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Abstract 

Background Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symp-
toms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome 
and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associa-
tions between the gut microbiome–metabolome pathways and PNS in children with cancer across chemotherapy 
as compared to healthy children.

Methods A case–control study was conducted. Cancer cases were recruited from Children’s Healthcare of Atlanta 
and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Out-
comes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy  (T0) and post-
chemotherapy  (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites 
were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, 
and metabolome was performed using an untargeted liquid chromatography–mass spectrometry approach. A multi-
omics network integration program analyzed microbiome–metabolome pathways of PNS.

Results Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at  T0, PNS were signifi-
cantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with car-
nitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism 
(p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), 
and tryptophan (p = 0.019), was associated with PNS for cases at  T1. Gut bacteria with potential probiotic func-
tions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases 
than the control network and this linkage with PNS needs further studies.

Conclusions Using multi-omics approaches, this study indicated specific microbiome–metabolome pathways linked 
with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these 
findings need to be further confirmed in a larger cohort.
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Background
Children with cancer receiving intensive chemotherapy 
frequently report cooccurring psychoneurological symp-
toms (PNS), including pain, fatigue, anxiety, depression, 
and cognitive dysfunction [1]. Collectively, these symp-
toms are defined as the PNS cluster, which can develop 
up to 6  months after treatment and even continue into 
survivorship [2]. Unfortunately, poor management and 
treatment of PNS can significantly reduce a child’s quality 
of life (QOL) and future psychosocial functioning [3, 4].

A symptom experience framework presented by Hock-
enberry and Hooke identified multiple antecedents that 
influence children’s experience of PNS across cancer 
treatment, including personal (e.g., sex and developmen-
tal stage), environmental (e.g., child’s hospitalization), 
and disease-related (e.g., type of cancer, length of treat-
ment, treatment frequency, and chemotherapy drugs) 
factors [5]. Subsequent literature proposed that the PNS 
cluster may share common biological mechanisms [6], 
such as proinflammatory cytokines (e.g., IL-6 and TNF-
α), Hypothalamic–Pituitary–Adrenal (HPA) axis, and 
monoamine neurotransmission system [7–9]. Neverthe-
less, the biological mechanisms of the PNS cluster are 
still largely unknown in cancer populations, particularly 
in pediatric oncology [10]. Recently, investigations of the 
microbiome–gut–brain (MGB) axis [11, 12] suggest that 
the gut microbiome (i.e., a collection of microorganisms 
and their genomes in the gastrointestinal tract) can sig-
nal the brain via functional metabolites and activation 
of other pathways (e.g., neurotransmitters), ultimately 
resulting in PNS for patients with cancer receiving chem-
otherapy [13, 14].

Chemotherapy has the potential to negatively inter-
fere the MGB axis through a diverse set of pathways, 
including dysregulating the diversity and composition of 
bacteria in lumen, altering the gut microbiome-derived 
metabolites, and activating neuroimmune signaling 
[11, 12, 15]. As a commonly used treatment modality in 
children with cancer, chemotherapy can potentially lead 
to PNS via the MGB axis. Although limited, promising 
work has demonstrated enriched abundance of Bacte-
roides among adult patients with low PNS and enriched 
abundance of Blautia for those with high PNS [16]. Addi-
tionally, adult patients with head and neck cancer with 
high PNS had higher abundance of gut microbial Bac-
teroidota, Ruminiclostridium, and Tyzzerella compared 
to those with low PNS, while patients with low PNS had 
higher abundance of Lactococcus and Phascolarctobac-
terium compared to those with high PNS [13]. However, 
the role of the gut microbiome in PNS for children with 
cancer (CWC) has yet to be elucidated [17].

Microbiome-derived metabolites represent the func-
tional role of the gut microbiome, as they are the drivers 

of gut–brain communication and carry out signals of 
a disturbed gut microbiome [18]. Communications 
between the gut and the brain occur following a network 
of pathways involving key microbial metabolites, such 
as short-chain fatty acids (SCFAs) [19] and tryptophan 
for kynurenine pathway metabolism [18]. SCFAs are 
part of a group of key microbial metabolome pathways 
associated with psychological functioning [20]. Altera-
tions in the SCFA metabolism can result in disturbances 
to the central nervous system [21], although the effects 
of SCFAs on PNS have primarily been studied in ani-
mal models [20]. Additionally, tryptophan, an essential 
amino acid, is another key metabolite in the MGB axis, 
with dual emphasis on the regulation of serotonin and 
melatonin synthesis, and the control of kynurenine path-
way [18, 22]. Tryptophan must be obtained from dietary 
or microbial sources [18] and can be synthesized from 
chorismate by bacterial phyla Pseudomonadota, Actino-
mycetota, and Bacillota [23].

In humans, untargeted metabolomics analysis showed 
that increased pain was associated with decreased tryp-
tophan, and increased fatigue was associated with 
decreased arachidonic acid [24] in women with breast 
cancer receiving chemotherapy. Targeted metabolomics 
analysis further indicated moderate-to-strong correla-
tions between changes in pain and tryptophan, as well as 
between changes in depressive symptoms and serotonin 
levels [24, 25]. Decreased tryptophan, increased kynure-
nine, and subsequent altered tryptophan/kynurenine 
ratio were associated with a higher level of PNS among 
cancer survivors [25]. Among children with cancer 
receiving chemotherapy, fatty acids pathways were asso-
ciated with pain, and both tryptophan and carnitine shut-
tle pathways were associated with the PNS cluster [14].

A growing body of preclinical studies support the 
impact of the gut microbiome and microbial metabo-
lites on the gut–brain communications via neuronal, 
immunological, and endocrinological pathways [26]. 
However, research on this mechanistic pathway in 
the context of chemotherapy-related PNS is still very 
limited. Furthermore, current work primarily adopts 
single-omics approaches (e.g., microbiome analysis 
or metabolomics analysis independently) in human 
health and disease. On the other hand, multi-omics 
approaches provide an opportunity to examine multi-
ple layers of molecules (e.g., microbiome and metabo-
lites) [27] to interpret health outcomes. Thus, there is 
paucity of research regarding how the interrelation-
ship between the gut microbiome and their metabo-
lites can influence PNS among patients with cancer 
receiving chemotherapy. Considering the severe PNS 
burden among children with chemotherapy and the 
unknown biological mechanisms of PNS, uncovering 
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the multi-omics biological pathways within the MGB 
axis will pave a way for precision medicine (e.g., diet 
and probiotic interventions) to manage and treatment-
related psychoneurological toxicities among CWC.

The purpose of this study was to investigate the asso-
ciations between the gut microbiome–metabolome path-
ways and PNS among CWC receiving chemotherapy 
(pre-cycle two chemotherapy  [T0] and post-chemother-
apy within 4 weeks  [T1]) compared to a group of healthy 
children (HC). An integrative multi-omics approach (i.e., 
metabolomics coupled to amplicon microbiome data) 
was adopted to examine the interrelationship of PNS-
associated microbial taxa and their functional metabo-
lites in CWC across chemotherapy. This study adopted 
a multi-omics network integration program xMWAS 
[28] to analyze associations of microbiome–metabolome 
pathways with PNS.

