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Lactate infusion elevates cardiac output 
through increased heart rate and decreased 
vascular resistance: a randomised, blinded, 
crossover trial in a healthy porcine model
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Abstract 

Background Lactate is traditionally recognized as a by‑product of anaerobic metabolism. However, lactate is a pre‑
ferred oxidative substrate for stressed myocardium. Exogenous lactate infusion increases cardiac output (CO). 
The exact mechanism underlying this mechanism has yet to be elucidated. The aim of this study was to investi‑
gate the cardiovascular mechanisms underlying the acute haemodynamic effects of exogenous lactate infusion 
in an experimental model of human‑sized pigs.

Methods In this randomised, blinded crossover study in eight 60‑kg‑pigs, the pigs received infusions with one 
molar sodium lactate and a control infusion of tonicity matched hypertonic saline in random order. We measured 
CO and pulmonary pressures using a pulmonary artery catheter. A pressure–volume admittance catheter in the left 
ventricle was used to measure contractility, afterload, preload and work‑related parameters.

Results Lactate infusion increased circulating lactate levels by 9.9 mmol/L (95% confidence interval (CI) 9.1 to 11.0) 
and CO by 2.0 L/min (95% CI 1.2 to 2.7). Afterload decreased as arterial elastance fell by  ‑1.0 mmHg/ml (95% CI  ‑2.0 
to  ‑0.1) and systemic vascular resistance decreased by  ‑548 dynes/s/cm5 (95% CI  ‑261 to  ‑835). Mixed venous 
saturation increased by 11 percentage points (95% CI 6 to 16), whereas ejection fraction increased by 16.0 percent‑
age points (95% CI 1.1 to 32.0) and heart rate by 21 bpm (95% CI 8 to 33). No significant changes in contractility 
nor preload were observed.

Conclusion Lactate infusion increased cardiac output by increasing heart rate and lowering afterload. No differences 
were observed in left ventricular contractility or preload. Lactate holds potential as a treatment in situations with low‑
ered CO and should be investigated in future clinical studies.
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Introduction
The healthy heart is a substrate omnivore that oxidizes 
fatty acids, carbohydrates, ketone bodies, lactate and 
amino acids with the preferred substrate being fatty acids 
[1]. In heart failure (HF), there is a hampered metabolic 
flexibility characterised by a shift towards metabolic 
reliance on glycolytic substrates, i.e. ketones and lactate 
[2–4] along with an upregulation of myocardial transport 
molecules specific to these substrates [5]. Novel studies 
have found that substrates such as ketone bodies and lac-
tate may potentially serve as important fuels enhancing 
cardiac function in HF patients [6, 7].

Increased circulating lactate levels are generally con-
sidered a marker of illness severity and have tradition-
ally been acknowledged as a potentially toxic waste 
product of anaerobic metabolism during hypoxia [8]. 
Today, however, it is established that lactate production 
is not confined to anaerobic conditions but occurs in 
the resting state during aerobic conditions. In fact, lac-
tate is metabolised continuously and immediately by the 

healthy heart, brain, liver, skeletal muscle, and kidney [9]. 
Blood lactate levels increase during intense exercise and 
lactate is commonly used to assess disease severity [10]. 
However, contrary to conventional beliefs, recent studies 
have argued that lactate is not the cause of muscle fatigue 
[11, 12]. Furthermore, lactate is a major contributor to 
whole-body metabolism and is a readily accessible fuel, 
even preferred over glucose in some tissues [9, 13, 14]. 
Additionally, lactate seems to play an important role as a 
signalling molecule in both intra- and intercellular path-
ways, bridging glycolysis and oxidative phosphorylation 
[15].

Lactate infusion increases cardiac output (CO) in 
patients with acute HF [16], cardiogenic- and septic 
shock [17], and patients having undergone cardiac sur-
gery [18, 19]. Beneficial hemodynamic and cardiovascu-
lar effects of lactate have been found in animal models of 
endotoxic shock [20–23], haemorrhagic shock [24], acute 
myocardial infarction [25] and cardiac arrest [26–28]. In 
healthy volunteers, CO, preload, and mitral annular peak 
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systolic velocity were increased [29]. Until now, the spe-
cific mechanisms of action behind these haemodynamic 
effects of lactate have not been fully elucidated. The aim 
of this study was to explore the cardiovascular mecha-
nisms underlying the acute haemodynamic effects of lac-
tate infusion in an experimental model of human-sized 
pigs.

Materials and methods
Study design
The study was a randomised, assessor-blinded, crossover 
study (Fig.  1). Eight 60-kg female Danish Landrace pigs 
were randomised into two groups (n = 4 per group) using 
computer-generated randomisation. Randomisation was 
performed after instrumentation. Each pig received 5 ml/
kg/h molar sodium lactate for two hours and 5 ml/kg/h 
hypertonic saline for two hours in random order. The two 
infusion periods were separated by a one-hour washout 
period with 5  ml/kg/h isotonic sodium chloride (Natri-
umklorid “B. Braun”, B. Braun Medical, Denmark). Dur-
ing the first hour of anaesthesia, the pigs received 1 L of 
isotonic glucose (a total of 55  g glucose-monohydrate) 
to prevent hypoglycaemia. Before baseline measure-
ments, the pigs were allowed a one-hour no-touch period 
to stabilise while receiving isotonic saline infusion. The 
study period for each pig was five hours. Investigators 
were blinded to the intervention sequences. The pigs 
were continuously monitored and measurements were 
performed every hour, starting at baseline (Fig.  1). The 
primary endpoint was change in CO during 120 min of 
lactate infusion compared with 120 min of control infu-
sion. All secondary endpoints were compared similarly.

