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Abstract 

Background Integrating quantitative trait loci (QTL) data related to molecular phenotypes with genome-wide 
association study (GWAS) data is an important post-GWAS strategic approach employed to identify disease-associated 
molecular features. Various types of molecular phenotypes have been investigated in neuropsychiatric disorders. 
However, these findings pertaining to distinct molecular features are often independent of each other, posing chal-
lenges for having an overview of the mapped genes.

Methods In this study, we comprehensively summarized published analyses focusing on four types of risk-related 
molecular features (gene expression, splicing transcriptome, protein abundance, and DNA methylation) across five 
common neuropsychiatric disorders. Subsequently, we conducted supplementary analyses with the latest GWAS 
dataset and corresponding deficient molecular phenotypes using Functional Summary-based Imputation (FUSION) 
and summary data-based Mendelian randomization (SMR). Based on the curated and supplemented results, novel 
reliable genes and their functions were explored.

Results Our findings revealed that eQTL exhibited superior ability in prioritizing risk genes compared to the other 
QTL, followed by sQTL. Approximately half of the genes associated with splicing transcriptome, protein abundance, 
and DNA methylation were successfully replicated by eQTL-associated genes across all five disorders. Furthermore, 
we identified 436 novel reliable genes, which enriched in pathways related with neurotransmitter transportation such 
as synaptic, dendrite, vesicles, axon along with correlations with other neuropsychiatric disorders. Finally, we identified 
ten multiple molecular involved regulation patterns (MMRP), which may provide valuable insights into understanding 
the contribution of molecular regulation network targeting these disease-associated genes.

Conclusions The analyses prioritized novel and reliable gene sets related with five molecular features based on pub-
lished and supplementary results for five common neuropsychiatric disorders, which were missed in the original 
GWAS analysis. Besides, the involved MMRP behind these genes could be given priority for further investigation 
to elucidate the pathogenic molecular mechanisms underlying neuropsychiatric disorders in future studies.
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Background
Neuropsychiatric disorders, including schizophrenia 
(SCZ), bipolar disorder (BP), major depressive disorder 
(MDD), attention deficit hyperactivity disorder (ADHD), 
and autism spectrum disorder (ASD) are highly heritable 
[1, 2], with numerous single nucleotide polymorphisms 
(SNPs) identified through genome-wide association stud-
ies (GWAS). However, the ability to interpret these vari-
ants has been hindered because many fall in non-coding 
regions of the genome or in regions of high linkage dis-
equilibrium (LD) [3–5]. Given the non-coding charac-
teristics of the majority of these variants, as well as their 
enrichment in known regulatory regions [6, 7], and con-
served regions [8], many variants may function through 
the regulation of gene expression, splicing and even 
other modulation at the epigenetic level. As a result, it 
has motivated the development of methods to prioritize 
associated genes at GWAS loci by integrating multilevel 
molecular features.

One of the most prevalent methods is transcriptome-
wide association studies (TWAS) [9], which integrates 
expression reference panels (eQTL datasets with expres-
sion and genotype) to discover gene-trait associations 
from GWAS datasets (with genotype) [10–12] whose 
responding expression data are lacking of. We can predict 
the gene expression of an individual based on the genetic 
profile from the GWAS cohort and estimate statistical 
associations [13] between ‘imputed’ gene expression and 
trait [14] by the correlation between expression and gen-
otype of the eQTL cohorts in the individual-level GWAS 
data (such as PrediXcan [11]) or the summary-level 
GWAS data (such as Functional Summary-based Impu-
tation (FUSION) [10], and S-prediXcan [12]). The meth-
ods represented by FUSION only identify the association 
of gene expression with trait, but summary data-based 
Mendelian randomization (SMR/HEIDI) [15], another 
summary-level tool, discovers the causal effect of gene 
expression on trait by conducting Mendelian randomiza-
tion (MR) [15–17]. Both FUSION and SMR/HEIDI are 
popular and the most employed tools in TWAS analysis.

Besides, TWAS analysis has been extended from 
expression quantitative trait locus (eQTL) to other 
molecular phenotypes, such as splicing quantitative 
trait locus (sQTL) and protein quantitative trait locus 
(pQTL). Since effects of genetic variation on RNA 
splicing were demonstrated to contribute to com-
plex disease risk in Li et al. [18], a well-powered sQTL 
analysis in developing human cortex with FUSION 
(called as splicing-wide association studies (SWAS)) 
and SMR/HEDI was first conducted by Walker et  al. 
[19] to understand how functional genetic variates 
related with splicing impacts phenotypes. Wingo et al. 
is the first one to integrate depression GWAS results 

[20] with human brain proteomes [21] by performing 
a proteome-wide association study (PWAS) of depres-
sion, which integrated protein abundance reference 
pQTL datasets (with protein abundance and genotype) 
and discovered 20 novel proteins, which were not pre-
viously implicated in GWAS.