Material and methods
Design and setting
This study adopted a case–control study design. After 
informed consent (with child assent) was obtained from 
parents, children aged 7–18 years with solid tumors were 
recruited from the AFLAC Cancer and Blood Disorder 
Center at Children’s Healthcare of Atlanta in Atlanta, 
Georgia. Age-, sex-, race-, and body mass index (BMI)-
matched HC were recruited via flyers, online e-news 
blast, and ResearchMatch™ [29] in the Greater Atlanta 
Area. Approval was obtained from the Institutional 
Review Board at Emory University (IRB No. 00102775).

Participants
This study included two groups of children: CWC (n = 21) 
and HC (n = 14). Eligible CWC were: (1) 7–18 years old, 
(2) diagnosed with solid tumors (e.g., sarcomas, excluding 
brain tumors), (3) those who received at least one cycle of 
chemotherapy, (4) receiving treatment at the Aflac Can-
cer and Blood Disorder Center at Children’s Healthcare 
of Atlanta, and (5) agreed to participate in the study. 
Age-, sex-, race-, and BMI-matched HC were included 
if they were: (1) 7–18  years old, (2) not on antibiotics 
within the past 4 weeks, and (3) not involved in interven-
tions (e.g., dietary program) that may influence the gut 
microbiome and metabolome. CWC with stem cell trans-
plant, or relapses, or brain tumors, or whole abdominal 
radiotherapy within the past 4 weeks were excluded. For 
both CWC and HC, those with cognitive impairment 
(determined by treating physicians and neuropsycholo-
gists with objective cognition testing) or chronic diseases 
(e.g., inflammatory bowel diseases) that affect the gut 
microbiome and metabolome were excluded.

Measures
Gut microbiome
Fecal specimens were collected to analyze the gut micro-
biome. Following the Human Microbiome Project proto-
col [30], children were instructed to collect fecal samples 
using an at-home collection kit that has been tested in 
our project with > 80% compliance [31]. Parents received 
instructions to assist their child to collect fecal samples. 
The provided spoon was used to transfer an aliquot of 
fecal sample into the collection tube (Fisher Scientific 
LLC., Pittsburgh, PA). Subsequently, the tubes were 
capped, placed into a biohazard bag, and then packed 
into a padded, labeled freezer bag with an ice pack. Sam-
ples were immediately placed into a freezer until shipped 
via FedEx. The FedEx shipment took approximately 24 h 
(range 16–24  h). Once received at the Emory Nursing 
Biobehavioral Laboratory, fecal samples were stored at 
− 80 °C until DNA extraction and assaying.

Metabolites
Metabolomic profiling of fecal metabolites in the gut was 
conducted following a well-validated protocol at Emory 
Lipidomics & Metabolomics Core [32], which identi-
fies localized metabolic processes in the large intestine, 
colon, and rectum [33, 34]. An average of 100 mg (range 
from 95 to 105 mg) fecal specimen was aliquoted for each 
sample for untargeted metabolomics analysis. The untar-
geted metabolomics approach was utilized to acquire 
data for species, annotating metabolites, and review-
ing both known and unknown metabolic changes. An 
advantage to untargeted data is its hypothesis-generating 
nature, which provides a foundation for further analysis 
using targeted approaches [35].

PNS
Children reported their PNS (e.g., pain, fatigue, anxiety, 
depressive symptoms, and cognitive dysfunction) using 
the Pediatric Patient Reported Outcomes Measurement 
Information System (PROMIS) [36, 37]. All the PNS 
reported by PROMIS scales aligned with clinical anchors 
(i.e., low blood counts) in children with cancer [38] and 
anchor-based methods using expert or patient judgment 
suggested a minimally important difference of 3 points 
on the PROMIS T-score scale for children [39]. The vari-
ous PROMIS scales utilized in this study were scored 
using a T-score with a reference mean of 50 (standard 
deviation [SD] = 10) by the Health Measures Scoring 
Center. Previous reliability testing of the PROMIS short 
form (PROMIS-SF) system in adolescents reported 
Cronbach’s α coefficients ranging between 0.88 and 0.96 
for initial surveys and exceeding 0.91 for subsequent vis-
its. Furthermore, Cronbach’s α coefficients for pooled 
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PROMIS-SF data across all visits ranged from 0.91 to 
0.97 [40].

Pain The one-item PROMIS Pain Intensity Scale was 
used to evaluate the child’s pain within the previous 
7  days, with scores ranging from “No pain at all” (0) to 
“Worst pain” (10). This scale has demonstrated great con-
struct validity and good feasibility for use in children aged 
7–18  years with cancer [38]. The 8-item PROMIS Pain 
Interference Scale-SF was used to assess the influence of 
pain on the child’s social, cognitive, emotional, physical, 
and recreational activities over the past 7 days. A higher 
total score of pain interference indicates more pain impact 
on the child’s life.

Fatigue The 10-item PROMIS Fatigue Scale-SF was used 
to assess the child’s fatigue within the previous 7  days, 
with scores ranging from “Not at all” (0) to “Always” (4). 
This scale has demonstrated good construct validity for 
use in children ages 7–18 years treated for cancer [38].

Anxiety and depressive symptoms The 8-item PROMIS 
Anxiety Scale-SF was used to assess the child’s fear, anxi-
ety, and somatic symptoms within the previous 7  days. 
The 8-item PROMIS Depressive Symptoms Scale-SF 
assessed the child’s depressive symptoms within the pre-
vious 7 days. Scores for each item on both scales ranged 
from “Never” (0) to “Almost always” (4). Both scales have 
demonstrated good construct validity for use in children 
aged 7–18 years treated for cancer [38].

Cognitive function The 7-item PROMIS Cognitive Func-
tion Scale-SF assessed perceived difficulties in cognitive 
abilities. Scores were on a 5-point scale, with a higher 
total score indicating higher cognitive dysfunction. This 
scale has demonstrated excellent internal consistency and 
item-scale correlations in children [41].

Demographic and clinical variables
Children’s demographics (e.g., age, sex, race/ethnic-
ity, and BMI percentile) and health history (e.g., use of 
antibiotics and disease history) were reported by their 
parents during the clinical visit. Cancer and treatment-
related variables (e.g., type of cancer, cancer stage, and 
cycle of chemotherapy) were either reported by parents 
or extracted from the electronic medical records.

Collection procedure
All the data for CWC were collected pre-cycle 2 chemo-
therapy  (T0) and post-chemotherapy  (T1, with an average 
2 weeks post-chemotherapy [range 1–4 weeks]). Children 
confront various stressors from tumor diagnosis, treat-
ment plans, and painful procedures during the first cycle 

of chemotherapy. To reduce psychological burden for the 
family, pre-cycle two chemotherapy period was selected 
for consent and data collection, with a mean of 3.7 weeks 
(range 2–8) from the first cycle chemotherapy in our 
participants. An average of 6 months between  T0 and  T1 
were reported in this study. Only one timepoint of data 
was collected for HC. Children with solid tumors receiv-
ing chemotherapy were recruited during their routine 
outpatient clinic visits. Clinical collaborators from Chil-
dren’s Healthcare of Atlanta identified eligible patients 
while a member from our research team consented par-
ents (or children) and assented age-eligible patients. All 
PROMIS questionnaires were distributed for children to 
complete, and parents were provided pictorial instruc-
tion on at-home fecal specimen collection. The electronic 
medical records of CWC were used to collect demo-
graphic, clinical, and health-related variables. For HC, all 
procedures were identical, excluding the use of electronic 
medical records.