Infusion preparation
The one molar sodium-lactate infusion was made by mix-
ing a two molar sodium lactate solution (SODIO LAT-
TATO 2  mEq/ML, Monico, Venice, Italy) with isotonic 
saline (Natriumklorid “B. Braun”, B. Braun Medical, Den-
mark) at a 1:1 ratio producing a solution with 1  mol/L 
sodium lactate (24.7  g/L of sodium). The control solu-
tion was a hypertonic sodium chloride solution with the 
same amounts of sodium as the intervention solution 
(24.7 g/L). We chose a hypertonic saline infusion which 
was matched by osmolality and volume with the lactate 
infusion to prevent any difference in plasma osmolarity 
during the infusions, as this is known to cause hemody-
namic effects [30–32]. During the one-hour no-touch 
period and during the one-hour washout period separat-
ing the two infusion periods pigs received isotonic saline 
(9 g/L).

Anaesthetic management and ventilation protocol
This study enrolled eight 60-kg female Danish Landrace 
pigs. Prior to transportation to the laboratory facility the 
pigs were sedated on the farm by intramuscular injec-
tion of a commonly used veterinarian anaesthetic mix 
(Zoletil 50 Vet, Virbac, Denmark) to minimise animal 
stress and increase refinement. The pigs were intubated 
immediately upon arrival in the laboratory facility and 
were admitted to positive-pressure ventilation. Anaes-
thesia was maintained with continuous intravenous infu-
sion of propofol (3.5 mg/kg/h) and fentanyl (15 µg/kg/h). 
Anaesthetic adequacy was monitored by testing nocic-
eptive withdrawal and corneal reflexes. The animals were 
ventilated with a tidal volume of approximately 8 ml/kg 

Fig.1 Study design. During instrumentation, the pigs received 1 L of isotonic glucose before a 1‑h no‑touch period. The study period started at T0, 
and the pigs were randomised to a treatment sequence group (lactate before crossover to control or control before crossover to lactate, n = 4 
in each). The pigs underwent two intervention periods of 2 h separated by a 1‑h washout period. During the study periods, hourly measurements 
were performed as described. PA pulmonary artery, LV PV left ventricle pressure–volume catheter
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and a respiratory rate adjusted to end tidal  CO2 between 
4.5  kPa and 5.5  kPa. Positive end-expiratory pressure 
(PEEP) was 5.0  cmH2O. Body core temperature was 
measured using a pulmonary artery (PA) temperature 
probe and we aimed to keep it within the reference range 
of domestic pigs (38.5 °C to 39.5 °C). A detailed descrip-
tion of animal ethics can be found in Additional file 1.

Catheterisation
Invasive catheterisations were performed as shown in 
Fig.  2. If the pigs developed arrythmias during instru-
mentation, direct current (DC) conversion was applied.

Pulmonary artery catheterisation
A PA catheter was placed through the internal jugular 
vein under pressure guidance. Correct placement was 
confirmed by fluoroscopy. CO was measured with the 
transpulmonary thermodilution method, using a Vigi-
lance box and averaged over three consecutive measure-
ments. A variety of secondary endpoints were assessed 
with the PA catheter. These endpoints included right 
atrial pressure (RAP), mean PA pressure (mPAP), PA 
wedge pressure (PAWP) and mixed venous saturation 
 (SvO2), which were all measured hourly. Heart rate (HR) 

was monitored, and stroke volume (SV) was calculated 
using data from the PA catheter (SV = CO/HR).

Pressure–volume measurements
A pressure–volume admittance catheter was inserted 
into the left ventricle (LV) through the carotid artery 
using fluoroscopy. The catheter was fixed and left 
untouched for the whole study period. A transfemoral 
occluding balloon was placed in the inferior vena cava at 
the diaphragm level. The balloon was inflated briefly to 
perform load-independent contractility measurements of 
the LV. All measurements were performed hourly during 
end-expiratory apnoea and recorded using LabChart  8 
Pro. Admittance catheters were calibrated according to 
the manufacturer’s specifications. Before data collection, 
the system was volume calibrated using a blood resistiv-
ity probe and SV calculated from the PA catheter [33]. 
LV contractility was assessed using end-systolic elastance 
(Ees) (the slope of the LV end-systolic pressure–vol-
ume relationship, LVESPVR) and the maximum rate of 
pressure generation in the LV (dP/dtmax). Preload was 
assessed using end-diastolic volume (LVEDV) and end-
diastolic pressure (LVEDP). LV afterload was assessed 
using arterial elastance (Ea). Additional haemodynamic 
parameters were assessed, including: stroke work (SW); 