Many researchers also discovered other molecular-
related risk loci based on epigenomic modulation, such 
as DNA methylation quantitative trait locus (mQTL) and 
N6-methyladenosine quantitative trait locus  (m6AQTL). 
DNA methylation, an epigenetic marker, has been 
reported to play a critical role in many biological pro-
cess and diseases [22–24]. Several methylation-wide 
association studies (called as MWAS) have been success-
ful in identifying methylation loci associated with traits. 
Liu et al. performed a SMR/HEIDI test to explore puta-
tive pleiotropic methylation loci for Alzheimer’s disease 
(AD) neuropathology [25]. Different from DNA meth-
ylation, N6-methyladenosine (m6A), a most abundant 
modulation, happens at the mRNA level [26]. Dysregula-
tion of  m6A has been implicated in psychiatric disorders 
by previous studie s[27, 28]. For the first time, FUSION 
was used to report several risk  m6A site in blood tissue 
associated with several neuropsychiatric such as SCZ, BP, 
and MDD (called as mRNA methylation-wide associa-
tion studies,  m6A-WAS). Their results revealed insights 
into mRNA  m6A regulation, highlighting the important 
mechanism of  m6A regulation in finding the  m6A modu-
lation-specific loci in GWAS [29].

With the increasing types of molecular phenotypes 
applied into the x-wide association-like study (xWAS) 
analysis, many genes corresponding to these molecular 
features had been obtained, but these results are inde-
pendent of each other, making it difficult to have a gen-
eral overview on these risk genes. As a consequence, a 
comprehensive summary is urgent to sort out these result 
genes corresponding to molecular features. In this study, 
we firstly summarized the information of kinds of xWAS 
studies including TWAS, SWAS, PWAS, MWAS about 
five neuropsychiatric disorders, involving SCZ, BP, MDD, 
ADHD, and ASD. Next, since xWAS analyses of some 
disorders have not been conducted with the latest GWAS 
dataset or absent for certain molecular phenotypes analy-
sis, we performed a series of supplementary analyses to 
make the risk gene sets more complete. Based on the 
curated and supplemented results, we defined novel reli-
able gene lists and genes related with at least two types 
of risk molecular features of the five disorders. Then, 
we explored the functions of the novel genes by path-
way enrichment. The genes mapped by more than one 
type of molecular were further explored for each order 
by defining multiple molecular involved regulation pat-
terns (MMRP), which may promote understanding to 
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pathogenic molecular mechanism underlying neuropsy-
chiatric disorders.

Methods
Literature search strategy
A systematic search of the literature was performed 
in accordance to guidelines of the Preferred Report-
ing Items for Systematic Reviews and Meta-Analy-
sis (PRISMA) statement [30]. In March 2023, four 
databases (PubMed, Web of Science, Embase, and Sco-
pus) were searched for relevant articles from 1992 to 
2023 with terms (SCZ, BP, ADHD, ASD, MDD related 
quantitative trait locus) by using (QTL OR “Quantita-
tive Trait Loc*” OR “transcriptome wide association 
study” OR “proteome wide association study” OR “epi-
genome wide association study” OR TWAS OR PWAS 
OR EWAS) AND ("Schizophrenia"[Mesh] OR "Bipo-
lar Disorder"[Mesh] OR "Depressive Disorder"[Mesh] 
OR "depression"[Mesh] OR "Attention Deficit Disor-
der with Hyperactivity"[Mesh] OR "Autism Spectrum 
Disorder"[Mesh]) in PubMed and without ‘[Mesh]’ in 
the terms in the other three databases. Our initial search 
identified 557 PubMed records, 1010 Web of Science 
records, 1607 Embase records, and 1307 Scopus records 
(Fig.  1). Duplicate records across these databases were 
identified to finally yield a total of 2213 independent 
records (Fig. 1).

Literature selection criteria
Two authors (LXL, and HHZ) independently screened 
the titles and abstracts for the eligibility of studies using 
the Zotero software. Studies were excluded if they met 
the exclusion criteria: (1) review, commercials, guide-
lines, case reports, meeting abstracts, and perspectives, 
(2) studies not focused on any one of the five psychiat-
ric disorders of human, (3) non-English studies. After 
applying these criteria, we retained 78 records (3.5%, 
78/2213) and excluded 2135 records. For all 78 records, 
we reviewed the full-text articles to apply six additional 
exclusion criteria: (1) individual-based GWAS predic-
tive methods (only summary-based GWAS predictive 
methods including SMR and FUSION-like methods 
were included; the latter includes FUSION, S-PrediXcan 
[12], Epixcan [31], MetaXcan [32], JTI [33], Mendelian 
randomization & joint-tissue imputation (MR-JTI) [33], 
UTMOST [34]), (2) physical mapping methods such as 
FOCUS [35], (3) methodology related studies, (4) non-
xQTL related studies, (5) based on a subgroup of samples 
of a large cohort, (6) no available data due to inaccessi-
ble full text. Throughout the second filtering step, each 
article was screened independently by at least two of 
the authors (LXL, HHZ, CSH), and discrepancies were 
reviewed by an additional author, a consensus decision 

was taken by all the three authors. A total of 52 articles 
(66.7%, 52/78) were included for the xWAS analysis.