DNA extraction
Based on the Human Microbiome Project protocol, 
microbial DNA was extracted from fecal samples using 
the PowerSoil isolation kit (Mo Bio Laboratories, Carls-
bad, CA, USA) at the Environmental Microbial Genomics 
Laboratory, Georgia Institute of Technology. 16S rRNA 
amplicon libraries were prepared for the 16S rRNA V4 
gene region [42]. These 16S rRNA amplicons were gen-
erated using KAPA HiFi HotStart ReadyMix (KAPA Bio-
systems, KK2600) and primers specific to 16S V4 region 
of bacteria and indices were attached using the Nextera 
XT Index kit (Illumina, FC-131-1001). Clean-up was 
performed on the indexed libraries using AMPure XP 
beads. The 16S libraries were pooled in equal amounts 
based on fluorescence quantification. Each run included 
a control template to test for polymerase chain reaction 
(PCR) accuracy and possible contamination. Final library 
pools were quantitated via qPCR (Kapa Biosystems, cata-
log KK4824). The pooled library was sequenced on the 
Illumina miSeq system using miSeq v3 600 cycle chem-
istry (Illumina, catalog MS-102-3003) at a loading den-
sity of 8 pM with 20% PhiX at PE300 reads. The microbial 
sequencing produced paired-end sequences.

High‑resolution untargeted metabolomics (HRM)
An HRM protocol established at the Emory Lipidomics 
& Metabolomics Core was adopted for liquid chromatog-
raphy–mass spectrometry (LC–MS) analysis. Metabolic 
features were extracted from fecal samples using a 1:1 
mixture of Acetonitrile: Methanol. 200  µL 1:1 Acetoni-
trile: Methanol was added to 50 μL samples, which was 
vortexed for 3  s, incubated on ice for 30  min, and then 
centrifuged at 20,000×g for 10 min to pellet precipitated 
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protein. The supernatant was then transferred to an 
amber autosampler vial for LC–MS analysis. For qual-
ity control, a pooled quality control sample was created 
by combining 5 µL of each sample extract into a separate 
vial. This sample was run in triplicate at the beginning, 
the end, and intermittently over the course of analysis. 
Next, an untargeted HRM approach was performed using 
an ID-X™ Tribrid™ mass spectrometer coupled to a Van-
quish Ultra-High-Performance Liquid Chromatography 
(UHPLC, Thermo Fisher Scientific Inc., San Jose, CA). 
Metabolic features from the fecal extracts were resolved 
on a SeQuant ZIC-HILIC™ 3.5  μm, 100A 150 × 2.1  mm 
column. For chromatography, water was used as Solvent 
A and Acetonitrile as Solvent B, both of which contained 
0.1% Formic Acid. 1 μL extract was injected into the LC–
MS system for analysis. A full scan MS1 spectrum for 
each sample was obtained at resolution of 120,000 and 
mass-to-charge ratio (m/z) range 67–1000. The mass 
spectrometer was operated in both positive and nega-
tive ionization modes. Uniquely detected ions consisted 
of accurate mass m/z, retention time and ion abundance, 
referred to as m/z features. Data were processed using 
Thermo Compound Discoverer software, which scans 
our metabolic data against internal and external data-
bases. Raw data was uploaded into the software with m/z 
values and retention times aligned. Signal intensities are 
normalized by the pooled quality control sample and cor-
rected to compensate for any variation of signal for batch 
correction.

Statistical analysis
T-scores of the Pediatric PROMIS scales were calculated 
for PNS (excluding pain intensity). For their respective 
PROMIS questionnaires, T-scores ≥ 50 indicated signifi-
cant fatigue, anxiety, and depressive symptoms, while a 
T-score ≤ 45 indicated significant cognitive dysfunction 
[43]. Independent sample t-test was used to compare 
the PNS between CWC and HC; paired sample t-test 
was applied to compare the PNS between  T0 and  T1 for 
CWC.

QIIME 2 default parameters were used to analyze 
the composition of the gut microbiome [44]. 16S rRNA 
sequence quality was filtered with dada2 to infer ASVs. 
Using the Silva132 database with a 97% identity thresh-
old, a Naive Bayes classifier was trained to assign our 
ASVs to taxonomy at the phylum and genus levels to inte-
grate into analysis. Silva database was selected due to its 
checked quality and regular updates of aligned 16S subu-
nit rRNA sequences for bacteria. Alpha diversity (within-
sample diversity, i.e., Shannon, observed OTUs, Pielou_e, 
and Faith_PD) and beta diversity (between-sample 
diversity, i.e., Jaccard and unweighted UniFrac distance) 
parameters reported associations of the gut microbiome 

with PNS. Meanwhile, filtering of metabolic data was 
performed to remove m/z features with median coeffi-
cient of variation (CV) within technical replicates ≥ 75%. 
Only samples with Pearson correlation within technical 
replicates ≥ 0.7 were selected for downstream analysis. 
Metabolite intensities were  log2-transformed, and quan-
tile normalized. Metabolites associated with PNS were 
annotated by matching m/z and retention time to cur-
rently confirmed metabolites via standardized laboratory 
references or matching computationally using xmsAnno-
tator [45]. xmsAnnotator uses metabolic pathway associ-
ations, intensity profiles, retention time, mass defect, and 
adduct patterns to match m/z features to publicly avail-
able metabolic databases [45].

A multi-omics network integration program, xMWAS 
[28], was used to integrate, illustrate, and analyze the 
microbiome–metabolome multi-omics pathways associ-
ated with PNS. xMWAS estimates correlations between 
numeric features from multiple sources (e.g., microbi-
ome and metabolites relative intensity, and PNS scores) 
and plots a network graph with nodes (features) and lines 
(correlations). xMWAS provides two levels of interpre-
tation for the network. First, cluster analysis algorithms 
are used to identify highly correlated groups of nodes; 
these groups may represent correlated biological phe-
nomena that can be functionally annotated via pathway 
analysis programs. Second, centrality algorithms used in 
network analysis (i.e., eigenvector centrality [46, 47]) are 
used to identify and score the most influential nodes of 
the network according to their position and number of 
connections. Higher centrality scores indicate more con-
nections to other nodes which themselves have many 
connections in the network. The specifics of the xMWAS 
program are as follows: the program performs stratified 
multi-omics integration, meaning it constructs and ana-
lyzes network graphs stratified by user-specified groups 
(e.g., CWC  T0 and  T1 and HC). Pairwise data integra-
tion was performed using Partial Least Squares (PLS) 
regression allowing the xMWAS program to identify the 
optimal number of PLS components through cross-val-
idation. The igraph R package generated the integrative 
network, while multilevel community detection clustered 
the network by optimizing cluster modularity, a com-
mon community identification algorithm. An eigenvec-
tor centrality score between 0 and 1 was calculated for 
each node in each network graph. The relative influence 
of specific microbe, metabolite, and symptom nodes 
between CWC and HC and between CWC  T0 and  T1 was 
calculated as the change in centrality scores. As xMWAS 
requires a researcher-specified Pearson correlation cutoff 
to model network links, we used > |0.50| with a p < 0.05. 
Subsequently, the specific taxa that corresponded to 
each microbial metabolite cluster were annotated. In this 
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study, the xMWAS approach only used high abundance 
microbes, meaning an average abundance > 0.0001 and 
detected in > 50% of the samples.

