potential
opportunities and acknowledge the limitations in treat-
ing different diseases [16]. Immunotherapy is now the
standard treatment for cancer patients. However, many
cancer patients do not respond to immune checkpoint
inhibitors (ICI) treatment [17]. Predicting a response to
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ICI is still an unmet medical need. Identifying Al predic-
tive biomarkers that can stratify ICI-treated patients in
responders and non-responders is needed. Al biomark-
ers should be able to optimize patient stratification and
minimize undesirable toxicities.

The power of Al technologies to recognize sophisti-
cated patterns and hidden structures has enabled many
image-based detection and diagnostic systems to per-
form as well as clinicians [18, 19].

However, whether Al enables clinical decisions and
reduces diagnostic errors by assisting clinicians with
EMR data extraction is yet to be proven [20, 21].

As highlighted in the recent AACR Cancer Progress
Report 2022 [22], one area of intense research and rapid
progress in recent years has been the use of Al and ML
to analyze large amounts of imaging data collected for
cancer screening. These technologies help recognize pat-
terns that are often difficult to discern, even by trained
experts. While further research is necessary, some Al-
based medical devices and software systems have dem-
onstrated high accuracy and effectiveness in clinical
trials. For instance, between August 1, 2021, and July 31,
2022, the FDA approved several Al-enhanced software
systems to assist clinicians in early cancer detection [22].
Table 1 illustrates a few examples of Al-based devices
and software systems developed for detecting various
types of cancers, including GI Genius for colorectal can-
cer, Paige Prostate for prostate cancer, Lunit INSIGHT
MMG for breast cancer, and EndoScreener for colorectal
cancer detection. For example, a breast cancer predicting
algorithm, trained on 38,444 mammogram images from
9611 women, was the first to combine imaging and EMR
data with associated health records. This algorithm could
predict biopsy malignancy and differentiate between nor-
mal and abnormal screening results. The algorithm can
be applied to assess breast cancer at a level comparable
to radiologists, as well as having the potential to reduce
missed diagnoses of breast cancer substantially [23].
Table 1 presents examples of several Al-enhanced soft-
ware systems recently approved by the FDA to assist cli-
nicians in early cancer detection [22].

Table 2 illustrates the examples of PubMed search
results of published work in various cancer research fields
that use Al in these publications. The words shown in the

Table 1 Examples of Al-based devices and software systems in cancer detection [22]

Gl Genius
detectable during routine colonoscopy

Pelge Prostate
of areas that may be cancerous

Lunit INSIGHT MMG

Endoscreener

A medical device that uses Al-based software to assist clinicians in identifying precancerous lesions or polyps that may not be
An Al-based software that reviews digitally scanned slide images from prostate biopsies to assist pathologists in the detection

An Al-based software that analyzes mammography images and provides the location of lesions suspected of being cancerous
An Al-based software that identifies potentially precancerous polyps during a colonoscopy
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Table 2 Use of Al in various research fields from 1960s to 10-22-2023. Number of publications in various cancer research fields
reported in PubMed ranging from 1960s to 10-22-2023. Data sources in the PubMed search included abstracts, original research
articles, review articles, clinical trials, books and documents, meta-analyses

Disease fields Number of publications (date range 1960s- Growth of Al use (1960s-Oct. 22, 2023)
Oct. 22, 2023)
Cancer research 17,395
SRR
[4 (]
O ............................. lllllllllllIIIIIIIIIII|I| O
1961 2024
Healthcare 15,276 a \l/
¥ (]
O ..... mllllllll““lll O
1966 2023
Radiology 21,380 a \l,
L4 (]
C) .............................. "mmmmmmde)
1960 2023
5347 ”
2
O ...n.nllllllllo
1974 2023
i 4
Drug discovery 885 ” \l,
[4 (]

1988 2024
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Table 2 (continued)
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Disease fields

Number of publications (date range 1960s-
Oct. 22, 2023)

Growth of Al use (1960s-Oct. 22, 2023)

Drug development

Medicinal chemistry

Toxicology

Medical toxicology

Drug design

78,791

2579

1133

373

3862

1989 2024

SR
L4 (]

1976 2023

SRR

O.._______._.___.__...._.lllllllllo

1987 2023

2

e |||||II||‘

1984 2024
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Table 2 (continued)
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Disease fields

Number of publications (date range 1960s-
Oct. 22, 2023)

Growth of Al use (1960s-Oct. 22, 2023)

Drug combination therapy

Drug toxicity

Pharmacology

Drug toxicity and safety

Pharmacometrics

847

1853

13,123

380

98

O mmttacastoce Illlllllll“ O

1985 2024

7 I
MEEIR2

o ..........mlllll|||||||||“ O

1968 2024

1987 2024

R I
O

2013 2023
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Table 2 (continued)

Disease fields Number of publications (date range 1960s- Growth of Al use (1960s-Oct. 22, 2023)
Oct. 22, 2023)
Pharmacokinetics 3110
SR
L4 A
O.--....--.--lnlllll“llllllll I!)
1987 2024
Pharmacodynamics 13,202
SR
¥ (4]
O ................... --.nllllllll“““lllllllll‘ O
1968 2024
Biomarkers 10043
SRR
L4 0
O ........ --...--nnlllllllll O
1990 2024
Diagnostics 96,726
SR
(3 ™
O= " mlI"“““I"Il O
1960 2024
Predictive 62,170
R

1982 2024
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Table 2 (continued)
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Disease fields
Oct. 22, 2023)

Number of publications (date range 1960s-

Growth of Al use (1960s-Oct. 22, 2023)

Prognostic 4466
Patient recruitment 2238
Patient care 14,168

....|||I||| O

1988 2024

C) _________________ ““hL“nH“““““ C)

1975 2023
R
O -l-||n||l||"|"|||||||| O
1964 2024

left column of the table have increased significantly since
the first use of Al in any of the selected fields of medical
research, including drug discovery, development, medici-
nal chemistry, cancer research, PM, etc. Data sources in
the PubMed search included abstracts, original research
articles, review articles, clinical trials, books and docu-
ments, and meta-analyses) (1960s-Oct. 22, 2023).

Notably, there is exponential growth in the use of Al in
all these fields. The first recorded use of automated pat-
tern recognition goes back to a report published in the
Lancet in 1960 [24].

Given the significance of Al in genomics and its poten-
tial impact on human health, a recent study [25] sought
to evaluate factors that could improve the clinical appli-
cation of Al in this field. The study has concluded that
there is a significant need for informatics research and
development to fully realize the clinical potential of these
technologies. The creation of larger datasets is deemed
essential to replicate the success seen by Al in other

fields. It is imperative that Al techniques help to lessen
rather than exacerbate the socioeconomic, racial, and
ethnic divides that already exist. Establishing genomic
data standards becomes imperative for the effective scal-
ability of such technologies across institutions. Given
the considerable uncertainty, complexity, and novelty in
genomics and medicine, coupled with an evolving regu-
latory environment, the current emphasis should be on
utilizing these technologies in collaboration with cli-
nicians, highlighting the value each brings to clinical
decision-making.