Data extraction and collection
The following information were independently extracted 
from each eligible paper by two authors (LXL, and HHZ) 
who subsequently cross-checked the data. Discrepan-
cies were resolved by discussion until a consensus was 
reached. The information included journal, xQTL type, 
xQTL dataset, tissue of xQTL, dataset of GWAS, analy-
sis tools, adjustment method, threshold, number of 
total genes, and the names of genes mapped by the sig-
nificant molecular features. For the genes obtained from 
the paper, we unified them into formatted gene sym-
bols using the HUGO Gene Nomenclature Committee 
(HGNC, http:// www. genen ames. org/).

After extracting the results, we conducted comprehen-
sive statistics on the studies for GWAS datasets, xQTL 
type, xQTL source. For each paper, we counted the times 
of both QTL datasets and GWAS dataset. For example, in 
a study with two QTL datasets, a mQTL dataset of Brain-
mMeta and a pQTL dataset of ROSMAP were used to 
analyze the GWAS dataset of SCZ_2022, we counted it 
as one time for Brain-mMeta, ROSMAP, and SCZ_2022 
separately. The detailed statistics results for GWAS data-
sets, weight files for FUSION, and xQTL datasets for 
SMR are presented in Additional file 1: Tables S1–3.

Supplementary analyses
After sorting out the published studies, we found that for 
some diseases, some xQTL datasets were not analyzed 
for the latest GWAS dataset or absent for certain molec-
ular phenotypes, which may hinder having a relatively 
comprehensive learning to the current results. Hence, 
we conducted supplementary analyses by using the lat-
est GWAS summary dataset and the xQTL dataset with 
relatively bigger sample size (marked in Additional file 1: 
Tables S1–3). We selected the most two prevalent meth-
ods, FUSION and SMR, according to our curated results 
to get the reliable gene list and novel gene list for supple-
mentary analyses results.

FUSION
We performed TWAS using GWAS summary statistics 
from the latest published SCZ [36], BP [37], ADHD [38], 
ASD [39], and MDD [20]. GWAS summary statistics 
were prepared for use in FUSION using the munge_sum-
stats.py script in LD Score Regression (https:// github. 
com/ bulik/ ldsc). Given its localized pattern of long-
range and complex LD, we excluded variants within the 
extended MHC region (chr6:28477797-33448354) to 
avoid spurious associations driven by the linkage disequi-
librium pattern in this region. We combined reference 

http://www.genenames.org/
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
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weights with summary-level GWAS results to calculate 
the association between molecular phenotype and dis-
ease. The reference weights included expression panels 

(PsychENCODE [40] and Genotype Tissue Expression 
(GTEx V8_EUR) [41] downloaded from http:// gusev 
lab. org/ proje cts/ FUSION/), splicing expression panel 

Fig. 1 Overview of the included literature. a is an overview of the literature review process and statistics for the included studies; b is the studies 
for different disorders; c is the studies involving different types of QTL with two methods

http://gusevlab.org/projects/FUSION/
http://gusevlab.org/projects/FUSION/
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(CommonMind Consortium (CMC, http:// gusev lab. org/ 
proje cts/ fusio n/) [42]), protein abundance panels (Reli-
gious Order Study and Rush Memory and Aging Pro-
ject (ROSMAP) [43], and Banner Sun Health Research 
Institute (Banner) [43]). Additionally, we utilized the 
 m6A data and genotype data in the previous study [44] 
to compute weight following the description provided by 
FUSION. The Bonferroni-corrected P < 0.05 was used to 
correct for multiple comparisons.

SMR/HEDI
We supplemented xQTL related analyses for five disor-
ders using SMR in which genetic variants were used as 
instrumental variables to evaluate the effects of molec-
ular phenotypes on the variations of diseases. SMR 
analysis was carried out using the default parameters 
recommended by the developers. In this study, eQTL 
datasets were from PsychENCODE ( https:// cnsge nom-
ics. com/ softw are/ smr/# DataR esour ce) [40] and eQTL-
Gen (https:// www. eqtlg en. org/ cis- eqtls. html), sQTL 
from BrainMeta  v2 (https:// cnsge nomics. com/ softw are/ 
smr/# DataR esour ce) [45] and GTEx V8_EUR (https:// 
cnsge nomics. com/ softw are/ smr/# DataR esour ce) [41], 
pQTL from ROSMAP (https:// www. synap se. org/# !Synap 
se: syn23 191787/ wiki/ 606404) [46], mQTL from Brain-
mMeta (https:// cnsge nomics. com/ softw are/ smr/# DataR 
esour ce) [47] and LBC_BSGS (https:// cnsge nomics. com/ 
softw are/ smr/# DataR esour ce) [48, 49], and  m6AQTL 
were recalculated using fastQTL with nominal pass based 
on the original m6A peak data from Xiong et al. [44] and 
genotype data from dbGaP. The significant associations 
were determined by a Bonferroni-adjusted significance 
level to account for multiple comparisons. In addition, 
HEIDI test was also performed to test the presence of 
heterogeneity in the SMR association statistics and only 
genes passed HEIDI test (PHEIDI > 0.05) were retained.