Metabolic pathway enrichment analysis was performed 
on the metabolites in each microbiome–metabolite 
community to describe dysregulation of microbiome–
metabolome pathways specific for each PNS. This was 
conducted using Mummichog 2.0 default parameters 
[48]. Mummichog constructs metabolic pathways by 
mapping the reference list to the KEGG database and 
searches for enrichment from the user-specified list. 
Additionally, Mummichog calculates a Fisher’s exact 
p-value for each metabolic pathway via permutation test-
ing using repeated random sampling from the referenced 
list. The Benjamini–Hochberg FDR method [49] was 
selected for multiple testing correction based on a q value 
of 0.20. However, the FDR correction protects against 
type I error but it may exclude true positive microbes and 
metabolites (type II error) [50]. Therefore, multi-omics 
pathways associated with PNS were determined by a raw 
p value of 0.05 [32]. These analyses were implemented by 
R 4.1.0.

Results
Participants’ demographic and clinical characteristics
Thirty-five children were included in the analytic sample, 
comprising of 21 CWC and 14 HC (Table 1). The CWC 
group had a mean age of 13.2  years, with 81% having a 
prior surgical procedure and more than 75% diagnosed 
with sarcomas. CWC received combined chemotherapy 
drugs following standard protocols, primarily including 
Doxorubicin (n = 12, 57.1%), Ifosfamide (n = 9, 42.9%), 
Cisplatin (n = 9, 42.9%), Etoposide (n = 8, 38.1%), Meth-
otrexate (n = 7, 33.3%), Vincristine (n = 7, 33.3%), and 
Cyclophosphamide (n = 7, 33.3%). The primary treatment 
protocols were AEWS0031 (n = 7) and AOST0331 (n = 7). 
The HC group had a mean age of 13.1 years.

No significant differences were found between the two 
groups in age (df = 33, p = 0.90), sex (df = 1, p = 0.09), race 
(df = 2, p = 0.96), ethnicity (df = 2, p = 0.80), and obesity 
status (df = 1, p = 0.99). Additionally, they had no sig-
nificant difference in other health-related variables (e.g., 
asthma, diabetes, lactose intolerance, and use of probi-
otics). However, CWC received more antibiotics (due to 
cancer treatment) compared to HC (df = 1, p < 0.001).

Comparison of psychoneurological symptoms by study 
group
Figure 1 describes the T-scores for individual PNS (pain 
interference, fatigue, anxiety, depressive symptoms, and 
cognitive dysfunction, Fig. 1A) and severity levels of PNS 
based on cutoff points of T-scores (Fig. 1B). CWC at  T0 
reported greater symptom burden as compared to HC, 

but statistical significance was only found for pain inter-
ference (mean [SD] = 47.77 [9.75] vs. 39.69 [7.06], df = 33, 
95% confidence interval [CI] [1.36, 14.81], p = 0.020). 
Compared to CWC at  T0, CWC at  T1 showed lower pain 
(44.95 [12.10] vs. 47.77 [9.75], df = 11, 95% CI [− 4.43, 
10.08], p = 0.436), lower anxiety (45.06 [11.32] vs. 48.05 
[9.82], df = 11, 95% CI [− 4.78, 10.75], p = 0.443), higher 
depression (45.15 [12.02] vs. 43.57 [8.06], df = 11, 95% CI 
[− 8.83, 5.68], p = 0.663), higher fatigue (54.97 [14.38] vs. 
50.61 [14.16], df = 11, 95% CI [− 5.57, 14.30], p = 0.380), 
although not statistically significant, but significantly 
worse cognitive dysfunction (46.40 [9.16] vs. 53.15 [6.14], 
df = 11, 95% CI [0.41, 13.10], p = 0.038). Fatigue among 
CWC at  T1 was found significantly greater than in HC 
(54.97 [14.38] vs. 43.27 [10.59], df = 24, 95% CI [0.95, 
22.46], p = 0.034). Figure 1B demonstrates similar trends 
in changes of PNS levels, showing CWC at  T1 with more 
moderate fatigue and moderate/severe cognitive dys-
function than CWC at  T0.

Description of the gut microbiome and fecal metabolome
No significant difference was found for the total number 
of raw sequences across study groups (H = 3.97, df = 2, 
p = 0.137). Following the dada2 process, 1,572 features (or 
amplicon sequence variants [ASVs]) were identified, with 
a total frequency of 4,218,986 features. Frequencies per 
ASV ranged from 2 to 411,771, with a median frequency 
of 90, while ASV frequencies per sample ranged from 
19,743 to 282,019, with a median frequency of 81,406. 
Rarefaction was not conducted because all study groups 
were plateaued around 4000 reads per sample in alpha-
rarefaction curves. Using the trained classifiers based on 
Silva database, the bacterial taxonomy of the fecal speci-
mens included 12 phyla and 280 genera. The top domi-
nant bacterial phyla were Bacillota, Bacteroidota (new 
name of Bacteroidetes), Pseudomonadota, Verrucomi-
crobia, and Actinomycetota. The dominant bacterial gen-
era were Bacteroides, Blautia, Prevotella, Akkermansia, 
Faecalibacterium, and Bifidobacterium.

We found no difference in the average metabolite inten-
sity across the study groups (F = 1.124, df = 2, p = 0.334). 
In total 23,925 unique metabolomic features were identi-
fied in positive ion mode after filtering, consisting of 7077 
features with high confidence annotations, and 16,848 
unknown features, and 1912 features that mapped to 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways, the metabolites we focused on this analysis.

Gut microbiome by study group and antibiotic use
The CWC group at  T0 (i.e., Shannon [H = 5.88, df = 1, 
p = 0.015] and Pielou_e [H = 4.22, df = 1, p = 0.04]) and 
 T1 (i.e., observed operational taxonomic units [OTUs, 
H = 4.03, df = 1, p = 0.045], Shannon [H = 4.89, df = 1, 
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Table 1 Participants’ demographic and clinical characteristics

Variables Children with cancer Healthy controls (n = 14) p‑value*

T0 (n = 21) T1 (n = 12)c

Age in years, mean (SD)a 13.24 (3.85) 13.75 (3.22) 13.07 (3.97) 0.90

Age categories, n (%)b 0.68

 7–11 years 8 (38.1) 4 (33.3) 5 (35.7)

 12–17 years 12 (57.1) 8 (66.7) 7 (50.0)

 ≥ 18 years 1 (4.8) 2 (14.3)

Age at diagnosis, mean (SD) 13 (3.69) NA

Sex, n (%)b 0.09

 Male 14 (66.7) 9 (75.0) 5 (35.7)

 Female 7 (33.3) 3 (25.0) 9 (64.3)

Race, n (%)b 0.96

 White 14 (66.7) 8 (66.7) 12 (85.7)

 Black 3 (14.3) 1 (8.3) 1 (7.1)

 Other 4 (19.0) 3 (25.0) 1 (7.2)

Ethnicity, n (%)b 0.80

 Hispanic 3 (14.3) 2 (16.7) 3 (21.4)

 Non-Hispanic 17 (81.0) 10 (83.3) 11 (78.6)

 Other 1 (4.7) 0 0

Health insurance, n (%)b NA

 Public 11 (52.4) 7 (58.3)

 Private 10 (47.6) 5 (41.7)

Cancer type, n (%)b NA

 Sarcomas 16 (76.2) 9 (75.0)

 Other 5 (23.8) 3 (25.0)

Surgery, n (%)b NA

 Yes 17 (81) 9 (75.0)

 No 4 (19.0) 3 (25.0)

Antibiotic use, n (%)b < 0.001

 Yes 18 (85.7) 11 (91.7) 0 (0)