Al in precision medicine

As reported in the literature [26—30] and illustrated in
Fig. 1, one way to improve the value and efficiency of can-
cer and other disease therapy is by making PM an integral
part of the approach to population health management.
One-third of the EU adult population is currently affected
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Fig. 1 Precision medicine paradigm. Current approaches for precision medicine often involve assessment of various cancer drugs

including chemotherapy, targeted therapies, or immunotherapy and others using patient derived tissue cancer cells or models such as spheroid
or organoid as well as orthotopic murine xenograft models. With the rise of Al-based systems and technology platforms, it is anticipated that this
process can be accelerated. Created with BioRender.com. (Accessed on 18 January 2024, 2024)

by at least one chronic disease that contributes to 75% of
mortality, and on average, 18 years of the last period of
life are spent with at least one disability [31].

Approaches to PM are already being implemented for
diseases like cancer, both in the diagnosis and treatment.
Regrettably, we are still in the infancy of preventing and
predicting diseases in healthy individuals. Several PM
applications can have the potential for more effective pre-
vention of chronic diseases, postponing the onset of dis-
abilities and reducing healthcare costs [32]. Over the last
twenty years, the incredible progress in genotyping tech-
nology, the reduction in genome sequencing costs, and
the advent of digital technologies in healthcare, includ-
ing wearable devices to monitor health, have initiated a
third revolution in medicine. In this context, there is an
increasing interest in finding informative markers that
indicate the disease risk before the symptomatic manifes-
tations of the disease occur (primary prevention) or for
early disease detection (secondary prevention).

Clinicians have used genotype information as a guide-
line to help determine the correct dose of warfarin [33].
The Clinical Pharmacogenetics Implementation Con-
sortium published genotype-based drug guidelines to

help clinicians optimize drug therapies with genetic test
results. [34]. Genomic profiling of tumors can inform
targeted therapy plans for patients with breast or lung
cancer [35]. PM and Al integrated into healthcare have
the potential to yield more precise diagnoses, predict dis-
ease risk before symptoms occur, and design customized
treatment plans that maximize safety and efficiency.

As previously reported by Johnson, 2021 [5], the
trend toward enabling the use of PM by establishing
data repositories is not restricted to the United States;
examples from Biobanks in many countries, such as the
UK Biobank, [36], BioBank Japan, [37], and Australian
Genomics Health Alliance [38] demonstrate the power of
changing attitudes toward PM globally. It is known that
there is a certain synergy between Al and PM. They both
impact the goal of personalizing care in several ways:
therapy planning using clinical, genomic, or social and
behavioral determinants of health and risk prediction/
diagnosis using genomic or other variables.

Although there is much promise for Al and PM, more
work still needs to be done to test, validate, and change
treatment practices. Researchers face challenges in
adopting unified data formats (e.g., Fast Healthcare
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Interoperability Resources), obtaining sufficient and
high-quality labeled data for training algorithms, and
addressing regulatory, privacy, and socio-cultural
requirements.

Al in drug discovery and development

As illustrated in Figs. 2 and 3 and reported in the litera-
ture [22, 26-29, 39], the timeline from drug target and
discovery to phase 1 human clinical trials and, ultimately,
FDA approval, followed by Phase 4 studies indeed can go
on for several years. Given that the costs and time neces-
sary to develop a drug have become unsustainable, there
is an urgent need to accelerate drug discovery and devel-
opment and reduce the cost and time it takes to register
a drug.

In the upcoming years, the adoption and application of
Al techniques (machine learning, deep neural networks,
and multifaceted biomedical Al) is expected to acceler-
ate clinical research significantly. Al will affect drug dis-
covery transformation, enhancing image interpretation,
streamlining electronic health records, optimizing work-
flow, and gradually progressing the field of public health.

As discussed in the literature, [27, 28, 39-42], Al-
based drug discovery and screening alongside laboratory
automation could augment human drug design, chemi-
cal synthesis, drug screening, biological testing, and
decision-making involved in drug discovery and devel-
opment, potentially overcoming low success rates, long
drug development process, and high costs often associ-
ated with traditional drug discovery and development
process (Fig. 2).

As highlighted in recent literature [42], with the
advancement of therapeutic strategies [43], the field of
drug discovery and development is adopting innova-
tive methodologies like data science, informatics, and
Al among others. These developments aim to improve
efficiency, lower costs, and reduce reliance on ani-
mal testing, thus accelerating the creation of new and
potent therapies. The intersection of big data and Al in
drug discovery continues to attract considerable inter-
est [44]. Investors [45, 46], industry experts [47, 48],
researchers [49, 50], and policymakers [51] are actively

(See figure on next page.)
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participating in discussions on the implications of Al
for drug discovery.

The successful approval of a drug requires the con-
current optimization of various properties encompass-
ing pharmacokinetics (PK), pharmacodynamics (PD),
and clinical outcomes. PK entails absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET),
while PD aspects pertain to drug-target interactions
and efficacy along with drug safety considerations.
Clinical outcomes encompass therapeutic intentions, as
delineated by the list of drug indications and off-label
uses, as well as undesired effects such as side effects or
adverse drug reactions.

Therefore, the successful campaign of a drug discovery
program relies on three fundamental pillars: diseases,
targets, and therapeutic modalities and AI influences
most of these therapeutic modalities, such as antibod-
ies [52], gene therapy [53], oligonucleotide [54], targeted
protein degradation [55], and vaccine [56] design.

In human clinical trial space, Al-based methods can
help physicians leverage patients’ genomic data to iden-
tify drugs targeting those genomic aberrations. This
approach offers enhanced drug effectiveness, improved
safety profiles, decreased adverse reactions, expanded
treatment choices, and a potential for saving lives
(Fig. 2).

As discussed in the literature [9] and illustrated in
Fig. 3 illustrates how integrating artificial intelligence
and laboratory automation can enhance human deci-
sion-making and improve the processes of chemical
synthesis and biological testing processes within the
design-make-test-analyze cycles integral to drug discov-
ery. This collaborative intelligence, resulting from the
synergy of human expertise and machine capabilities, is
expected to lead to more informed decision-making.

The use of Al enabled drug discovery and develop-
ment, clinical trial design and enrollment through drug
discovery, interpreting imaging, streamlining electronic
health records, and improving workflow, advancing pub-
lic health over time. Al can help in many of these aspects
at all stages of the drug development process, including
the different phases of human clinical trials.