Discovery of reliable genes
We subsequently counted the supported evidence for 
each reported gene in a dictionary way, ‘GWAS data-
set—xQTL type—tissue—tool—gene’. For example, if 
there is a gene called SNX19 appearing in results of 
‘SCZ_2014—eQTL—brain—FUSION’ and ‘SCZ_2014—
eQTL—brain—SMR’, we considered the number of sup-
ported evidences of SNX19 as twice. That means, GWAS 
datasets (published in different year, mainly from the 
Psychiatric Genomics Consortium (PGC)), xQTL types 
(including eQTL, sQTL, pQTL, mQTL), tissues (here, 
we grouped the tissues into brain and non-brain), tools 
(summary-based methods including FUSION-like and 
SMR) will affect the results, and the supported evidence 
of a gene will be calculated if there is any change in the 

variables corresponding to the evidence line of the gene. 
We defined the reliable genes as replicated at least twice.

Checking novelty in GWAS
To determine the novelty of the reliable genes identified 
from the xWAS analyses, we identified the lowest p-val-
ues for the SNPs within 1 Mb upstream and downstream 
of each reliable gene using the summary statistics from 
the original traits GWAS [50]. The gene was defined as 
novel if the lowest p-values of the SNPs > 5e−8 in the 
original GWAS.

Functional analyses for the novel genes
We combined the novel genes from curated literature 
and supplementary analyses for each disorder, and we 
performed functional enrichment analyses using gPro-
filer [51] and Functional Mapping and Annotation of 
Genome-Wide Association Studies (FUMA) [52] for 
novel gene list of each disease. Then, the enriched gene 
sets were grouped into functional groups by ClueGO 
(v2.5.9), which creates first a binary gene-term matrix 
with the selected terms and their associated genes. Based 
on this matrix, a term-term similarity matrix is calcu-
lated using chance corrected kappa statistics to deter-
mine the association strength between the terms. Since 
the term-term matrix is of categorical origin, kappa sta-
tistic was found to be the most suitable method. Finally, 
the created network represents the terms as nodes which 
are linked based on a predefined kappa score level [53]. 
The network is automatically laid out using the Organic 
layout algorithm supported by Cytoscape (v3.8.2) [54].

Results
Overview of published xWAS studies
Figure  1 presents a flow chart of the extraction of pub-
lished xWAS studies. A total of 52 literatures were iden-
tified, of which 29, 13, 12, 12, and 19 were for SCZ, BP, 
ADHD, ASD, and MDD respectively (Fig.  1b). Among 
them, there were 13 (25.00%, 13/52) paper analyzed at 
least two of the five traits, three paper [55–57] involved 
five traits. Most of the analyzed GWAS datasets were 
from Psychiatric Genomics Consortium (PGC). For five 
disorders except ASD, the most utilized GWAS data-
sets were not the latest published version, for example, 
the one published in 2018 (called SCZ_2018) [35] was 
the mostly analyzed for SCZ, while its latest version is 
SCZ_2022 [36] (Additional file 1: Table S1).

As shown in Fig.  1c, most of the studies were only 
eQTL-related. Taking SCZ for example, 15 (78.9%, 15/19) 
were involved in eQTL for SMR, and 17 (80.9%, 17/21) 
for FUSION. It is noteworthy there was no analysis about 
mQTL with FUSION, and no sQTL-related studies with 
SMR regardless of diseases. For the dataset source of 

http://gusevlab.org/projects/fusion/)
http://gusevlab.org/projects/fusion/)
https://cnsgenomics.com/software/smr/#DataResource
https://cnsgenomics.com/software/smr/#DataResource
https://www.eqtlgen.org/cis-eqtls.html
https://cnsgenomics.com/software/smr/#DataResource
https://cnsgenomics.com/software/smr/#DataResource
https://cnsgenomics.com/software/smr/#DataResource
https://cnsgenomics.com/software/smr/#DataResource
https://www.synapse.org/#!Synapse:syn23191787/wiki/606404
https://www.synapse.org/#!Synapse:syn23191787/wiki/606404
https://cnsgenomics.com/software/smr/#DataResource
https://cnsgenomics.com/software/smr/#DataResource
https://cnsgenomics.com/software/smr/#DataResource
https://cnsgenomics.com/software/smr/#DataResource
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eQTL, we found most were from PsychENCODE, CMC 
and GTEx V7[58] (52.0%, 13/25 for SCZ in FUSION; 
41.7%, 10/24 for SCZ in SMR). For other molecular 
phenotypes, please see Additional file  1: Table  S2 for 
FUSION, Additional file 1: Table S3 for SMR. Moreover, 
only a few articles were involved in multiple QTL (20.1%, 
6/29 for SCZ) (Additional file 1: Table S4), their combi-
nation form was listed in Additional file  2: Fig.  S1. The 
results were almost similar for other diseases (Additional 
file  1: Tables S5–8). Apparently, previous xWAS studies 
mainly analyzed brain-related reference panels irrespec-
tive of the diseases and QTL types, though there were 
discrepancies in brain regions (Dorsolateral Prefrontal 
Cortex (DLPFC) were analyzed most) (Additional file 1: 
Tables S2–3).