Fig.2 Pig instrumentation. The pigs were intubated and admitted to a ventilator. A Foley catheter was inserted into the bladder before invasive 
instrumentation. A pulmonary artery catheter and a CS catheter weree placed through the right jugular vein. A PV admittance catheter was inserted 
in the LV through the left common carotid artery. An occluding balloon was placed in the inferior vena cava at the diaphragm level. Invasive arterial 
blood pressure and arterial blood samples were sampled from the left femoral artery. CS coronary sinus, LV left ventricle, PV pressure–volume
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which is the area inside the pressure–volume loop; 
potential energy (PE), which is the area on the pressure–
volume diagram bounded by LVESPVR, LVEDPVR, and 
end-systolic portion of the pressure–volume loops; pres-
sure–volume area (PVA), which is the sum of SW and PE 
representing the total mechanical work of the heart per 
beat; LV end-systolic volume (LVESV); LV end-systolic 
pressure (LVESP); LV ejection fraction (LVEF); LV end-
diastolic pressure–volume relationship (LVEDPVR) and 
cardiac efficiency calculated as SW

PVA
 . Data were subse-

quently analysed assessor blinded in LabChart 8 Pro.

Coronary sinus catheterisation
The coronary sinus (CS) was catheterised to calculate the 
arteriovenous (A-CS) gradient of substrates across the 
heart. A coronary guiding catheter was placed in the CS 
through the external jugular vein. The catheter placement 
was fluoroscopy guided and the catheter was advanced 
distally to the hemiazygous vein, which, in pigs, connects 
with the coronary sinus [34]. Correct placement was 
ensured with a flush of contrast and visualisation of the 
coronary sinus.

Other haemodynamic parameters
Mean arterial blood pressure (MAP) was assessed 
using an intravascular fluid-filled pressure catheter 
in the femoral artery. The HR was monitored using a 
three-lead electrocardiogram (ECG). Systemic (SVR) 
and pulmonary vascular resistance (PVR) were calcu-
lated using standard formulae (SVR = 80× MAP−RAP

CO
 

and PVR = 80× PAP−PAWP

CO
) . The veno-arterial 

 CO2 tension difference (P(v-a)CO2) was calculated 
(

P(v− a)CO2 = CentralvenousPCO2 − ArterialPCO2

)

, 
which is a measure for peripheral tissue perfusion [35].

Biochemistry and fluid balance
Systemic arterial and venous blood samples from the 
femoral artery and vein as well as CS blood samples were 
obtained simultaneously at baseline and every hour dur-
ing the entire study period (Fig. 1). Lactate, glucose, elec-
trolytes and acid–base parameters (pH,  PaCO2,  HCO3

−) 
were analysed immediately after sampling. All other sam-
ples were stored at − 80 °C and analysed in batches. Insu-
lin levels were analysed with a standard porcine insulin 
kit (Mercodia Porcine Insuline ELISA, Mercodia, Upp-
sala, Sweden). Free fatty acid (FFA) levels were measured 
with an enzymatic colorimetric method assay kit (Wako 
NEFA-HR(2), Wako Chemicals GmbH, Neuss, Germany). 
The ketone body 3-hydroxybutyrate (3-OHB) was meas-
ured with hydrophilic interaction liquid chromatogra-
phy-tandem mass spectrometry (HILIC-MS/MS) with 
a lower sensitive limit of 5 µmol/L. Apparent strong ion 
difference (SID) was calculated with a standard formula 

((Na+  +  K+  +  Ca2+  +  Mg2+)) –  (Cl− +  Lactate−)) [36]. 
Osmolarity was calculated with a standard formula 
(2.006 ×  Na+  + 1.228 × Urea + 1.387 × Glucose) [37]. Diu-
resis was measured hourly using a transurethral cath-
eter. Blood oxygen concentrations were calculated using 
a standard formula ((Hgb×1.61×1.36×SO2

100 +
pO2

0.133322×0.0031 ) 
where Hgb = haemoglobin concentration in mmol/L, 
 SO2 = blood oxygen saturation in percentage and 
 pO2 = partial pressure of oxygen in kPa).

Sample size calculation
The standard deviation of CO (primary endpoint), meas-
ured using thermodilution in healthy pigs, is 0.5 L/min 
(unpublished data from our research facility). By enroll-
ing eight pigs, an effect size of 0.7 L/min would be 
detected with a power of 90% and a two-sided signifi-
cance level of 5%.

Statistical methods
Data were analysed for normal distribution with qq 
plots and histograms. Normally and non-normally dis-
tributed variables are presented as mean ± standard 
deviation (SD) and median (interquartile range (IQR)), 
respectively. Continuous data were analysed using a lin-
ear mixed effects model with repeated measures to com-
pare the effect of the intervention with the control during 
the 120  min infusion periods. Residuals were tested for 
normality. Treatment, time, treatment-by-time interac-
tion, period and treatment sequence were defined as 
fixed effects, whereas animals were selected as random 
effects. Our primary analysis compared the change in 
CO throughout the 120  min of lactate infusion with a 
120-min control infusion. The effect of the intervention 
is presented as the mean with 95% CI. Statistical signifi-
cance was set at a two-tailed p-value < 0.05. Statistical 
analyses were made in R (Version 4.2.1, Rstudio, PBC) and 
graphics in Prism (Version 8.4.2, GraphPad, San Diego, 
CA, USA). The data supporting the findings of this study 
are available from the corresponding author upon rea-
sonable request.