 No 3 (14.3) 1 (8.3) 14 (100)

Preterm birth, n (%)b 0.99

 Yes 1 (4.8) 1 (8.3) 1 (7.1)

 No 20 (95.2) 11 (91.7) 13 (92.9)

Obesity status, n (%)b 0.99

 Yes 1 (4.8) 1 (8.3) 0

 No 20 (95.2) 11 (91.7) 14 (100)

Diabetes, n (%)b 0.99

 Yes 1 (4.8) 1 (8.3) 0

 No 20 (95.2) 11 (91.7) 14 (100)

Asthma, n (%)b 0.64

 Yes 3 (14.3) 3 (25.0) 1 (7.1)

 No 18 (85.7) 9 (75.0) 13 (92.9)

Diary intake intolerance, n (%)b 0.99

 Yes 2 (9.5) 1 (8.3) 1 (7.1)

 No 19 (90.5) 11 (91.7) 13 (92.9)

Lactose intolerance, n (%)b 0.40

 Yes 0 0 1 (7.1)

 No 21 (100) 12 (100) 13 (92.9)

Probiotics use, n (%)b 0.26
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Table 1 (continued)

Variables Children with cancer Healthy controls (n = 14) p‑value*

T0 (n = 21) T1 (n = 12)c

 Yes 3 (14.3) 1 (8.3) 0

 No 18 (85.7) 11 (91.7) 14 (100)

T0: pre-cycle two chemotherapy;  T1: post chemotherapy (completion of all chemotherapy); NA: not applicable; SD: standard deviation

*p-value refers to healthy controls vs. pre-cycle 2 chemotherapy for cancer cases
a Independent samples t-test (for continuous variables)
b Pearson Chi-Square or Fisher’s Exact test (for categorical variables) were used to compare demographics and clinical variables between children with cancer and 
healthy controls
c 12 children with cancer completed the gut microbiome data were included

Fig. 1 Comparison of psychoneurological symptoms between children with cancer and healthy controls. A Demonstrates T-scores 
of psychoneurological symptoms by mean ± standard deviation. B Demonstrates levels of psychoneurological symptoms by percentile (%) 
across cancer timepoint  (T0 and  T1) vs. healthy controls
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p = 0.027], and Pielou_e [H = 3.82, df = 1, p = 0.050]) 
showed a lower alpha diversity than the HC group. No 
difference for alpha diversity was found between  T0 
and  T1 in CWC. CWC receiving antibiotics showed a 
lower alpha diversity than CWC and HC without receiv-
ing antibiotics (i.e., observed OTUs [H = 6.83, df = 1, 
p = 0.033], Shannon [H = 8.57, df = 1, p = 0.014], and 
Pielou_e [H = 6.04, df = 1, p = 0.049]). For beta diversity 
analysis, permutational multivariate analysis of vari-
ance (PERMANOVA) based on Jaccard distance and 
unweighted UniFrac distance showed differences of 
the CWC at  T0 (Jaccard [F = 2.0, df = 1, p = 0.003] and 
unweighted UniFrac [F = 2.06, df = 1, p = 0.027]) and 
 T1 (Jaccard [F = 1.93, df = 1, p = 0.001] and unweighted 
UniFrac [F = 2.15, df = 1, p = 0.015]) from HC groups, as 
well as between CWC with and CWC and HC without 
antibiotic use (Jaccard [F = 1.60, df = 1, p = 0.004] and 
unweighted UniFrac [F = 1.82, df = 1, p = 0.015]). No dif-
ference for beta diversity was found between  T0 and  T1 
in CWC. Principal coordinates analyses visualize beta 
diversity patterns by study group (Additional file  1: Fig. 
S1A, B) and by antibiotic use (Additional file 1: Fig. S1C, 
D).

Microbiome–metabolome networks linked with PNS
Figure  2 shows the three-way multi-omics network 
comprised of gut microbiome (rectangles), metabo-
lites (circles), and PNS (triangles) clustered into six dis-
tinct communities (C1–C6) for the CWC group at  T0 
(Fig.  2A), five distinct communities (C1–C5) for the 

CWC group at  T1 (Fig. 2B), and six distinct communities 
(C1–C6) for the HC group (Fig.  2C). Further metabolic 
and microbiome interpretation of Fig. 2 can be found in 
Tables 2, 3.

Number of microbial taxa and metabolites linked with PNS
Table  2 shows the total number of significant microbial 
taxa and metabolites associated with PNS (without any 
overlap for each cluster) among CWC at  T0, at  T1, and 
HC. Compared to HC, CWC at  T0 had very similar gut 
microbial taxa (n [CWC at  T0] = 37 vs. n [HC] = 40) but 
a lower number of metabolites (n [CWC at  T0] = 388 
vs. n [HC] = 492). Additionally, CWC at  T1 showed the 
lowest number of microbial taxa (n [CWC at  T1] = 24 
vs. n [CWC at  T0] = 37 vs. n [HC] = 40) and metabo-
lites (n [CWC at  T1] = 375 vs. n [CWC at  T0] = 388 vs. n 
[HC] = 492). Compared with HC and CWC at  T0, CWC 
at  T1 showed a decreased gut microbiome taxa (n [CWC 
at  T1] = 1 vs. n [CWC at  T0] = 8 vs. n [HC] = 7) with 
increased numbers of metabolites (n [CWC at  T1] = 183 
vs. n [CWC at  T0] = 79 vs. n [HC] = 166) associated with 
PNS.

Microbiome–metabolome networks linked with PNS
Table  3 shows the eigenvector centrality for PNS in the 
microbiome–metabolome networks as well as the differ-
ences in centrality in the different study groups. Eigenvec-
tor centrality scores consider the number of significant 
correlations with a given feature as well as the number of 
significant correlations with those correlated features, in 

Fig. 2 Integrative network analysis of gut microbiome, gut metabolome and psychoneurological symptoms. A Presents the network correlations 
for children pre-cycle two chemotherapy  (T0), B for post-chemotherapy  (T1), and C for healthy controls. The three-way multiomics analysis describes 
the network relationships among gut microbiome (rectangles), metabolites (circles), and PNS (triangles), including A 6 distinct communities 
(C1…C6) detected for the children with cancer group at T0, B 5 distinct communities (C1…C5) detected for the children with cancer group 
at T1, and C 6 distinct communities (C1…C6) detected for healthy controls. Within each panel A, B, or C, Table 2 presents the total number 
of microbes and metabolites linked with each cluster with specific symptom clusters. Table 4 and Fig. 4 further present these specific gut microbes 
and metabolites linked with specific clusters with PNS by the study groups
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turn, with higher scores assigned to features with greater 
connectivity in the network. The microbiome–metabo-
lome networking nodes were significantly associated with 
anxiety, depressive symptoms, and fatigue for both CWC 
at  T0 and HC. However, the microbiome–metabolome 
networking nodes were related to pain only for CWC at 
 T0. Additionally, the microbiome–metabolome network-
ing nodes were significantly associated with cognition 
only for CWC at  T1.