Then we sorted out the genes from curated analysis 
according to the method ‘GWAS dataset—QTL type—
tissue—tool—gene’ of each disorder (we called these 
genes as curated genes (CG) in the following context) 
(Methods). Finally, there were 2890, 1253, 682, 904, 457 
genes for SCZ, BP, ADHD, ASD, and MDD separately in 
total (Table 1). Taking SCZ for an example, most of the 
genes corresponding to splicing transcriptome, protein 
and DNA methylation could be well replicated by genes 
from eQTL, among which splicing transcriptome ranked 
top (Fig.  2a), other disorders were almost similar situa-
tion (Additional file  2: Fig.  S2). Additionally, the valida-
tion among kinds of disorders varied (Fig. 2b), in which 
the replication ratio between SCZ and other disorders 

was much higher than the other pairs (Fig.  2f ). It may 
originate from the much more result genes of SCZ, which 
increased the probability of overlapping with the other 
traits.

Supplementary xWAS analyses
As we all known, the larger GWAS dataset is, the more 
risk loci will produce. However, according to our curated 
results, the latest GWAS dataset, which is also the larg-
est one, has not yet been analyzed (Additional file  1: 
Table S1), which may discount the possibility to find more 
potential risk genes. Hence, we conducted supplemen-
tary analyses by using the latest GWAS dataset. In addi-
tion, we found the number of associated genes was nearly 
proportional with the sample size of the QTL panel, 
especially for the brain tissue in pre-analyses (Additional 
file  2: Fig.  S3). As a result, we conducted analyses by 
FUSION and SMR with the reference molecular pheno-
type panels from brain and non-brain tissues according 
to its sample size and previous usage frequency (Meth-
ods, Table 2). On the other hand, the molecular pheno-
types applied for xWAS varied for disorders, which made 
it less power to compare the replication ratio of QTL 
among diseases. Thus, we utilized the same QTL datasets 
for each disorder to validate whether the replication rate 
of molecular features among disorders was concordant. 
We calculated the total appearing times of a gene accord-
ing to the method ‘GWAS dataset—QTL type—tissue—
tool—gene’ of each disorder (Methods). The obtained 
genes from these supplementary analyses were called 
supplementary genes (SG) in the following context. 
Finally, there were 1510, 579, 199, 40, 316 genes for SCZ, 
BP, ADHD, ASD, and MDD separately in total (Table 1). 
Similar with CG, nearly half of the genes corresponding 
to other molecular features except  m6A could be well rep-
licated by genes from eQTL, with splicing transcriptome 
still ranked top (Fig. 2a for SCZ, Additional file 2: Fig. S2 
for other disorders), but the replication ratio of SG were 
much higher than that in CG when we took denominator 
(the number of two types of molecular as denominator, 
and the number of their overlapping genes as numerator) 
into consideration (Fig.  2e). Additionally, the validation 
among kinds of disorders were also similar with that in 
CG (Fig.  2d). Different from the validation ratio among 
QTL, the replication ratio of SG was lower than that of 
CG (Fig.  2f ), the conclusion held true in other diseases 
(Additional file 2: Fig. S5).

Novel reliable genes in summarized gene list
Finally, we got 729, 126, 63, 48, 163 reliable genes (total 
supported evidence ≥ 2) in CG and 560, 169, 59, 12, 89 
in SG for SCZ, BP, ADHD, ASD, and MDD, respectively. 
Then, we defined novel genes as those were not identified 

Table 1 Overview of curated genes (CG) and supplementary 
genes (SG). CG represents the genes from literature, SG 
represents the genes from supplementary analyses

Disease Group Total genes Reliable genes 
(times > 1)

Novel 
reliable 
genes

SCZ CG 2890 729 115

SG 1510 560 42

Total 3680 990 136

BP CG 1253 126 62

SG 579 169 46

Total 1661 248 99

ADHD CG 682 63 45

SG 199 59 15

Total 838 108 56

ASD CG 904 48 41

SG 40 12 7

Total 924 50 41

MDD CG 457 163 88

SG 316 89 23

Total 669 222 104
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in original GWAS using the method of Wingo et al. [50] 
and the remaining of reliable genes were called non-novel 
genes. We obtained 136, 99, 56, 41, 104 novel genes for 
SCZ, BP, ADHD, ASD, and MDD separately after inte-
grating genes from CG and SG (Table 2, Additional file 1: 
Tables S9–13). Among these reliable novel genes, there 
are 21, 26, 7, 12 genes were newly discovered genes by SG 

but not by CG for SCZ, BP, ADHD, MDD, respectively. 
Interestingly, the median value of replication times of 
novel genes was lower than that in non-novel genes both 
in CG and SG. This difference was significant in SCZ and 
BP (Additional file 2: Fig. S6). It implied that genes dis-
covered at GWAS level were more frequently detected by 
various xWAS analyses.