Fig. 2 Al-based technologies can accelerate the drug discovery and development process and reduce the cost. Left panel: Al-based techniques
can accelerate the drug discovery and development process, potentially reducing the attrition rate, time, and the cost. Al-based drug discovery
and screening alongside laboratory automation could augment human drug design, chemical synthesis, drug screening, biological testing,

and decision-making in design—-make-test-analyze cycles involved in drug discovery and development, potentially overcoming low success rates,
long drug development process, and high-cost often associated with traditional drug discovery and development process. Right panel: in clinical
trial space, Al-based techniques can help physicians to leverage patient’s genomic data to identify suitable drugs that target those genomic
aberrations. This approach offers the potential for enhanced drug effectiveness, improved safety profiles, decreased adverse reactions, expanded
treatment choices, and, ultimately, a potential for saving lives. Abbreviations: DNN, deep neural network; EHR, electronic health records; loMT,
internet of medical things; ML, machine learning. Created with BioRender.com. (Accessed on 18 January 2024, 2024).
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Alin clinical trials

As recently reported by Kumar et al. [57], many clinical
trial studies have adopted Al to improve cancer screen-
ing/diagnosis and predict treatment outcomes. These
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studies rely on digital pathology, radiology, and genomic
data to optimize the design of combination regimens
and determine appropriate dosing of chemotherapy and
immunotherapy [58-60]. As highlighted in the literature
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analyze cycles involved in drug discovery. Created with BioRender.com. (Accessed on 18 January 2024, 2024)

[5], there are several challenges concerning Al systems
that could affect the successful transition to real-world
healthcare. These challenges include fairness and bias,
socio-environmental factors, data safety, and privacy.
Additionally, Table 3 presents various pros and cons of Al
systems in precision medicine, emphasizing other critical
points to consider.

As of October 18, 2023, there were (1584 clinical
trials and 910 observational and 655 interventional)
across various diseases reported on Clincaltrials.gov
that used AI (Table 4). In the neurologic disorders,
there were a total of 170 studies (94 of them observa-
tional and 76 interventional) across various neurologic
disorders, including Alzheimer’s disease, Parkinson’s,
CNS tumor, stroke, diabetic neuropathies, disease,
and many others reported in Clincaltrials.gov that
use Al Rheumatic Diseases: Only 6 clinical trials (2

observational and 4 interventional) across Rheumatic
Diseases were reported in Clincaltrials.gov that use Al
Of which, studies. Cardiovascular Diseases: There were
276 clinical trials (187 observational and 89 interven-
tional) in cardiovascular diseases (also searched for
disorders, diagnoses, and conditions) reported on Clin-
caltrials.gov that used Al

In the oncology field, there were 452 clinical trials
(271 observational and 181 interventional) reported in
Clincaltrials.gov that use AI. Notably, the documented
applications of AI commonly involve the oncology field
and are primarily used in recruitment [61]. As the trial
outcomes continue to be realized if Al will ultimately
change practice in oncology, several factors that extend
far beyond technology and data will need to be explored.

As of October 18, 2023, only five studies were found
for Al in cancer in Phase 1 and 15 studies were found in
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Phase 2, and only 3 Al studies were found for cancer in
Phase 3. On the other hand, no studies were found for Al
in Phase 4 cancer trials. Notably, most of these studies
noted above involved diagnostic tests, devices, and oth-
ers not included in the Phase 1-3 studies.

Al in cancer diagnosis

The utilization of Al in various fields has experienced
exponential growth, with the first recorded automated
use of pattern recognition dating back to a report pub-
lished in the Lancet in 1960 [24]. In the context of can-
cer diagnosis, current literature [22, 62, 63] reveals
numerous studies exploring AIs potential by compar-
ing their results to manual detection by pathologists. Al
demonstrates a notable degree of accuracy, surpassing
human pathologists in diagnosing specific types of can-
cer [64—67]. Al effectively detected precancerous colonic
polyps, leading to a two-fold reduction in missed identi-
fications compared to pathologist diagnoses when using
traditional colonoscopy [62]. The FDA’s recent approval
of Al for cancer early detection and diagnosis under-
lines the efficacy of the Al approach. Al applications’ Al
extends to predicting the likelihood of developing metas-
tasis, as demonstrated in a study on bone metastasis in
breast cancer patients, where an Al algorithm correctly
predicted bone metastasis likelihood in 88% of cases
[68]. Ensuring accurate and equitable Al-based screen-
ing requires broad application across diverse groups,
including racial and ethnic minorities. A meta-analysis of
Al programs detecting melanoma revealed a lack of dis-
closure regarding skin type and race/ethnicity in many
studies. Without inclusive data on darker skin colors and
reporting of race and ethnicity, Al algorithms can lead to
biased technologies with inconclusive or false diagnoses.
Efforts must be made to reduce biases in technologies by
incorporating a health equity lens early in development,
increasing recruitment and representation of diverse
populations in Al clinical trials, and implementing
reporting standards and auditing [69-72]. Inclusive Al
algorithms, such as Mirai which utilize data from global
populations, demonstrate high accuracy in predicting
breast cancer development across diverse countries [72].
Reducing biases in Al technologies is crucial for maxi-
mizing their effectiveness and ensuring health equity.

A recent study [73] has reported findings from an Al
system trained to conduct medical interviews, demon-
strated performance equal to or exceeding that of human
doctors in conversing with simulated patients and sug-
gesting possible diagnoses based on patients’ medical
history. The chatbot, developed on Google’s large lan-
guage model (LLM), exhibited greater accuracy than
board-certified primary-care physicians, particularly in
diagnosing cardiovascular and respiratory conditions.
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During medical interviews, the AI system gathered a
comparable volume of information to human doctors and
demonstrated higher levels of empathy.

Barriers to the use of Al in cancer diagnosis
As previously reported by Johnson et al. [5] here, we
describe some of the main challenges involving Al systems
that would impact the success of the transition to real-world
healthcare: “fairness and bias, socio-environmental factors,
data safety and privacy” as well as other points focusing of
pros and cons of Al systems in PM highlighted in Table 3.
These statements highlight essential challenges and
considerations in the intersection of Al, healthcare, and
biomedical research. Let’s delve into some key points:

1. Bias in health data and Al models

+ Challenges: Biases in health data, such as underrep-
resentation or missing values, can lead to biased Al
models. This bias can result in unfair and unfavorable
decisions for specific demographic groups.

+ Solutions: Initiatives like the All of Us program,
focusing on diverse participant recruitment, aim to
enhance data diversity. The Al community is actively
researching techniques to detect and address bias in
models (source).

+ Call to Action: Further exploration and collabora-
tion between the Al and biomedical communities are
essential to understanding and mitigating bias in Al
models trained on historical patient data.

2. Data safety and privacy
Challenges: Data safety and privacy are critical considera-
tions for an Al-driven system. As Al and PM intersect,
collecting and integrating diverse data types, including
genomics, medical history, behaviors, and social data cov-
ering individuals’ daily lives, will become more prevalent.

Because of this, privacy concerns among individuals
are closely linked to trust in using Al-enabled services.

Solution: Establishing a secure and well-regulated
ecosystem for data storage, management, and sharing is
imperative.

Call to Action: Adopting new technologies, collabora-
tions, and developing innovative regulations and business
models.

3. Domain-specific considerations

+ Challenges: Fairness and protected aspects are
closely tied to the specific domain and applications.
Biomedical research requires a nuanced examination
of fairness and bias in Al models.
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«+ Solutions: Tailoring solutions to the context of bio-
medical research, acknowledging the unique chal-
lenges and considerations within the domain.

4, Social and environmental factors

+ Challenges: environmental factors and deployment
workflow can influence AI model performance. Pro-
spective studies, such as the one on diabetic retin-
opathy screening, highlight the impact of real-world
conditions on Al system effectiveness.

+ Issues faced: Diverse clinic conditions, internet con-
nectivity issues, and travel-related concerns can
affect Al model performance and user participation.