Results
The eight animals were randomised into two groups; one 
group received lactate before crossover to control; the 
other group received the infusions in the opposite order 
(Fig.  1). All the pigs survived until the end of the study 
period. Four pigs (two in each group) developed atrial 
fibrillation during the catheterisation period and were 
all successfully converted with DC conversion before the 
1-h no-touch period. None of the pigs developed arryth-
mias during the study period. Baseline characteristics are 
shown in Table 1.
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Cardiac output and lactate evolution
CO increased by 2.0 L/min (95% CI 1.2 to 2.7, P < 0.001) 
during lactate infusion compared with the control infu-
sion and receded to baseline values during the washout 
period (Table 2, Figs. 3 and 5, Additional file 1: Fig. S1). 
Lactate levels increased by 9.9  mmol/L (95% CI 9.1 to 
11.0, P < 0.001) during lactate infusion compared with 
control infusion (Table 3, Fig. 3, Additional file 1: Fig. S1). 
No carryover effect of lactate levels was observed 
(P = 0.20) as the levels returned to baseline values during 
the washout period.

Haemodynamic and oxygenation parameters
SvO2 increased by 11 percentage points (95% CI 6 to 16, 
P < 0.001) and P(v-a)CO2 decreased by   -0.73  kPa (95% 
CI -1.10 to  -0.35, P < 0.001) during lactate infusion com-
pared with control infusion. HR increased by 21  bpm 
(95% CI 8 to 33, P = 0.003) when comparing the lactate 
infusion period with the control infusion period, whereas 
SVR decreased by  -548 dyn-s/cm5 (95% CI  -835 to  -261, 
P < 0.001). No significant change in MAP, RAP, mPAP, 
PAWP, SV or PVR was observed (Table  2 and Fig.  5, 
Additional file 1: Fig. S2).

Pressure–volume measurements
The afterload measurement, Ea, decreased 
by  -1.0 mmHg/ml (95% CI  -2.0 to  -0.1, P = 0.046) dur-
ing lactate infusion compared with control infusion 
(Figs.  4A and 5). Another afterload surrogate measure-
ment, LVESP, decreased by -13.0  mmHg (95% CI -23.0 
to -4.2, P = 0.009). During lactate infusion, peak LV 
pressure,  Pmax, decreased by  -9.7 mmHg (95% CI  -19.0 
to   -0.4, P = 0.050). LVESV decreased by -51.0  ml (95% 
CI -6.9 to -94.0, P = 0.032). The load-independent con-
tractility measurement, Ees, did not change significantly 
during lactate infusion (  -0.01 mmHg/ml, 95% CI   -0.31 
to 0.29, P > 0.90) (Figs.  4B and   5). In contrast another 

contractility measurement, dependent on contractility 
velocity, dP/dtmax, increased by 502 mmHg/s (95% CI 268 
to 737, P < 0.001) during lactate administration (Table 2). 
The preload measurements LVEDV and LVEDP did not 
change significantly during lactate infusion compared 
with control infusion (Fig.  4C). An increase in LVEF of 
16.0 percentage points (95% CI 1.1 to 32.0, P  = 0.056) 
was observed during lactate infusion compared with con-
trol infusion. Cardiac efficiency increased by 19 percent-
age points (95% CI 6 to 31, P = 0.008). PVA, PE, or SW 
of the LV were not significantly different between lactate 
infusion and control infusion. In the analysis, we found 
no interaction of the treatment sequence for any of the 
parameters (Table  2). Additional file  1: Fig.  S3 shows a 
schematic drawing of a mean loop for lactate infusion 
and control infusion.

Cardiac extraction of substrates
The A-CS gradient of lactate across the heart increased 
by 1.20  mmol/L (95% CI 0.56 to 1.90, P = 0.002) dur-
ing lactate infusion compared with control infusion 
(Table  4, Fig.  6). The A-CS oxygen gradients across the 
heart decreased by  -1.80 mg/dL (95% CI  -3.30 to  -0.18, 
P = 0.041) during lactate infusion compared with con-
trol infusion. No difference was found regarding FFA or 
glucose levels across the heart. We found no interacting 
effects of treatment sequence.

Biochemical parameters and fluid balance
pH increased by 0.22 (95% CI 0.21 to 0.24, P < 0.001) 
and arterial bicarbonate  (HCO3

−) levels increased by 
21  mmol/L (95% CI 19 to 22, P < 0.001) during lac-
tate infusion compared with control infusion (Table  3 
and Additional file  1: Fig.  S4). We found a carryover 
effect (P = 0.007 and P < 0.001 for pH and  HCO3

− level, 
respectively). During lactate infusion, potassium levels 
decreased significantly by -0.97  mmol/L (95% CI -0.65 

Table 1 Baseline characteristics

Results are reported as median (IQR) or mean ± SD

MAP mean arterial pressure, HR heart rate, CO cardiac output, RAP right atrium pressure, mPAP mean pulmonary arterial pressure, PAWP pulmonary artery wedge 
pressure

Lactate to Control (n = 4) Control to Lactate (n = 4)

Weight (kg) 62 (61–62) 61 (60–62)

MAP (mmHg) 86 (77–93) 84 (69–93)