Specific microbial taxa and metabolic pathways associated 
with PNS by study group
Figure  3 demonstrates changes in network centrality 
for the gut microbiome in our samples by selecting the 

value of change in network centrality > 0.1. Changes 
in network centrality can indicate altered interac-
tions among the features in different states. The 
genera in CWC that were more abundant at  T0 than 
 T1 included UBA1819, Holdemania, Anaerovora-
caceae_Family_XIII, and Akkermansia. Increased 
abundance of Alistipes, Incertae_S, Colidextribacter, 
Coprococcus, and Anaerostipes genera were found 
in CWC at  T1 relative to  T0 (Fig.  3A). Compared to 
CWC at  T0, HC had increased abundance of Alis-
tipes, Oscillospiracea, Incertae_S, and Oscilllibacter 
genera (Fig.  3B). Furthermore, compared to CWC 
at  T1, HC had increased abundance of UCG-005, 
UBA1819, DTU089, Christensenellaceae R7 group, 

Table 2 The total number of gut microbiome and metabolites associated with psychoneurological symptoms

Study group Microbiome Metabolites

Children with cancer at  T0 (n = 21) (n = 37) (n = 388)

 Cluster 1 (no symptoms) 5 121

 Cluster 2 (no symptoms) 8 121

 Cluster 3 (no symptoms) 12 55

 Cluster 4 (no symptoms) 4 12

 Cluster 5 (pain, anxiety, cognitive function) 2 71

 Cluster 6 (fatigue, depressive symptoms) 6 8

Children with cancer at  T1 (n = 12) (n = 24) (n = 375)

 Cluster 1 (no symptoms) 4 71

 Cluster 2 (no symptoms) 12 92

 Cluster 3 (no symptoms) 7 29

 Cluster 4 (fatigue, anxiety, depressive symptoms) 1 48

 Cluster 5 (cognitive function) 0 135

Healthy controls (n = 14) (n = 40) (n = 492)

 Cluster 1 (no symptoms) 4 175

 Cluster 2 (no symptoms) 10 75

 Cluster 3 (no symptoms) 12 54

 Cluster 4 (no symptoms) 7 22

 Cluster 5 (fatigue, cognitive function) 5 111

 Cluster 6 (anxiety, depressive symptoms) 2 55

Table 3 Eigenvector centrality of psychoneurological symptoms in the microbiome–metabolome networks and centrality differences 
between groups

T0: pre-cycle two chemotherapy;  T1: post chemotherapy (completion of all chemotherapy)

Symptoms Children with cancer Healthy controls 
(n = 14)

T1 vs.  T0 Healthy controls 
vs.  T0

Healthy 
controls 
vs.  T1

T0 (n = 21) T1 (n = 12)

Pain 0.004 0 0 0.004 0.004 0

Fatigue 0.003 0 0.029 0.003 0.026 0.029

Anxiety 0.003 0 0.167 0.003 0.164 0.167

Depression 0.009 0 0.087 0.009 0.078 0.087

Cognition 0 0.586 0 0.586 0 0.586
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Eubacterium_coprostanoligenes group, Odoribacter, 
and Akkermansia genera (Fig. 3C).

Children with cancer at  T0
PNS were assigned to two microbe–metabolite–PNS 
communities, C5 (pain, anxiety, and cognitive dys-
function) and C6 (fatigue and depressive symptoms) 
(Fig. 2A and Table 2). Within those communities, PNS 
were negatively associated with gut microbes (e.g., 
Lactobacillus, Bifidobacterium, and Roseburia), which 
are identified with probiotic functions or SCFA pro-
ducers. These gut microbes were also associated with 
metabolic pathways of carnitine shuttle (p = 0.0003), 
fatty acid metabolism (p = 0.001) and activation 
(p = 0.001), and tryptophan metabolism (p = 0.008) 
(Table 4 and Fig. 4A).

Children with cancer at  T1
PNS were assigned to two microbe–metabolite–PNS 
communities, C4 (fatigue, anxiety, and depressive symp-
toms) and C5 (cognitive function) (Fig. 2B and Table 2). 
Within those communities, PNS were negatively asso-
ciated with Intestinibacter and Megasphaera genera, 
which were also associated with aspartate and asparagine 
metabolism (df = 1, p = 0.034), carnitine shuttle (df = 1, 
p = 0.002), tryptophan (df = 1, p = 0.019), glycine, serine, 
alanine, and threonine metabolism (df = 1, p = 0.020), 
drug metabolism-cytochrome P450 (df = 1, p = 0.025), 
and methionine and cysteine metabolism (df = 1, 
p = 0.040) (Table 4 and Fig. 4B).

Healthy controls
PNS were assigned to two microbe–metabolite–PNS 
communities, C5 (fatigue and cognitive function) and 
C6 (anxiety and depressive symptoms) (Fig.  2C and 

Fig. 3 Change in network centrality for the gut microbiome in children with cancer and healthy controls. The gut microbiome with the value 
of change in network centrality > 0.1 were selected via comparisons among cancer pre-cycle two chemotherapy  (T0), cancer post-chemotherapy 
 (T1) and healthy controls. A Presents  T0 vs.  T1; B presents  T0 vs. controls; and C presents  T1 vs. controls. No microbes were found significantly higher 
for cancer  T1

Table 4 Gut microbiome associated with the node of metabolome-psychoneurological symptom cluster

T0: pre-cycle two chemotherapy;  T1: post chemotherapy (completion of all chemotherapy)

Study group Symptom cluster Gut microbial genera

Children with cancer at  T0 Cluster 5 Ruminococcus, Parasutterella

Cluster 6 Parabacteroides, Veillonella, Megasphaera, UBA1819, Escheri-
chia–Shigella, Prevotella

Children with cancer at  T1 Cluster 4 Megasphaera

Healthy controls Cluster 5 Lachnoclostridium, UBA1819, Coprococcus, Prevotella, Alistipes

Cluster 6 Anaerostipes, Phascolarctobacterium
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Table  2). Within those communities, PNS were nega-
tively associated with gut microbes (e.g., Ruminococ-
caceae_UBA1819, Coprococcus, Prevotella, Alistipes, and 
Lachnoclostridium) which were also significantly associ-
ated with metabolic pathways of tyrosine metabolism 
(df = 1, p = 0.001), C21-steroid hormone biosynthesis 
and metabolism (df = 1, p = 0.035), vitamin B6 (pyridox-
ine) metabolism (df = 1, p = 0.013), β-alanine metabolism 
(df = 1, p = 0.016), and glycine, serine, alanine, and threo-
nine metabolism (df = 1, p = 0.032) (Table 4 and Fig. 4C).

Comparison between children with cancer and controls
A comparison of microbiome–metabolome–PNS net-
works between CWC and HC groups elucidated differ-
ent impact patterns of bacteria with potential probiotic 
functions (e.g., Ruminococcaceae and Akkermansia) and 
fatty acid metabolism, tryptophan, and carnitine shuttle 
on the microbiome–metabolome–PNS networks. Multi-
ple comparison corrections were not implemented in this 
study considering its exploratory nature, which is a limi-
tation of this study.

Discussion
This study examined the microbiome–metabolome path-
ways associated with PNS among CWC receiving chemo-
therapy compared to HC in a network-based multi-omics 
analysis. We found that CWC post-chemotherapy 

showed the lowest number of correlated gut microbes, 
but more metabolites compared with those pre-cycle 
two chemotherapy and HC. Different patterns of micro-
biome–metabolite–PNS networks post-chemotherapy 
are associated with changes of PNS trajectories and the 
disturbed gut microbiome across cancer chemotherapy. 
Interestingly, PNS were clustered into two communities 
within the microbiome–metabolome networks in both 
study groups, revealing that specific gut microbial gen-
era (e.g., Megasphaera, Ruminococcus, and Prevotella) 
were associated with the carnitine shuttle, fatty acid 
metabolism/activation, and tryptophan metabolic path-
ways. As the first of its kind, this study identified micro-
biome–metabolome pathways associated with PNS for 
CWC using a multi-omics approach. Although this study 
was limited by a small sample size, our findings provide 
promising microbiome–metabolome targets to validate 
in future studies with larger cohorts.