+ Solutions: Validation of Al models in real-world
clinical settings, iterative feedback loops, and system
enhancements based on user feedback are crucial for
successful deployment. Examples reported by groups
like Baowaly et al. [74] demonstrate considerable
promise, but additional Al research efforts are war-
ranted.

5. Iterative model validation and user feedback

+ Importance: The example of the Al system for dia-
betic retinopathy screening emphasizes the signifi-
cance of ongoing validation in real-world scenarios
and the incorporation of user feedback.

+ Recommendation: Establishing iterative loops that
gather user feedback can inform continuous learning
and improvement of Al systems before widespread
application.

In summary, addressing bias and considering real-
world conditions are crucial for ethically and effectively
deploying Al models in healthcare. Collaborative efforts,
ongoing validation, and context-specific solutions ensure
fairness and optimal performance in biomedical Al
applications.

Al in cancer treatment

As discussed in the literature [22, 57] and illustrated in
Fig. 4, the prevailing PM approach takes into account a
range of factors, including tumor-associated and inher-
ited genetic variations, environmental exposures, life-
style, general health, and medical history of patients,
when determining the most suitable treatment plans for
individual patients [75]. On the contrary, as Al gains trac-
tion in PM, we anticipate its expanding role across vari-
ous critical areas, from diagnosis to drug discovery and
development, and in matching patients with targeted
drugs tailored to their specific genomic or genetic altera-
tions (Figs. 4 and 5). Recent efforts to incorporate Al into
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PM have shown substantial promise and advancements
in personalized care, clinical decision support systems,
early disease detection, and disease monitoring. How-
ever, persistent challenges and issues related to technol-
ogy and ethics (such as fairness and bias, transparency
and liability, trust, safety, and security as well as require-
ment of high quality large data, data deluge, and data
drift) could impede the field’s progress and reliability,
potentially delaying clinical implementation (Fig. 5) [5,
76].

For example, in a study utilizing Al to create a radio-
therapy regimen for prostate cancer, 89% of the radio-
therapy treatment plans generated for the 100 patients
studied were deemed clinically acceptable. Impressively,
72% of these plans were superior to those devised by
human experts [77]. Another study applied Al to iden-
tify patients with head and neck cancers who would
benefit from reducing the intensity of radiotherapy or
chemotherapy. Al accurately predicted which patients
would benefit from treatment de-escalation [78].

Examples of successful drug discovery efforts
facilitated by Al

Recent literature [42, 79] highlights the demonstrated
potential of Al in the three pillars of drug discovery: dis-
eases, targets, and therapeutic modalities, as evidenced
by various studies.

Traditional drug discovery methods often depend on
identifying and modifying existing compounds, a process
that is slow, laborious, and costly. In contrast, Al-based
approaches have the potential to facilitate the rapid, effi-
cient, and cost-effective discovery and design of novel
compounds with desirable PK, PD, and ADME properties
and activities. For instance, a DL algorithm was used to
train a dataset containing known drug compounds and
their associated properties. This resulted in the identifi-
cation of new therapeutic molecules with desirable traits
such as solubility and activity, demonstrating the utility
of these Al-based methods for rapidly, efficiently, and
cost-effectively designing new drug candidates [80].

AlphaFold, a powerful algorithm that uses protein
sequence data and Al to predict the proteins’ corre-
sponding three-dimensional structures [81] uses protein
sequence data and Al to predict the proteins’ corre-
sponding three-dimensional structures which potentially
can revolutionize personalized medicine and drug dis-
covery by providing unprecedented insights into protein
structures.

For example, a recent study has demonstrated [67] the
effectiveness of Al in uncovering novel cancer treatment
compounds. They trained a DL algorithm on a large data-
set of known cancer-related compounds and their biolog-
ical activity. This approach yielded promising compounds
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Fig.4 Leveraging Al for personalized treatment. Al-focused workflow explores the opportunities and challenges of applying Al in digital pathology,
drug discovery and development, and dynamic drug dosing. Created with BioRender.com. (Accessed on 18 January 2024, 2024)
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and delay clinical implementation. Created with BioRender.com. (Accessed on 18 January 2024, 2024)
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with potential for future cancer therapies, highlighting
the method’s ability to identify new therapeutic options.
Additionally, the use of machine learning to pinpoint
small-molecule inhibitors of MEK, a potential cancer
treatment target, has been documented [82]. Similarly,
Al has been employed to identify inhibitors of beta-
secretase (BACEL), a protein associated with Alzheimer’s
disease [83].

Moreover, Al has facilitated the discovery of new anti-
biotics, with a pioneering machine learning approach
identifying potent antibiotic types from a pool of over
100 million molecules, including compounds effective
against tuberculosis and resistant bacterial strains [84,
85].

In the realm of COVID-19 research, Al has emerged as
a promising tool. For example, ML algorithms have been
used to analyze large datasets of potential compounds to
identify those with the greatest potential for treating the
virus.

Notably, these Al-powered approaches have signifi-
cantly reduced the time needed to identify promising
drug candidates compared to traditional methods [86—
91]. Numerous other examples highlight the capacity of
Al-based methods to expedite drug screening and dis-
covery [92] and enhance the development of more effec-
tive therapies, drug combinations for drug synergies [93,
94], and drug repurposing [88, 95-103] for various other
diseases [104—110].

Furthermore, ML plays a significant role in predicting
drug efficacy and toxicity. As highlighted in recent lit-
erature [79], a DL algorithm was recently trained using
a dataset of known drug compounds alongside their cor-
responding biological activity [111]. Subsequently, the
algorithm demonstrated high accuracy in predicting the
activity of novel compounds. Significant progress has
also been made in preventing the toxicity of potential
drug compounds through intensive training using exten-
sive databases of known toxic and non-toxic compounds
for using ML [112].

Another significant application of Al in drug discov-
ery involves identifying drug-drug interactions that
occur when multiple drugs are combined for the same
or different diseases in a single patient, potentially lead-
ing to altered effects or adverse reactions. This issue has
recently been tackled by an ML algorithm, which accu-
rately predicts the interactions of novel drug pairs [113].

As highlighted in recent literature by groups like Has-
selgren and Oprea [42] ChatGPT, a conversational Al
that has successfully passed the US Medical Licens-
ing Examination, to revolutionize research practices
and publishing [114]. The GPT-4 technical report from
March 14, 2023, demonstrates its capability to create new
drugs, among other applications [115]. In an experiment,
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GPT-4 was prompted with the drug name dasatinib and
tasked with modifying it, identifying similar compounds,
locating vendors, and arranging custom synthesis if
necessary.

Notable observations include GPT-4’s ability to gener-
ate valid chemical structures (Simplified Molecular Input
Line Entry System, SMILES) output [116], demonstrat-
ing GPT-4’s capability to accurately perceive and modify
chemical structures. Furthermore, it successfully identi-
fies molecules availability in the ZINC database [117],
indicating their synthetically feasible nature. While the
proposed molecule, desmethyl-imatinib, was not novel,
GPT-4 successfully modified the molecule while retain-
ing its kinase inhibitor properties.