HR (bpm) 57 ± 12 71 ± 18

CO (L/min) 3.8 ± 0.7 3.7 ± 0.6

RAP (mmHg) 7 ± 3 4 ± 3

mPAP (mmHg) 20 ± 6 23 ± 4

PAWP (mmHg) 11 ± 5 7 ± 2

Blood lactate (mmol/L) 0.80 (0.58–1.08) 0.90 (0.75–1.15)
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to -1.30, P < 0.001), glucose increased by 1.60  mmol/L 
(95% CI 0.52 to 2.70, P = 0.007) and insulin increased 
by 3.2  mU/L (95% CI 1.6 to 4.8, P < 0.001) as compared 
with control. Sodium increased during each infusion 
period (Additional file 1: Fig. S4). However, the increase 
was greater during control infusion, amounting to 
3.6  mmol/L (95% CI 2.4 to 4.8, P < 0.001). Osmolarity 
was also higher during control infusion than during lac-
tate infusion, amounting to 5.6  mmol/L (95% CI 3.0 to 
8.2, P < 0.001). We found no differences in 3-OHB blood 
levels during any of the infusion periods. We found no 

difference in diuresis during lactate infusion compared 
with control infusion (Table 3).

Discussion
In this experimental, randomised, blinded study on 
human-sized pigs, we compared exogenous infusion of 
one molar sodium lactate and a matched iso-osmolar 
and iso-volemic sodium chloride control infusion. Lac-
tate infusion increased CO by 2.0  L/min, LVEF by 16 
percentage points and HR by 21  bpm. The increase in 
CO was mediated through a decrease in Ea and SVR 

Table 2 Haemodynamic parameters

Mean values are expressed as mean ± SD. Mean values of haemodynamic parameters measured using the PA catheter and the LV PV admittance catheter after 120 min 
of each infusion. Change compared with control is the development in each outcome during lactate infusion compared with control infusion. Bold values indicate p 
< 0.05

CO cardiac output, HR heart rate, SV stroke volume, SvO2 mixed venous saturation, P(v-a)CO2 veno-arterial carbon dioxide difference, MAP mean arterial pressure, 
mPAP mean pulmonary artery pressure, RAP right atrium pressure, PAWP pulmonary artery wedge pressure, SVR systemic vascular resistance, PVR pulmonary vascular 
resistance, Ea arterial elastance, Ees end systolic elastance (the slope of the end systolic pressure–volume relationship [ESPVR]), ESV end systolic volume, EDV end 
diastolic volume, ESP end systolic pressure, EDP end diastolic pressure, Pmax maximum pressure, EF ejection fraction, dP/dtmax peak dP/dt, EDPVR end diastolic 
pressure–volume relationship, PVA pressure–volume area

Mean after 120 min Linear mixed model

Control Lactate Change compared 
with control

95% CI P-value P-value for 
interaction

Pulmonary artery measurements
CO (L/min) 4.3 ± 0.9 6.2 ± 0.9 2.0 1.2 to 2.7  < 0.001 0.6

HR (bpm) 76 ± 27 88 ± 12 21 8 to 33 0.003 0.7

SV (mL) 61 ± 18 72 ± 12 2.4  ‑13.0 to 18.0 0.8 0.5

SvO2 (%) 65 ± 8 73 ± 6 11 6 to 16  < 0.001 0.051

P(v‑a)CO2 (kPa) 1.60 ± 0.59 0.84 ± 0.53  ‑0.73  ‑1.10 to ‑0.35  < 0.001 0.4

MAP (mmHg) 87 ± 12 85 ± 15  ‑3  ‑8 to 2 0.2 0.7

mPAP (mmHg) 16 ± 3.6 18 ± 3.1 2  ‑2 to 7 0.4 0.6

RAP (mmHg) 5 ± 3 5 ± 2  ‑2  ‑4 to 1 0.2 0.2

PAWP (mmHg) 7 ± 3 8 ± 2  ‑1  ‑4 to 3 0.8 0.2

SVR (dynes/s/cm5) 1562 ± 335 1042 ± 208  ‑548  ‑835 to ‑261  < 0.001  > 0.9

PVR (dynes/s/cm5) 189 ± 114 150 ± 42 4  ‑111 to 126  > 0.9 0.2

Pressure–volume loop measurements
Ea (mmHg/mL) 3.0 ± 1.8 1.9 ± 0.85  ‑1.0  ‑2.0 to  ‑0.1 0.046 0.5

Ees (mmHg/mL) 0.82 ± 0.27 0.67 ± 0.18  ‑0.01  ‑0.31 to 0.29  > 0.9 0.2

LVESV (mL) 150 ± 38 115 ± 27  ‑51.0  ‑94.0 to ‑6.9 0.032 0.7

LVEDV (mL) 195 ± 35 173 ± 26  ‑31  ‑74 to 12 0.2 0.7

LVESP (mmHg) 108.0 ± 15.0 103.0 ± 21.0  ‑13.0  ‑23.0 to ‑4.2 0.009 0.6

LVEDP (mmHg) 16.0 ± 5.6 15.0 ± 3.1  ‑3.9  ‑8.7 to 0.8 0.11 0.8

Pmax (mmHg) 111.0 ± 15.0 109.0 ± 18.0  ‑9.7 ‑19.0 to  ‑0.4 0.050 0.7

LVEF (%) 25.0 ± 14.0 37.0 ± 13.0 16.0 1.1 to 32.0 0.056  > 0.9

dP/dtmax (mmHg ×  s−1) 1315 ± 375 1741 ± 448 502 268 to 737  < 0.001 0.2

Tau (ms) 36.0 ± 12.0 39.0 ± 11.0 5.0  ‑3.7 to 14.0 0.3 0.6

LVEDPVR (mmHg × mL) 0.41 ± 1.10 0.03 ± 0.05  ‑0.37  ‑1.10 to 0.34 0.3 0.5

PVA (mmHg × mL) 9312 ± 6843 8589 ± 3997  ‑2113 ‑7645 to 3418 0.5 0.3

Potential energy (mmHg × mL) 5464 ± 5087 4405 ± 2408  ‑3174  ‑7188 to 841 0.13 0.4