Fig. 2 The number of results genes corresponding to five disorders from curated and supplemented analysis. a, c is the number of overlapping 
among different QTL of SCZ in curated genes (CG) and supplementary genes (SG) separately; b, d is the number of overlapping among different 
diseases in CG and SG separately; e is the contrast of overlapping ratio among different QTL of SCZ between CG and SG, left-lower part is for CG, 
right-upper part is for SG; f is contrast of overlapping ratio among different diseases between CG and SG, left-lower part is for CG, right-upper part 
is for SG
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Functional exploration of novel reliable genes
In order to explore the function of these novel reliable 
genes in xWAS analyses, we conducted gene-level func-
tional mapping and annotation by gProfiler and focused 
on GO-BP term (with term size < 1000) [51] (Additional 
file  1: Table  S14). The novel genes were significantly 
enriched in endoplasmic reticulum (ER)-associated pro-
tein degradation related pathways in SCZ. Many neu-
rotransmitters transportation related pathways such as 
vesicles and membrane were enriched for novel genes of 
BP and MDD. In ASD, most of the novel genes were asso-
ciated with aspartate family amino acid process. There 
was no GO-BP term found in ADHD (Fig. 3a).

We subsequently conducted functional enrichment 
with novel reliable genes by FUMA to explore more func-
tions. However, we did not find significant enrichment 
for the five disorders. Thus, we further compared the 
enrichment results for the non-novel genes and all reli-
able genes (including both novel and non-novel genes) 
to explore probable functions of novel genes by filtering 
those enrichment functions only exist in all reliable gene 
sets but not in the non-novel gene sets. There were 103 
GO-BP terms, 3 KEGG pathways and 106 GWAS Catalog 
terms (with term size < 500) (Additional file 1: Table S15) 
in total, which were considered as the possible biological 
functions caused by novel genes. The significant enrich-
ment results of GO-BP terms for SCZ, BP, MDD were 

grouped into functional groups by ClueGO (v2.5.9) [53] 
(Fig. 3b–d). There was no significant GO-BP term result 
for ASD, but the novel genes were shown to be associated 
with other psychiatric diseases such as Parkinson disease 
(PD) in GWAS catalog (Fig.  3e). For ADHD, the novel 
genes were only enriched in GWAS catalog ‘body fat 
mass’. The correlations with other neuropsychiatric dis-
orders for SCZ, BP, MDD were presented in Additional 
file 1: Table S15.

Multiple molecular regulation pattern related risk genes
If there are more than one type of molecular phenotypes 
mapped by a gene through xWAS analysis, the gene may 
affect the disease through multiple regulation pattern. 
Hence, we defined these genes as multiple molecular 
regulation pattern (MMRP) related genes. We explored 
the regulation mode of genes based on the results of 
novel reliable gene lists (Fig.  4a). We totally obtained a 
summary of ten types of MMRP for the five disorders 
(Fig.  4b). We discovered most of the MMRP included 
only two molecular features (Fig. 4b.i, vi, vii), four types 
of MMRP involved more than two kinds of molecules 
(Fig. 4bii–v). Most of them were associated with eQTL, 
which may mean almost all the molecular effect that a 
gene suffers will ultimately relate to its gene expression, 
except Fig.  4bvi–vii. In addition, we observed BP was 
associated with the most types of MMRP, which also 

Table 2 Results of supplementary xWAS analyses for the five neuropsychiatric disorders conducted in this study

The number denotes the number of significant genes; * denotes the results have been reported by published studies and the others were analyzed by this study

Method xQTL Type Datasets Tissue SCZ BP ADHD ASD MDD

FUSION eQTL GTEx_V8 (EUR) Non-brain 5216 1566 237 197 592

Brain 1396 398 68 111 157

PsychENCODE Brain 130* 41 2* 2* 26

sQTL CMC Brain 149 45 4* 4 25

pQTL Banner Brain 47 11 1 0 9

ROSMAP Brain 43 13 2 0 8

m6AQTL Brain Brain 18 8 2 1 6

Lung Non-brain 25 7 0 0 2

Muscle Non-brain 18 6 1 0 4

SMR eQTL PsychENCODE Brain 70* 24 3 3* 7

eQTLGen Non-brain 57* 22 3* 0* 18

sQTL BrainMeta v2 Brain 82 21 0 0 13

GTEx_V8 (EUR) Non-brain 1016 277 7 0 238

Brain 288 60 10 0 57

pQTL ROSMAP Brain 12 0 0 0 5

mQTL Brain-mMeta Brain 139 32 0* 0 22

LBC_BSGS Non-brain 109 70 0 0 114

m6AQTL Brain Brain 0 0 0 0 0

Lung Non-brain 1 0 0 0 0

Muscle Non-brain 0 0 0 0 0
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contained the only four-molecular regulation pattern 
(Fig. 4bv).