However, experimental validation is required to con-
firm whether the GPT-4-generated molecule shares the
same mode of action as dasatinib. Although GPT-4 has
general expertise and is not specifically tailored for drug
discovery, tools like ChemCrow [118], a GPT-4-based
tool demonstrate how external resources can enhance
Large Language Models (LLM) effectiveness in chemis-
try-related tasks. Integration of more external resources
with GPT-4 or its successors could further enhance their
capabilities in chemistry-related domains.

Examples of big pharma engaging in Al-driven
drug discovery, development, and clinical trial
efforts

As highlighted in recent literature [79], the utilization
of Al algorithms to analyze data from large populations
enables Al researchers and pharmaceutical scientists to
uncover crucial trends and patterns. These insights aid
in predicting the efficacy of potential drug candidates for
specific patient populations, thus tailoring treatments to
individual needs.

For example, the collaboration between Merck and
Numerate, an Al company, exemplifies this approach, with
a focus on developing Al-based strategies for medicinal
chemistry [119]. In this rapidly growing research domain,
numerous new companies are emerging, poised to make
significant short-term impacts [120].

A recent study highlights successful partnerships
between Al firms and the pharmaceutical industry in
drug discovery and development [121]. For example, 11
major pharmaceutical companies are leveraging Al plat-
forms to transform drug discovery, optimize clinical tri-
als, identify novel drug targets, generate lead compounds,
and enhance manufacturing processes [120]. Sanofi has
partnered with Aily Labs and a French startup Al com-
pany, Hillo. Pfizer has teamed up with IBM, and Novartis
has partnered with Microsoft and NVIDIA. Janssen has
introduced its Trials360.ai service. AstraZeneca has
partnered with Oncoshot, and Bristol Myers Squibb and
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Bayer have both joined forces with Exscientia. Merck has
expanded its partnerships to include BenchSci, Atom-
wise, C4 Therapeutics, and ACMED, while GSK has part-
nered with Cloud Pharmaceuticals and Insilico Medicine.
Roche has partnered with Recursion Pharmaceuticals,
and Lilly has recently signed an AI partnership with
Alphabet’s Isomorphic [122].

Such partnerships highlight the pharmaceutical indus-
try’s commitment to utilizing Al platforms to enhance
efficiency, cut costs, and ultimately advance patient
outcomes.

Through these collaborations, these entities can iden-
tify novel targets for drug development and improve the
efficacy of existing treatments, thereby impacting clinical
practice, and benefiting patients while enhancing their
quality of life.

Al in drug-matchmaking

An Al-based UK-based company, Exscientia, is testing
a new patient-drug matchmaking technology that pairs
individual patients with the precise drugs they need, con-
sidering the subtle biological differences between people
[123].

The researchers used a small sample of tissue from a
patient, dividing the sample, which included both nor-
mal cells and cancer cells, into more than a hundred
pieces and exposing them to various cocktails of drugs.
Using robotic automation and machine-learning models
trained to identify small changes in cells led to an exhaus-
tive search for the right drug and identified a runner-up
in the matchmaking process: a cancer drug marketed by
the pharma giant Johnson & Johnson that was not effec-
tive at treating this type of cancer in previous cancer
trials. This drug worked in a patient with a specific pat-
tern, and the patient was in complete remission for the
last two years. In addition to matching patients up with
existing approved or experimental drugs, the company
uses machine learning to design new drugs, which could
provide even more options when looking for a match.
The first drugs designed with the help of Al are now in
clinical trials to see if a treatment is safe and efficacious.
Exscientia isn’t alone. There are now hundreds of startups
exploring the use of machine learning in the pharmaceu-
tical industry.

On average, it takes more than 10 years and billions of
dollars to develop a new drug. The Al-assisted approach
can make drug discovery and testing faster and cheaper
by predicting how potential drugs might behave in the
body and selecting those with potential while eliminat-
ing those compounds that may fail before they leave the
design stage. Machine-learning models can reduce the
need for complex, long, and costly lab work. And there is
always a need for new drugs.
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Al leads to suspicions and optimism
As highlighted recently in Helio.com by Volansky R.
[124] and in a recent paper by Li et al, [10], there are
several issues regarding using Al to analyze large batches
of complicated data. One of the risks is rapidly propa-
gating false and biased information from these sources.
In other words, Al is expected to interpret flawed data,
generate inadequate results, and ultimately affect a treat-
ment strategy in the clinic. However, if inaccurate data
are used in research, the results could cause a flawed
conclusion about the efficacy and safety of a compound.
Significant progress in health care has been made since
2009 with the adoption of the electronic medical record
(EMR) to recent advances in Al and ML [124]. But as Al
and machine learning start to make their interpretation
of data, the risk of medical malpractice will increase. A
recent report [125] noted that the most significant ben-
efits of Al methods are seen with unstructured data
frequently found in rheumatology, such as images and
text, where traditional ML systems were not as effective
in analyzing large amounts of information held within
these data formats. In another recent study presented
at the American College of Allergy, Asthma & Immu-
nology Annual Scientific Meeting, ChatGPT answered
accurately or somewhat accurately 91% of the time when
asked about 10 allergy myths [126]. In the same study, in
a survey gauging the potential utility of ChatGPT, aller-
gists rated 70% of its responses to questions regarding
allergy myths as accurate and 21% as precise somewhat
[126]. Additionally, nearly half of the allergists intended
to utilize chatbots for patient education [126].
Addressing the challenges posed by individual vari-
ations in treatment response and the complexities of
combination therapies in clinical practice requires
a multifaceted approach that integrates advances in
Al, personalized medicine, and clinical research. Sev-
eral strategies must be considered to address those
challenges. Implement robust data quality assurance
processes to ensure the accuracy, completeness, and reli-
ability of healthcare datasets that train and validate Al
algorithms. This includes data cleaning, normalization,
and validation procedures to identify and correct errors,
inconsistencies, and missing values that may compromise
the integrity of the data. Several parameters should be
required when adopting AI: 1 Data quality and anonymi-
zation, encryption, and differential privacy are required
to safeguard sensitive patient information and mitigate
the risk of unauthorized access or data breaches; 2 Devel-
oping and implementing strategies to mitigate biases in
AT algorithms and ensure fair and equitable treatment
across diverse patient populations. This includes con-
ducting thorough algorithmic audits, evaluating model
performance across different demographic groups, and



Carini and Seyhan Journal of Translational Medicine (2024) 22:411

addressing training data biases through data augmenta-
tion, bias detection, and algorithmic fairness testing; 3
Adhere to regulatory requirements and industry stand-
ards for the responsible development, validation, and
deployment of Al technologies in healthcare; 4 Establish
ethical guidelines and governance frameworks to guide
AT’s responsible and ethical use in healthcare, including
principles of beneficence, non-maleficence, autonomy,
and justice; 5 Engage stakeholders from diverse back-
grounds, including patients, clinicians, ethicists, and
policymakers, in developing ethical guidelines and deci-
sion-making frameworks that prioritize patient welfare
and uphold ethical standards; 6 Implement continuous
monitoring, evaluation, and feedback mechanisms to
assess the performance, safety, and efficacy of Al-driven
healthcare interventions in real-world clinical settings. 7
Monitor key performance indicators, adverse events, and
patient outcomes to identify potential risks, gaps, and
areas for improvement in Al-enabled healthcare delivery.