Cardiac efficiency (%) 46 ± 10 51 ± 16 19 6 to 31 0.008 0.7

Stroke work (mmHg × mL) 4634 ± 2827 6330 ± 3594 2730  ‑48 to 5535 0.078 0.6
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(afterload) without any change in MAP. The load-
independent left ventricular contractility measure-
ment (Ees) remained unchanged during lactate infusion 
compared with control infusion as did also LVEDV and 
LVEDP (preload). Infusion of lactate increased cardiac 
efficiency,  SvO2 and A-CS gradients of lactate across 
the heart and decreased myocardial A-CS oxygen 
gradients.

Hemodynamic findings
To our knowledge, the present study is the first to inves-
tigate the acute effects of lactate on cardiac haemo-
dynamics using an LV pressure–volume catheter in a 
large animal model. Thus, the present study provides 
comprehensive insight into the haemodynamic mecha-
nisms underlying cardiovascular changes during lactate 
infusion.

Fig.3 Cardiac output and arterial lactate concentration. Data are expressed as mean ± standard deviation (SD). Temporal differences in lactate levels 
(A) and cardiac output measurements (B) plotted from baseline until study end

Table 3 Biochemical parameters

Mean values are expressed as mean ± standard deviation (SD). Mean values of biochemical parameters measured in arterial blood after 120 min of each infusion. 
Change compared with control is the development in each outcome during lactate infusion compared with control infusion. Bold values indicate p < 0.05

HCO3−  bicarbonate, Hgb haemoglobin, FFA  free fatty acids

Mean after 120 min Linear mixed model

Control Lactate Change compared 
with control

95% CI P-value P-value for 
interaction

pH 7.50 ± 0.11 7.60 ± 0.06 0.22 0.20 to 0.24  < 0.001 0.007
HCO3

− (mmol/L) 36 ± 9 47 ± 5 21 19 to 22  < 0.001  < 0.001
Potassium (mmol/L) 3.7 ± 0.49 3.6 ± 0.69  ‑0.97  ‑1.30 to  ‑0.65  < 0.001 0.15

Natrium (mmol/L) 160 ± 6 158 ± 8  ‑3.6  ‑4.8 to ‑2.4  < 0.001 0.4

Strong ion difference (mmol/L) 49.0 ± 8.2 59.0 ± 2.6 19.0 17.0 to 21.0  < 0.001  < 0.001
Hgb (mmol/L) 5.90 ± 0.90 5.90 ± 0.42 0.10  ‑0.22 to 0.42 0.5 0.5

Glucose (mmol/L) 5.20 ± 1.30 6.20 ± 1.00 1.60 0.52 to 2.70 0.007 0.4

Lactate (mmol/L) 0.79 ± 0.24 9.60 ± 1.40 9.9 9.1 to 11.0  < 0.001 0.2

FFA (mmol/L) 0.40 ± 0.25 0.45 ± 0.36 0.12  ‑0.28 to 0.52 0.6 0.5

Osmolarity (mmol/L) 330 ± 13 326 ± 15  ‑5.6  ‑8.2 to  ‑3.0  < 0.001 0.6

Insulin (mU/L) 1.0 ± 0.4 3.5 ± 2.0 3.2 1.6 to 4.8  < 0.001  > 0.9

3‑hydroxybutyrate (µmol/L) 6.6 ± 4.5 5.8 ± 6.0  ‑1.5  ‑6.0 to 3.1 0.5 0.9

Diuresis (mL) 138 ± 189 107 ± 75 18  ‑176 to 212 0.9 0.082
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The main finding of this study was that CO increased 
by 2.0  L/min during the two-hour lactate infusion as 
compared with control infusion. Furthermore, we found 
that afterload, as measured by Ea and SVR, decreased 
during lactate infusion as compared with control infu-
sion. This effect, in combination with increased HR, 
enhanced the CO. In contrast, the systemic blood pres-
sure remained unchanged. Furthermore, we observed 
a decrease in P(v-a)CO2 during lactate infusion. P(v-a)

CO2 is inversely related to CO and is a surrogate indi-
cator for the adequacy of venous blood flow to wash 
out  CO2 produced by peripheral tissues [35]. Thus, the 
observed decrease in P(v-a)CO2 during lactate infusion 
indicates an improved peripheral perfusion as a result of 
the increased CO. We found no change in the load-inde-
pendent contractility measure Ees during lactate infu-
sion. We did find an increase in dP/dtmax during lactate 
infusion compared with control infusion. As we found 