Discussion
In this study, we summarized the xWAS studies of five 
neuropsychiatric disorders and the mapped genes cor-
responding to molecular phenotypes to have a com-
prehensive overview of these risk genes. Moreover, we 
supplemented series analyses, which enabled the risk 

gene list more complete. Finally, we integrated results 
from curated and supplemented analyses of five molec-
ular phenotypes, elucidated the functions of the novel 
genes and identified ten types of MMRP, which may sig-
nificantly contribute to unraveling the molecular regula-
tory mechanisms underlying this disease.

Regarding different molecular phenotypes, we 
observed that eQTL analysis obtained more risk genes 
compared to the other QTL, followed by sQTL both in 

Fig. 3 Pathways involved by the novel reliable genes from xWAS. a is GO-BP enrichment results with gProfiler for SCZ, BP, MDD and ASD. b–d 
provide insightful views of the interrelations between multiple GO-BP terms related with the novel genes of SCZ, BP and MDD, respectively. The 
network module in the same color represents the node terms are linked based on a predefined kappa score level. The size of the nodes reflects 
the enrichment significance of the terms. Functional groups represented by their most significant (leading) term are visualized in the network. e 
is the top ten of GWAS catalog terms associated with ASD
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CG and SG (Fig. 2a, c), which leads to phenomena that 
most of non-eQTL results could be replicated by eQTL, 
while less than half of the genes mapped to eQTL can be 
effectively replicated by alternative molecular features. 
Notably, the replication ratio of SG was higher than that 
in CG, indicating discrepancies in published xWAS stud-
ies or potential absence of certain molecular features for 
some disorders. One possible reason for this is that the 

larger sample size of the eQTL dataset leads to higher 
power for detecting eQTL compared to the other QTL. 
Nevertheless, the substantial replication across multiple 
molecular features may unveil intricate regulatory mech-
anisms that a gene might concurrently undergo.

Additionally, we compared the validation across dis-
orders and observed contrasting phenomena where 
the replication ratio of CG was higher than that in SG 

Fig. 4 Multiple molecular regulation pattern related with the novel reliable genes. a Is an overview of the genes validated by at least two types 
of QTL from the xWAS analyses for the five psychiatric disorders. b Represents ten types of multiple molecular regulation pattern (MMRP) for the five 
psychiatric disorders. i–v show MMRP containing eQTL and vi–vii show MMRP without eQTL. Different colors represent corresponding molecular 
features. In order to have a clear view of the MMRP, the color of the line between QTL and disorders is concordant with the color corresponding 
to bottom QTL of each MMRP; and the number of genes involved in each MMRP are marked beside the lines
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(Fig. 2f ), possibly due to the larger number of CG from 
some studies with unadjusted p-value threshold, which 
increased the likelihood of overlap. Interestingly, both 
in CG and SG, the median value of replication times was 
lower for novel genes compared to non-novel genes, with 
significant differences observed in SCZ and BP (Addi-
tional file 2: Fig. S6). To some extent, this reflects a higher 
probability for GWAS-significant genes to be influenced 
by molecular features while insignificant genes may be 
missed due to reduced statistical power at GWAS level 
but identified at xWAS level. Therefore, it is imperative to 
employ larger sample sizes xWAS analysis and consider 
multiple molecular phenotypes.

The novel genes associated with SCZ were significantly 
enriched in pathways related to endoplasmic reticulum 
(ER)-related protein degradation, an essential sub-cel-
lular component involved in protein synthesis and post-
translational modifications [59]. Previous studies have 
demonstrated the involvement of ER stress in the patho-
physiology of SCZ, suggesting that targeting this pathway 
may potentially alleviate symptoms [60]. The pathways 
involved in the transportation of neurotransmitters, such 
as vesicles and membranes, were found to be enriched 
with novel genes associated with BP and MDD. These 
findings provide insights into potential mechanisms 
underlying the role of novel genes in psychiatric disor-
ders. In ASD, a majority of the novel genes were linked 
to the metabolic process of aspartate family amino acids. 
Previous studies have demonstrated that antibodies 
against N-methyl-D-aspartate receptors (NMDAR) in 
the brain can lead to an autoimmune disease known as 
Anti-NMDAR encephalitis, which manifests with diverse 
psychiatric and neurological symptoms [61]. There-
fore, targeting NMDAR may offer valuable insights into 
understanding the symptoms observed in MDD.