Al and sustainable healthcare

Overcoming obstacles related to cost, implementation,
and data annotation is crucial for maximizing AI’s ben-
efits in clinical medicine. Here are some tools and strat-
egies that can be employed to overcome obstacles: 1
Open-source tools and libraries; 2 Cloud computing plat-
forms; 3 Transfer learning; 4 Collaborative annotation
tools; 5 Clinical data registries; 6 Collaboration and part-
nerships. By leveraging these tools and strategies, health-
care organizations can address obstacles related to cost,
implementation, and data annotation, thereby unlocking
the full potential of Al in clinical medicine.

Controlling costs while maximizing the benefits of
Al in medicine requires a combination of strategic
approaches. Here, we listed some strategies that can be
implemented to optimize Al benefits: 1 Identify and pri-
oritize Al applications in medicine that can potentially
deliver significant benefits in terms of patient outcomes
and cost savings. Targeting areas, such as medical imag-
ing interpretation and predictive analytics for disease
diagnosis and treatment planning, can yield substantial
returns on investment; 2 Collaborate with healthcare
institutions, Al developers, researchers, and regulatory
bodies to share resources, expertise, and best practices;
3 Invest in robust data management infrastructure and
interoperability standards to effectively collect, store,
and integrate healthcare data from disparate sources; 4
Implement mechanisms for continuous evaluation and
improvement of AI systems to ensure their effective-
ness, safety, and cost-efficiency over time; 5 Design Al
solutions that are scalable and reproducible across dif-
ferent healthcare settings and patient populations; 6 Stay
abreast of regulatory requirements; 7 Invest in recruiting
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and training healthcare professionals with Al, data sci-
ence, and computational biology expertise to effectively
leverage Al technologies in clinical practice.

By adopting these strategies, healthcare organizations
can effectively manage costs while harnessing the trans-
formative potential of Al to improve medical diagnosis,
treatment, and patient outcomes.

This indicates that medical innovation is unsustain-
able unless we adopt new strategies and change histori-
cal trends. Bioscience advances will not be translated into
patient benefits as they should. The potential of advances
in genomics and other cutting-edge technologies will go
unrealized or realized with long delays and huge invest-
ments lost. There are several gaps in translation at every
stage, i.e., from discovery through development, regula-
tory approval, and reimbursement. This translates to
many innovations in a journey of more than 20 years.

A significant mindset change from all the key stake-
holders and actions is needed to implement sustainable
healthcare, like integrated care across all health system
levels. Patients and payers must be involved initially,
not just at the end. Academicians must see themselves
as part of an innovation process, not just as independ-
ent researchers. Regulators must be willing to accept
more significant uncertainty. Companies and health sys-
tems should also focus on working together to ensure the
proper treatment reaches the right patient at the right
time rather than assuming a ‘free-for-all’ once marketing
approval is granted.

AI has made many advances in healthcare efficiency.
In particular, AI has improved the ability of physicians
to diagnose diseases. According to the Institute of Medi-
cine and National Academy of Science, engineering and
medicine diagnostic errors contribute to approx. 10% of
patient deaths. Al aims to mimic human cognitive func-
tions and increase the availability of healthcare data.

The past few decades have seen considerable advances
in diagnosing and treating cancer and other diseases.
Yet, with the growing prevalence of cancer and other
diseases and ongoing pressures on limited healthcare
budgets, equal access to the latest scientific advances and
their affordability have become a challenge. In the face
of limited resources and increasing demand, we need to
find better ways of allocating our resources and focus on
what can make the most significant difference to patients.
This results in eliminating interventions that offer limited
benefit and prioritizing a patient stratification that gives
the most critical benefit to patients, reducing inefficiency.

The need for AI in healthcare is clear. Healthcare
relies on accuracy and intelligence with complex mecha-
nisms of action and quality care needed to treat patients
affected by different diseases.
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As referenced in World Economic Forum, in June 2023
(“Emerging tech like Al is poised to make healthcare
more accessible, accurate, and sustainable”, World Eco-
nomic Forum), and by Pastarino et al. [127], one key ele-
ment that will be essential for healthcare systems to pay
attention to is whether adopting AI will make healthcare
more sustainable.

This means that the technology should be designed
with the purpose of longevity but also with the ability
to adapt to a changing healthcare environment. In other
words, a system designed for today’s needs will be differ-
ent from the needs of that same system in 20 years. This
will require a consistent financial investment by institu-
tions that should commit to ever-greening Al infrastruc-
ture for the future. There are a lot of hopes that Al will
be able to advise the healthcare sector in various ways,
making healthcare more sustainable and serving as an
assistant to clinicians. This hope has been fueled by some
successful applications of Al in healthcare. However,
when we look at Al and healthcare side by side, there are
unrealistic expectations of what Al can do and what the
landscape of the healthcare industry will look like in the
future.

Regulatory considerations

As part of its digital strategy, the European Union (EU)
seeks to regulate Al to create an environment for advanc-
ing and utilizing this groundbreaking technology. Al
has the potential to yield a range of benefits, including
enhanced healthcare, safer and more eco-friendly trans-
portation, increased manufacturing efficiency, and more
cost-effective, sustainable energy solutions. In April 2021,
the European Commission introduced the initial regu-
latory framework for AI within the EU, which involves
assessing and classifying Al systems that have the poten-
tial for various applications based on the level of risk
they present to users. The extent of regulation will vary
depending on the assessed risk levels. Once endorsed,
these regulations will represent the world’s pioneering
rules concerning Al The primary objective of the Euro-
pean Parliament is to ensure that Al systems utilized
within the EU are safe, transparent, traceable, unbiased,
and environmentally friendly. It is advocated that human
oversight, as opposed to complete automation, be imple-
mented to avert adverse consequences. Furthermore,
the Parliament aims to create a consistent, technology-
agnostic definition of Al that can be applied to future Al
systems. The EU Al Draft proposes the first principles
for Generative Al regulation; other countries will follow
suit. The goal is to ensure that Al systems used in the EU
are safe, transparent, traceable, non-discriminatory, and
environmentally friendly (https://www.europarl.europa.
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eu/news/en/headlines/society/20230601ST093804/eu-
ai-act-first-regulation-on-artificial-intelligence).

Generative Al, like ChatGPT, would have to comply
with transparency requirements such as disclosing Al-
generated content, designing the model to prevent it
from generating illegal content, and publishing summa-
ries of copyrighted data for training.

As reported recently, AI and ML technologies have sig-
nificantly shaped many aspects of cancer care in recent
years. Addressing the multiple sources of embedded bias
to optimize these tools for cancer health equity requires
a systemic, coordinated, and collaborative approach.
Determinants of health and disease are multifactorial and
complex, and our AI-ML technologies should reflect this
complexity. Promoting health equity requires humanity,
empathy, and transparency in data generation and Al-
ML implementation efforts [128].

Can Al facilitate faster and better healthcare?