Fig.4 Afterload, contractility and preload. Data are expressed as mean ± standard deviation (SD). Arterial elastance (Ea), end systolic elastance (Ees) 
and end diastolic volume (EDV) for both groups during the study period shown on graph A, B and C, respectively. The grey masked area marks 
the washout period

Fig.5 Changes in endpoint parameters during lactate infusion versus control compared with baseline. Mean relative change during lactate 
infusion compared with control infusion. Corresponding mean absolute changes ± standard error of mean (SEM) are listed above or below each 
bar. P‑values are stated on all results. CO cardiac output, SV stroke volume, HR heart rate, SvO2 mixed venous saturation, MAP mean arterial blood 
pressure, SVR systemic vascular resistance, PVR pulmonary vascular resistance, PAWP pulmonary artery wedge pressure, Ea arterial elastance, Ees end 
systolic elastance, bpm beats per minute



Page 10 of 14Hørsdal et al. Journal of Translational Medicine          (2024) 22:285 

no changes in preload (LVEDV), the greater dP/dtmax 
was likely due to increased HR despite lower ventricu-
lar pressure generation. A rise in HR is associated with 
a stronger contractile force of the myocardium, a phe-
nomenon known as force-frequency relationship [38]. 
dP/dtmax is defined as the time for LV pressure increase 
during the initial phase of contraction during ejection. 
Therefore, the elevated dP/dtmax during lactate infusion 

could likely be explained by the elevated HR’s effect on 
the force-frequency relationship.

Cardiac oxygen utilisation
In human patients with congestive HF, increased lac-
tate myocardial lactate consumption improves cardiac 
efficiency [39]. Other studies have shown that lactate 
improves cardiac efficiency after haemorrhagic shock 

Table 4 A‑CS difference of metabolites across the heart

Mean values are expressed as mean ± standard deviation (SD). Mean values of the A-CS difference of metabolites and oxygen across the heart after 120 min of each 
infusion calculated as A-CS difference. Change compared with control is the development in A-CS difference during lactate infusion compared with control infusion. 
Bold value indicate p < 0.05

FFA free fatty acids

Mean after 120 min Linear mixed model

Control Lactate Change compared 
with control

95% CI P-value P-value for 
interaction

Lactate (mmol/L) 0.17 ± 0.29 1.40 ± 0.82 1.20 0.56 to 1.90 0.002 0.4

Glucose (mmol/L)  ‑0.07 ± 0.44  ‑0.02 ± 0.48 0.08  ‑0.46 to 0.63 0.8 0.6

FFA (mmol/L) 0.04 ± 0.34 0.31 ± 0.33 0.42 0.03 to 0.80 0.054 0.7

Oxygen (ml/dL) 7.60 ± 2.20 6.50 ± 2.30  ‑1.80  ‑3.30 to  ‑0.18 0.041 0.5

Fig.6 Arteriovenous difference of metabolites across the heart. Data are presented as mean ± standard error of mean (SEM). Mean difference 
of lactate, oxygen, glucose and free fatty acids across the heart after two hours of control and two hours of lactate infusion, respectively. Red circles: 
arterial blood samples, blue circles: coronary sinus blood samples, black circles: arterial versus coronary sinus difference. FFA = free fatty acids. 
Horizontal black lines above data sets mark significant differences. ***indicates P < 0.001, **indicates P < 0.01, *indicates P < 0.05
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in rats [24]. Additionally, endotoxic and haemorrhagic 
shock rat models have shown that myocardial lactate 
deprivation impairs cardiac metabolism, leading to com-
promised myocardial function, poorer outcome and ear-
lier death [22, 40]. Hence, lactate has been suggested as a 
key metabolite that is readily oxidized in stressed cardio-
myocytes [2, 16, 17]. During lactate infusion, we found 
that the A-CS difference in oxygen levels decreased. 
Despite no significant difference in PVA, PE or SW, we 
observed a significant increase in cardiac efficiency from 
the LV pressure–volume data. The observed improve-
ment in cardiac efficiency may be attributable to a shift 
in myocardial substrate selection favouring increased 
reliance on lactate [14, 39]. In healthy state the heart 
prefers FFAs as oxidative substrate [1]. FFAs have a high 
ATP production per molecule but have a lower ATP per 
oxygen molecule yield than other substrates i.e. glucose, 
ketones, and lactate [41, 42]. The present study found an 
increased gradient of lactate concentration across the 
heart. This finding might indicate an increase in myocar-
dial consumption of lactate, even though coronary blood 
flow was not measured. Also,  increased lactate levels 
have been shown to correlate with increased myocar-
dial uptake of lactate [14]. Hence, an increased myocar-
dial consumption of lactate could explain the increased 
cardiac efficiency. Importantly, HR was increased during 
lactate infusion. HR is a determinant of  MvO2 [43]. Even 
though PVA, a parameter closely correlated to  MvO2 dur-
ing varieties in HR and loading conditions [44] remained 
unaltered, further studies are needed to further eluci-
date the mechano-energetic effects of LV during lactate 
infusion.