However, no significant results were observed in 
FUMA due to its stringent multiple testing corrections. 
Subsequently, we speculated on the potential functions 
of novel genes by filtering for enrichment functions pre-
sent in reliable gene sets but absent in non-novel gene 
lists, which may indicate the contribution of these novel 
genes. The Gene Ontology (GO) biological process terms 
associated with SCZ were found to be related to nega-
tive regulation of nervous system development and insu-
lin secretion. Notably, a previous study by Liu et al. [62] 
reported shared regulation of insulin secretion signaling 
between SCZ and type II diabetes (T2D), suggesting a 
possible comorbidity mechanism between these two dis-
orders. Additionally, GO biological process terms were 
identified as being related to cell adhesion and chemi-
cal homeostasis, while KEGG pathway analysis revealed 
an enrichment in biosynthesis of unsaturated fatty acids 
including omega-3 polyunsaturated fatty acids (PUFAs). 

The use of n-3 PUFAs as mood stabilizers among bipo-
lar disorder patients has been well validated in Rutkofsky 
et al. research findings [63]. Furthermore, axon guidance 
was found to be enriched in MDD, with neural functions 
previously implicated in the pathobiology of depression 
[64]. The results of Williams et al. demonstrated a signifi-
cant decrease in the myelin Cross-sectional area (CSA) of 
splenium of the corpus callosum (spCC) axons in MDD 
[65] (Fig. 3b–d). These functional pathways can provide 
some hints for the pathogenic mechanism underlying 
these neuropsychiatric disorders.

Additionally, the ten types of MMRP found in this 
article are noteworthy. By integrating the results from 
multiple molecular features, we obtained a total of ten 
MMRP for the five disorders based on the novel and 
reliable gene lists. Most of MMRP consisted of only 
two molecular features (Fig. 4b.i) but there were several 
genes mapped by more than two molecular phenotypes, 
including RBM26, PACSIN2, SUGP1 in BP, PBXIP1 in 
SCZ, ICA1L in ADHD. We observed that BP exhibited 
the highest number of different types of MMRP among 
these disorders, consistent with its characterization as 
a dimensional phenotype [66]. We took RBM26 in BP 
for discussion. RBM26 is an RNA binding motif protein 
that participates in the polyadenylated RNA turnover in 
mammalian nuclei. The Poly(A) Tail eXosome Targeting 
(PAXT) connection promotes the recruiting process of 
the human ribonucleolytic RNA exosome to nuclear pol-
yadenylated RNA. RBM26, as a new factor, is required for 
the PAXT function [67]. Though there is no direct evi-
dence of RBM26 and BP, two previous integrated analy-
sis studies reported that RBM26 acts as immune-related 
function not only in ASD [68], but also in non-psychiat-
ric disorder including pancreatic cancer [69]. And there 
has been early researches showed that BP is accompanied 
by the dysregulation of immune-inflammatory pathways 
[70]. The gene is either found in the GWAS nor previ-
ous TWAS analysis, but show relations in our eQTL, 
 m6AQTL and sQTL analysis which imply the effective-
ness of application of multiple molecular phenotypes. 
Notably, PACSIN2, modulated by four distinct types of 
molecular phenotypes, is a member of the protein kinase 
C and casein kinase substrate in neurons family and its 
encoded protein plays a role in linking actin cytoskeleton 
with vesicle formation by regulating tubulin polymeriza-
tion [71]. Although explicit reports regarding its func-
tional involvement in BP remain elusive, it represents a 
promising candidate target gene deserving further inves-
tigation. Besides, from the remaining MMRP, we can get 
a hint that distinct molecular features may detect differ-
ent risk genes. It is suggested multiple molecular features 
should be combined to help find more risk genes in the 
future.
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It is important to acknowledge the limitations of this 
study. Firstly, it solely focused on five kinds of molec-
ular phenotypes, while there exist numerous other 
molecular features that warrant our attention, which 
may modulate the variants through distinct mecha-
nisms. Moreover, the regulation of many genes is 
related to spatial context, so QTL effects of a particu-
lar cell type in a given developmental stage might be 
shadowed in this analyses based on bulk tissue [19, 72]. 
Additionally, QTL data tend to be obtained from spe-
cific cohorts of individuals, it may influence the genes 
and gene functional enrichment results observed. For 
instance, the ROSMAP and Banner cohorts primarily 
consist of elderly individuals; therefore, when utilized 
as protein abundance panels for prediction in a cohort 
of young adults, we may observe an increased enrich-
ment of genes associated with pathways characterized 
by Alzheimer’s disease or Parkinson’s disease.

Conclusions
The analyses prioritized novel and reliable gene sets 
related with five molecular features based on published 
and supplementary results for five common neuropsy-
chiatric disorders, which were missed in the original 
GWAS analysis. Besides, the involved MMRP behind 
these genes could be given priority for further investi-
gation to elucidate the pathogenic molecular mecha-
nisms underlying neuropsychiatric disorders in future 
studies.
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