The current debate about Al focuses on potential risks
such as algorithmic bias and discrimination, loss of spe-
cific jobs, and other issues. Despite these dystopian sce-
narios, some scientists/physicians are focusing on the
potential rewards of implementing Al. Some have argued
that Al can solve some of the biggest and thorniest prob-
lems, drastically accelerating the pace of discovery in
areas such as medicine, climate change, and green tech-
nology. Despite the challenges regarding the use of Al,
two areas of research are promising. One is the so-called
"literature-based discovery," which analyzes the scien-
tific literature using ChatGPT-style language analysis to
look for new hypotheses or hypotheses that might have
been overlooked. This approach has already shown some
promise, suggesting potential research collaborators
among different stakeholders. This, in turn, will encour-
age interdisciplinary collaborations. The second area is
"robot scientists" or "self-driving labs," which are robotic
systems that use Al to form new hypotheses based on
analysis of existing data and literature and then test those
hypotheses by performing thousands of experiments in
different fields, including systems biology. Unlike human
scientists, robots are less driven by biases. Most of all,
robots could scale up experimental research, develop
unexpected theories, and explore avenues human investi-
gators might have yet to consider. The idea that AI might
transform scientific practice is feasible, though it will only
happen for a while. One of the main barriers to the broad
implementation of Al is that many scientists/physicians
are concerned about possibly losing their jobs. Moreo-
ver, a recent report [129] showed that although Google
Deepmind’s AlphaFold showed in 2020 that it could
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predict the 3D structure of proteins with high accuracy,
recent findings demonstrated that AlphaFold’s prow-
ess doesn't yet translate into solid leads for drug-binding
sites. Despite all these limitations, Al is now increasingly
embraced by researchers in different fields.

According to a recent review by Michael Liebman
[8], drug design and development provide a significant
opportunity to apply Al-based methods and technolo-
gies. This has the potential to enhance success rates,
expedite time to market, and reduce the costs associated
with drug development [8].

Progress in drug development using Al has been lim-
ited, but there are firm hopes for the future. The technol-
ogy needs to address specific critical challenges.

Target selection

+ How accurately is the disease/condition diagnosed
and stratified, ensuring a well-defined phenotype?

+ How comprehensive is patient stratification, consid-
ering clinical history, comorbidities, lifestyle, envi-
ronmental factors, and genomics?

« Can the selected target be applied universally across
the diverse real-world patient population, acknowl-
edging observed diversity?

Drug design/selection

+ Can DL data be decoded effectively to interpret
results?

+ Considering comorbidities and polypharmacy in all
patients, how are these factors considered?

+ How effectively are pathway modulators being mod-
eled concerning individual targets and responses?

Clinical trials

+ To what extent do inclusion and exclusion criteria
reflect the characteristics of real-world patients?

+ How does this impact the process of bringing a treat-
ment to the market post-approval?

« Can the stratification of diseases and/or populations
lead to more effective and efficient directed clinical
trials?

These questions underscore the importance of address-
ing critical challenges in target selection, drug design/
selection, and clinical trial design to harness the full
potential of Al in drug discovery and development.
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Al: myth versus reality
There is a lot of hope that Al will advance the health-
care sector in various ways, not just for patient diagno-
sis, patient prognosis, and drug discovery, but also to
assist physicians and provide better and more personal-
ized treatment. This hope has been fueled by some suc-
cessful applications of Al in healthcare. Side-by-side,
however, there are unrealistic expectations of what Al
can do and what the landscape of the healthcare indus-
try will look like in the future.

Below, we listed two of the more common myths
regarding the application of Al in healthcare:

1. AI will replace clinicians: While nobody can entirely
predict the future, the fact is that physicians who
understand the role of Al in healthcare likely have an
advantage in their careers.

2. Programming knowledge is necessary to use Al suc-
cessfully: Al in any field of study consists of many
components, and programming is just one of them.
Physicians and data scientists must continue collabo-
rating to build meaningful AI systems for the contin-
ued growth, development, and success of Al applica-
tions in healthcare.

Like any other technology, Al comes with its advan-
tages and disadvantages. Al biomarkers have several
conceptual limitations:

1. Data quality is the first limitation of using Al If we
train a model with noise or artefactual images, many
more cases will be necessary for the model to con-
verge and achieve good performance [130]. To deploy
Al models in medicine, large-scale validation studies
with predefined performance metrics are required to
guarantee model performance in the real world [131].

2. The training data must represent the real-world
population [132]; if not, Deep Learning (DL) and
Machine Learning (ML) models will fail. This is an
issue in the medical context, where data distribu-
tions are markedly different between countries or
hospitals. Without adequate precautions, such batch
effects can inflate statistical results [132]. Mitigation
strategies are to train on diverse datasets [133] or
augment data [134].

3. Al models can be biased, meaning the performance
depends on patient characteristics. To deploy Al
models in medicine, large-scale validation studies
with predefined performance metrics are required to
guarantee model performance in the real world [131].
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4. The fourth limitation is bias. AI models can be
biased, meaning that the performance can depend on
patient characteristics like age, gender, or ethnicity
[70].

5. The fifth limitation is the quality of the ground truth.
The model’s performance will be limited to the estab-
lished molecular biomarker predictive capacity when
developing a model using molecular biomarkers as a
surrogate of response to cancer immunotherapy.

We believe isolating the AI misconceptions and evalu-
ating the future directions for Al in the medical field is
essential. Not a day goes by with promising research
studies on how to apply Al to the medical field. The term
“artificial intelligence” itself might be misleading, given
its meaning has been overinflated. An algorithm might
perform very well on a pre-selected dataset. However, it
should also be tested on real clinical data.

This issue in healthcare worldwide uses outdated
infrastructure and technology Mi Ok Kim et al. [135] to
address contemporary challenges and healthcare sus-
tainability, which results in failure. Notably, the idea of
sustainability for AI and healthcare is multifaceted and
dramatically impacts the success of Al technologies. This
is why, if not considered at the outset during its develop-
ment, these challenges will fall to the management sys-
tem within healthcare delivery, which has shown to be
poorly equipped to respond to ongoing changes in tech-
nology and patient needs.

Moreover, as recently reported in the literature [5], the
success of Al systems in real-world applications depends
on the capability of working accurately in a safe, reliable,
and generalizable manner.

Al: key limitations and outlook

It has been reported that increasing efforts to imple-
ment Al in PM to perform tasks such as disease diag-
nosis, predicting risks, and treatment responses are not
without challenges. Indeed, many studies have shown
promising experimental results (see Table 3). However,
how Al improves health care still needs to be fully dem-
onstrated. The limitations outlined for AI biomarkers
highlight numerous challenges that must be addressed
to deploy these models successfully in the medical field.
Below, we describe a detailed assessment of the limita-
tions and outlook of potential solutions:

The first limitation is data quality. Beyond the large
amount of data that models require for achieving accu-
rate, generalizable results, this data must be of high
quality [130]. Suppose we train a model with noisy or
artefactual images. In that case, many more cases will be
necessary to converge for the model to perform well. The
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second limitation is generalization. DL models can fail
to generalize if the training data does not represent real-
world populations. This is especially an issue in a medical
context, where data distributions vary markedly between
countries or hospitals. Without adequate precautions,
such batch effects can influence statistical performance
[132]. There are mitigation strategies to train the training
dataset on diverse datasets [133, 134].