Compared with HC, CWC receiving chemotherapy 
reported more symptom burden, with particularly 
increased fatigue and cognitive dysfunction scores. Our 
findings partially reflected previous work regarding 
the overall trend of PNS across chemotherapy [51, 52], 
including potential improvement of some symptoms, 
such as pain [53, 54] and anxiety [54] post-chemother-
apy. This may be attributed to recovery from treatment-
related procedures, acute chemotherapy toxicities, and 

Fig. 4 Integrative network analysis of fecal metabolome associated with PNS. A Presents CWC at  T0; B presents CWC at  T1; and C presents healthy 
controls
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discharge from the hospital after completion of chemo-
therapy. However, the worsened fatigue and cognitive 
dysfunction post-chemotherapy echo previous literature 
on the continuity of chemotherapy adverse events, par-
ticularly severe fatigue [55] and cognitive impairment 
[56, 57] in this population. Due to the significant influ-
ence of PNS on children’s future functional status and 
QOL, understanding the biological mechanisms of PNS 
trajectories during chemotherapy treatment is critical.

Recent innovations in the MGB axis propose that the 
gut microbiome can influence PNS via regulating spe-
cific metabolic pathways (e.g., SCFAs and tryptophan) 
[12, 18, 58]. Chemotherapy has been reported to disturb 
the gut microbiome in CWC, reducing abundance of 
anaerobic bacteria (i.e., Bacteroides, Clostridium cluster 
XIVa, Faecalibacterium, and Bifidobacterium), whereas 
Enterococcus, often pathogenic, drastically increased [31, 
59, 60]. The disturbed gut microbiome potentially height-
ens treatment-related toxicity [61]. Although limited, 
specific gut microbial taxa were found associated with 
PNS among adult cancer patients [13, 16, 24]. Patients 
with a high PNS cluster burden were more likely to have 
increased abundance of Bacteroidota and DTU089 phyla 
and Ruminiclostridium-9, Tyzzerella, Eubacterium_fissi-
caten genera, while those with a low PNS cluster burden 
had higher abundance of Lactococcus, Phascolarctobac-
terium, and Desulfovibrio genera. Our study found an 
increase in the Akkermansia genus for CWC pre-cycle 
two chemotherapy and HC, which was negatively linked 
to PNS in the microbiome–metabolome networks. 
Findings of this study support that higher abundance 
of Akkermansia is associated with lower PNS burden, 
particularly cognitive dysfunction among CWC post-
chemotherapy. Similarly, decreased abundance of Akker-
mansia species is associated with various adverse health 
effects, including metabolic disorders, inflammatory and 
neurodegenerative diseases, and even cancers [62, 63]. 
Having a protective effect, Akkermansia species can act 
on host metabolism and metabolites such as SCFAs [64]. 
For example, the probiotic Akkermansia muciniphila 
is well known as a propionate producer in the presence 
of vitamin B12 [65]. Although the mechanism of Akker-
mansia species on disease and health outcomes is largely 
unknown, current key hypothesis is the positive modula-
tion of thickness of intestinal mucosa and intestinal bar-
rier integrity [66, 67]. For instance, patients with cancer 
experienced significant epithelial permeability and bacte-
rial translocation [68]. Thus, therapeutic manipulations 
(e.g., probiotics and Mediterranean diet) of the Akker-
mansia species may maintain the intestinal integrity [67] 
and further reduce chemotherapy-related PNS.

In this study, gut microbial genera, such as Lactobacil-
lus, Bifidobacterium, and Roseburia taxa were associated 

with lower PNS burden [69, 70]. Decreased abundances 
of the gut microbial taxa, particularly Roseburia and Fae-
calibacterium were commonly reported among patients 
with psychiatric disorders [71]. Although mixed findings 
using non-experimental study designs (e.g., case–control 
and observational) were reported about Bifidobacterium 
and Lactobacillus among patients with psychiatric dis-
orders [71–73], probiotic interventions seem to support 
Bifidobacterium and Lactobacillus species (e.g., Lactoba-
cillus rhamnosus and Bifidobacterium breve) as an alter-
native therapy to alleviate PNS (e.g., anxiety, depression, 
and cognitive dysfunction [74–77]). Due to methodologi-
cal shortcomings, further confirmation of these findings 
is critically needed. Additionally, the gut microbes (e.g., 
Ruminococcaceae_UCG-014) [78] are associated with 
lower PNS burden. However, there has also been contra-
dicting evidence regarding probiotics, such as Alistipes. 
They may have protective effects in the PNS context but 
have also been demonstrated to have a pathogenic nature 
associated with the development of colorectal cancer and 
depression [79]. Thus, our findings require further con-
firmation in a larger cohort of pediatric cancer patients.

Gut microbes metabolize dietary and host-derived 
molecules to activate or produce functional metabolites 
with local and systemic effects [26]. Under the guidance 
of the MGB axis framework, our previous research iden-
tified a group of serum metabolites associated with pain, 
fatigue, anxiety, depressive symptoms, and the PNS clus-
ter (mean of these symptoms) for CWC (e.g., primarily 
diagnosed with leukemia and lymphoma) across a chem-
otherapy cycle [14]. In particular, the fatty acid pathways 
were associated with pain, the tryptophan pathway was 
associated with fatigue, anxiety, and the PNS cluster, and 
the carnitine shuttle was associated with the PNS clus-
ter [14]. Furthermore, a dysbiotic gut microbiome was 
found to potentially modulate PNS through altered lipid 
metabolism as well as gastrointestinal and neural sys-
tems for patients with head and neck cancer [13]. This 
study compared microbiome–metabolome–PNS net-
works among CWC pre-cycle two chemotherapy and 
post-chemotherapy, and HC and indicated that different 
patterns of bacteria (e.g., Ruminococcus and Prevotella) 
linked with metabolites (e.g., fatty acid metabolism, tryp-
tophan, and carnitine shuttle) are associated with PNS by 
study groups. These network differences may be partially 
attributed to the effects of chemotherapy and antibiotic 
use, which can shape the gut microbiome, and in turn 
further aggravate dysregulations of metabolic pathways, 
intestinal permeability, and damage to the enteric and 
peripheral nerves, ultimately leading to physiological and 
psychological dysfunction [13, 80, 81]. Specifically, Rumi-
nococcus has been reported to form secondary bile acid 
(e.g., ursodeoxycholic acid) that modulates the immune 
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system via reducing cytokine secretion and inhibit-
ing eosinophil activation [82]; Prevotella has also been 
reported to produce SCFAs and add in the synthesis of 
micronutrients (e.g., vitamin K2 and B12) [83, 84], which 
can regulate intestinal homeostasis in animal models and 
human populations. The findings of microbiome–metab-
olome–PNS networks provide potential targets (e.g., 
microbes and its functional metabolites) to mitigate PNS 
for children with cancer receiving chemotherapy. For 
example, administrating probiotics (e.g., Lactobacillus 
and Bifidobacterium) can correct microbial dysbiosis and 
sustain metabolic equilibrium [85]. Although more work 
is needed to confirm our findings in CWC, our findings 
from this study suggest that microbiome–metabolome 
pathways are associated with PNS among children with 
cancer receiving chemotherapy.