The third limitation is bias. AI models can be biased,
meaning that the performance can depend on patient
characteristics like age, gender, or ethnicity [70]. To
deploy AI models in medicine, large-scale valida-
tion studies with pre-defined performance metrics are
required to guarantee model performance in the real
world [131]. The fourth limitation is the quality of the
ground truth. When developing a model using molecular
biomarkers as a surrogate of response to immunotherapy,
the model’s performance will be limited to the estab-
lished molecular biomarker predictive capacity.

Data quality

+ Challenge: High-quality data is crucial for training
accurate and reliable AI models. Noisy or artefac-
tual data can lead to biased or inaccurate predic-
tions.

+ Outlook: Emphasis should be placed on rigorous
data curation and quality control. Initiatives to
standardize data collection processes and ensure
data integrity can improve the overall quality of the
datasets used for training Al models.

Generalization

« Challenge: Lack of representativeness in training data
can result in poor generalization of AI models to
diverse populations or real-world settings.

+ Outlook: Strategies such as training on diverse data-
sets or augmenting data can help improve generaliza-
tion. Collaborative efforts to pool data from different
sources and regions may contribute to more robust
and widely applicable models.

Biases

+ Challenge: Al models may exhibit biases based on
patient characteristics, potentially leading to dispari-
ties in performance across different demographic
groups.

« Outlook: Rigorous validation studies with diverse
and well-characterized patient populations are essen-
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tial. Ongoing efforts to develop and adhere to stand-
ardized guidelines for assessing and mitigating biases
in Al models are critical. Transparency in reporting
potential biases is crucial for building trust in Al
applications.

Quality of ground truth

+ Challenge: The predictive capacity of Al models rely-

ing on molecular biomarkers is limited by the quality
and reliability of the chosen biomarkers.

Outlook: Continuous research and validation stud-
ies are necessary to establish and refine the predic-
tive capacity of molecular biomarkers. Collaboration
between researchers, clinicians, and data scientists
can facilitate the identification of robust biomarkers
and improve the overall quality of the ground truth
used in Al model development.

In addition to these limitations, ongoing interdiscipli-
nary collaboration, regulatory oversight, and ethical con-
siderations are crucial for the responsible development
and deployment of AI biomarkers in healthcare. As the
field advances, addressing these limitations will be essen-
tial to ensure Al models’ reliability, fairness, and general-
izability in diverse medical settings.

To further optimize the integration of Al in drug devel-
opment, clinical trials, and healthcare delivery, several
future research directions and areas of innovation are
recommended:

1. Deep Learning (DL) and Drug Discovery: Explore

the application of DL techniques, such as deep neu-
ral networks and generative adversarial networks, in
drug discovery. Research efforts can focus on virtual
screening, de novo molecule design, and predicting
drug-target interactions to accelerate the identifi-
cation and optimization of novel therapeutic com-
pounds.

. Multi-Omics Data Integration: Investigate methods
for integrating multi-omics data, including genom-
ics, transcriptomics, proteomics, metabolomics, and
microbiomics, to gain comprehensive insights into
disease mechanisms and drug responses. Develop
Al-driven approaches to analyze and interpret com-
plex biological datasets, identify biomarkers, and
personalize treatment strategies based on individual
molecular profiles.

. Clinical Trial Optimization with Al Develop Al-
driven algorithms for optimizing clinical trial design,
patient recruitment, and endpoint selection. Explore
methods for leveraging real-world evidence, elec-
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tronic health records, wearable sensors, and mobile
health technologies to streamline clinical trial opera-
tions, improve patient engagement, and enhance data
quality and regulatory compliance.

. Real-Time Monitoring and Predictive Analytics:

Develop Al-driven systems for real-time monitor-
ing, predictive analytics, and early warning systems
in healthcare delivery settings. Research efforts can
focus on developing algorithms for predicting patient
deterioration, adverse events, and hospital readmis-
sions, enabling proactive interventions and personal-
ized care delivery.

. Natural Language Processing (NLP) in Healthcare:

Advance the application of natural language process-
ing (NLP) techniques in healthcare for extracting
insights from unstructured clinical notes, medical
literature, and patient-generated content. Develop
NLP models for clinical decision support, automated
coding and documentation, and population health
management, improving information retrieval and
knowledge discovery in healthcare settings.

. Federated Learning and Privacy-Preserving Al

Investigate federated learning and privacy-preserving
AJ techniques for collaborative model training and
knowledge sharing across healthcare institutions
while preserving patient privacy and data security.
Develop secure and scalable frameworks for aggre-
gating decentralized data sources, training robust
models, and ensuring regulatory compliance in
multi-institutional research collaborations.

. Interoperability and Semantic Integration: Address

interoperability challenges and semantic integration
barriers in healthcare data systems to enable seamless
exchange and integration of structured and unstruc-
tured data from diverse sources. Develop standards-
based approaches for data representation, metadata
management, and ontology mapping to facilitate data
interoperability, semantic enrichment, and knowl-
edge discovery across heterogeneous healthcare
datasets.

. Ethical, Legal, and Regulatory Frameworks: Develop

ethical, legal, and regulatory frameworks for the
responsible and transparent use of Al in drug devel-
opment, clinical trials, and healthcare delivery.
Address algorithmic bias, data privacy, informed
consent, liability, and accountability concerns to
ensure patient safety, equity, and trustworthiness in
Al-enabled healthcare systems.

By prioritizing these research directions and foster-
ing interdisciplinary collaborations between academia,
industry, healthcare providers, and regulatory agen-
cies, stakeholders can unlock the full potential of Al to
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transform drug development, clinical trials, and health-
care delivery, ultimately improving patient outcomes and
advancing public healthcare.

Conclusions

We are entering a new era characterized by an overflow
of information but a need for more time and genuine
human interaction. Technological advancements in Al
algorithms equipped with PM have already resulted in
an unprecedented acceleration of precision therapy, early
disease detection, and personalized disease prevention
strategies. The drug design and development field are
poised to remain at the forefront of adopting emerging
technologies. However, the critical question is whether
these technologies should be integrated into the drug
development process to improve existing pipelines and
processes or restructure these processes considering
these advancements. Overall, the synergy between Al and
PM could ultimately decrease the disease burden for the
public and, therefore, the cost, making preventive health
care sustainable for all. However, we should remain vigi-
lant in applying ethics and equity to ensure that these
advancements do not increase health-related disparities,
exacerbate existing inequities, or create new divides in
care or health-related outcomes. The last pivotal element
for successfully integrating Al and PM involves engag-
ing all stakeholders, including researchers, healthcare
professionals, citizens, and patients. This necessitates an
investment in literacy, education, and capacity building
to integrate Al into PM practices seamlessly.

Review criteria

Publicly available information such as PubMed and the
Internet were used for the literature review. We focused
on identifying articles published on using Al and PM and
sustainable health care. The research was restricted to the
most recent studies in this field, and all research was lim-
ited to human studies published in English.
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SMILES  Simplified molecular input line entry system
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