Single-omics biomarkers (i.e., microbiome or metabo-
lome) are emerging to explain PNS in cancer chemother-
apy [14, 24, 25]. However, there is a paucity of research 
that integrates both the gut microbiome and metabo-
lome using multi-omics approaches in PNS. Consistent 
with our previous work [14], this study found that car-
nitine shuttle, fatty acid activation and metabolism, and 
tryptophan metabolism were associated with the gut 
microbiome and PNS in CWC. Specifically, carnitine is 
a trimethylated amino acid primarily derived from the 
diet, essential for the transportation of long-chain fatty 
acids during fatty acid beta-oxidation for energy sup-
port, including cancer [86–88]. An interruption of the 
carnitine shuttle system during chemotherapy could 
influence cancer metabolic plasticity and intertwine key 
metabolic pathways that supply an energetic and biosyn-
thetic demand for cancer cells [89], ultimately influencing 
PNS during chemotherapy. Considering the critical role 
of carnitine-related pathways in cancer care, l-carnitine 
supplementation was explored to improve PNS, particu-
larly fatigue [90, 91].

Additionally, we found that fatty acid activation and 
metabolism involved in the carnitine shuttle system were 
associated with PNS. Fatty acids metabolism includes 
various metabolic processes involving fatty acids, which 
determine human brain’s integrity and functional perfor-
mance [92]. Essential fatty acids, such as omega-3 fatty 
acids, were found to decrease the symptoms of fatigue 
and pain in patients during chemotherapy, possibly due 
to weight maintenance and reduced inflammatory status 
[93]. Furthermore, a decrease in bile acid synthesis was 
reported in patients with chronic fatigue syndrome [94]. 
This may be attributed to the role of bile acids in choles-
terol homeostasis and microbiome signaling, facilitat-
ing excretion, absorption, and transportation of fat and 
sterols in the liver and intestines [95]. Together, specific 
fatty acids, such as omega-3 fatty acids, point towards 

a precision approach to treat and manage cancer treat-
ment-related symptoms although further investigation is 
needed to examine the exact benefits of fatty acid-related 
supplementations or diets rich in omega-3 and omega-6 
fatty acids in symptoms among cancer populations, 
including children with cancer [93, 96].

Tryptophan, an essential amino acid, is required for 
structural and functional processes of protein biosyn-
thesis and immunoregulation [97] and plays a critical 
role in the MGB axis [98]. The inflammation activation 
of tumor cells and cancer treatments can induce the 
tryptophan-degrading enzyme indoleamine 2,3-dioxyge-
nase, which can convert tryptophan to kynurenine in the 
gastrointestinal tract and other tissues of the body [99]. 
Downstream metabolites of kynurenine include neu-
roprotective kynurenic acid and neurotoxic quinolinic 
acid [18]. Depletion of tryptophan could contribute to 
serotonin dysregulation and neurobehavioral manifesta-
tions [100, 101]. Meanwhile, the accumulation of down-
stream metabolites of the kynurenine pathway seems 
to trigger central nervous system physiology, anxiety, 
depression, social behavior, cognition, and visceral pain 
[18, 102]. Similarly, they were also associated with an 
increased burden of pain, fatigue, anxiety, and depression 
[14, 103, 104], as well as reduced QOL [105, 106]. This 
study corroborated previous reports that demonstrate 
the association of altered tryptophan metabolism during 
chemotherapy and its adverse association with symptom 
burden among CWC. Current literature has attempted to 
identify solutions to inhibit tryptophan breakdown, such 
as ketogenic diet [107], Mediterranean and other plant-
based diets [108], probiotics [109], and physical activity 
[110, 111]. Further studies are needed to test the feasibil-
ity and efficacy of these promising interventions among 
pediatric cancer populations.

Utilizing the MGB axis framework, this study con-
firmed several metabolic pathways, such as carnitine 
shuttle and tryptophan/kynurenine pathways, associated 
with psychoneurological toxicities in children [14, 112] 
and adults with cancer undergoing chemotherapy [24, 
113, 114]. This is the first study to elucidate microbiome–
metabolome pathways linked with PNS in cancer chem-
otherapy using the multi-omics data integration and 
analysis approach. This study added to the literature that 
specific gut microbes (e.g., Ruminococcus, Megasphaera, 
and Prevotella), along with carnitine shuttle, fatty acid 
metabolism/activation, and tryptophan pathways, are 
associated with PNS burden across cancer chemotherapy. 
Targeting the gut microbiome through diet, nutritional 
supplements, probiotics, and exercise [18, 115] may pro-
vide a tractable solution to modulate metabolic pathways, 
ultimately decreasing PNS burden among CWC. Further 
validation of these findings is needed in a larger cohort.
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There are several limitations to our study. First, the 
sample size is small, and all cases were recruited from 
Children’s Healthcare of Atlanta, resulting in limited gen-
eralizability into other clinical settings. This pilot study 
analyzed CWC who completed  T0 and some of them 
did not complete  T1 yet when we analyzed the data. The 
unbalanced sample size between  T0 and  T1 for CWC 
may cause bias. Second, as a preliminary analysis with a 
smaller sample size, we did not adjust the multi-omics 
integration for multiple testing. This approach has cer-
tainly resulted in some false positive findings, furthering 
the importance of future replication. However, cluster-
ing and pathway analyses are two ways to mitigate the 
effects false positives in omics research [116], and our 
prior research suggests that these approaches might 
continue to do so in multi-omics research [117]. Future 
work should confirm our findings in a larger cohort with 
multiple testing correction. Third, we were unable to 
determine whether the fecal metabolites were produced 
by the microbiome or by the host, and whether these 
identified metabolites were being absorbed to affect the 
MGB axis or alternatively being eliminated. Our metab-
olomics analysis was limited to summaries of metabolic 
pathways and thus need detailed examination of specific 
metabolites in future work to determine the magnitude 
and direction. Lastly, our study could not control for the 
use of antibiotics and chemotherapy drugs across the 
cancer treatment trajectory. Therefore, this study cannot 
determine the impact of specific chemotherapy on PNS 
and the antibiotic vs. chemotherapy effects on microbi-
ome–metabolome pathways. We cannot discern baseline 
differences in the fecal microbiome and metabolome due 
to treatments or cancer per se. Future research should 
examine the relationships of multi-omics pathways in the 
chemotherapy-induced PNS context with a larger sample 
cohort using metagenomic sequencing to elucidate spe-
cies- and strain-level microbial data, as well as targeted 
metabolomics that focus on the most salient pathways 
(e.g., tryptophan), while controlling for covariates such as 
chemotherapy drugs.

Conclusion
CWC seemed to report more symptom burden than HC, 
particularly with more fatigue and cognitive dysfunction 
post-chemotherapy. With the support of the MGB axis, 
our multi-omics analyses identified specific gut microbial 
genera clustered with carnitine shuttle, fatty acid metabo-
lism/activation, and tryptophan pathways are associated 
with PNS burden across cancer chemotherapy. The trend 
of symptom burden and its association with microbiome–
metabolome pathways should be further validated in a 
large cohort. These findings can guide clinical practices via 
informing the development of novel interventions targeting 

microbiome–metabolome pathways (e.g., prebiotics, pro-
biotics, and physical activity) [17, 118] to relieve symptom 
burden in children with cancer.
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