Circulating metabolites
Blood glucose and insulin levels increased during the 
lactate infusion period (Table 3). All eight pigs received 
1  L of isotonic glucose immediately after arrival to our 
laboratory facility because of their overnight fast (Fig. 1). 
No significant differences were observed in baseline glu-
cose and insulin levels between the two groups. Hence, 
the temporal variations cannot be explained by the iso-
tonic glucose infusion. Instead, it is likely that several 
other mechanisms accounted for these variations. First, 
some studies suggest that lactate may exceed glucose as 
an oxidative substrate in the presence of elevated circu-
lating lactate levels [9, 14]. The following reduction in 
glucose oxidation could lead to a higher blood glucose 
concentration. Second, an increase in blood glucose may 
be caused by an increased rate of gluconeogenesis follow-
ing elevated plasma lactate [17, 45]. The insulin rise may 
be a result of the increased glucose levels, stimulating 
pancreatic insulin secretion. Also, lactate can increase 
glucagon-like peptide-1 levels [46], which can lead to a 

rise in insulin levels, proving another possible contribut-
ing factor.

Clinical application
In the present study, we observed that infusion of lactate 
increased CO and HR while afterload was decreased. 
The present study was conducted in healthy pigs, with 
no chronic or acute illness. Hence, clinical application 
perspectives should be done with care. Nevertheless, 
some of the observations in the present study could be 
beneficial in  situations with lowered CO and hampered 
metabolic flexibility i.e. heart failure. Acute and chronic 
HF patients may present with a low CO and an increased 
afterload accompanied by peripheral hypoperfusion. In 
acute and chronic HF, LV unloading is beneficial [47]. The 
present study demonstrated that lactate infusion accom-
modated this by reducing afterload, LVESP and  Pmax 
and thereby increased CO and organ perfusion without 
compromising MAP or increasing cardiac oxygen con-
sumption as expressed by PVA. In contrast, we found an 
increase in cardiac efficiency and a decrease in the A-CS 
oxygen gradient across the heart. However, lactate infu-
sion also increased HR which could be undesirable and 
increase all-cause mortality in HF patients with reduced 
ejection fraction [48]. In conjunction, this suggests that 
exogenous lactate may be a new potential treatment drug 
to unload and potentially fuel the failing heart in some 
situations. Larger randomised trials are warranted to 
investigate the effects of lactate infusions during of acute 
and chronic HF.

Limitations
First, translating findings from animal research into 
clinical practice requires caution. To enhance clinical rel-
evance, we chose human-sized pigs as experimental ani-
mals. Though this study only used female pigs due to the 
relative ease of placing a urinary catheter, pigs have close 
anatomical similarities with the human thoracic anatomy. 
Also, their cardiovascular and respiratory physiology 
and biochemical parameters closely resemble those of 
humans [49]. We chose a non-surgical, minimally inva-
sive closed chest pressure–volume loop model rather 
than a traditional open chest model. Open chest car-
diac catheterisation may lead to changes in key haemo-
dynamic variables such as MAP, mPAP, CO, LVEF and 
afterload [33, 50]. In consideration of ethical concerns 
and adherence to the principles of the 3R framework, 
we deliberately opted for a smaller sample size to mini-
mize the use of animals in our study. To enhance the effi-
ciency of treatment comparisons, a crossover design was 
selected over a parallel design. Nevertheless, it is impor-
tant to acknowledge that the limited sample size intro-
duces the possibility of encountering type II errors, and 
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this limitation should be considered when interpreting 
the study results.

We observed carryover effects of the alkalising lactate 
effect in the group receiving lactate as the first infusion, 
despite the washout period. Although alkalosis per se 
may improve myocardial function [51], we saw a rapid 
decrease in CO after termination of lactate infusion in 
the group receiving lactate as the first infusion (Fig.  3), 
even though the pigs were still highly alkalotic at this 
point (Additional file 1: Fig. S4). Also, P(v-a)CO2 could be 
sensitive to pH alterations. However, P(v-a)CO2 quickly 
returned to baseline levels after termination of lactate 
infusion in the group receiving lactate as the first infusion 
while pH levels were still increased (Additional file  1: 
Figs. S2 and S4). Therefore, it is unlikely that the greater 
cardiovascular effect during lactate infusion was medi-
ated by alkalosis. Even in studies comparing hypertonic 
sodium lactate with hypertonic sodium  HCO3

− dur-
ing septicaemia, sodium lactate has superior beneficial 
haemodynamic effects, including stabilising effects on 
CO,  SvO2 and MAP [20, 21]. Thus, it appeared unlikely 
that a vasodilatory effect of increased  HCO3

− levels 
should be responsible for the greater CO during lactate 
infusion in the present study.

Hypertonicity and osmolality alterations may lead to 
plasma expansion and increased preload, increased car-
diac contractility and SVR reduction, ultimately increas-
ing CO [30–32]. Furthermore, hypernatremia per se may 
have a positive inotropic effect [52]. Even though other 
studies found lactate infusions to have more favour-
able haemodynamic effects than hypertonic control 
infusions [20, 29, 32] we aimed to keep results inde-
pendent of sodium load and any associated extracellular 
volume expansion. Therefore, we used an iso-osmolar 
and -volemic hypertonic control infusion with the same 
sodium load as the lactate infusion. Because of the iden-
tical sodium loads, it is unlikely that hypernatremia can 
explain the haemodynamic differences during lactate and 
control infusions. Despite the presence of hypertonicity 
and hypernatremia, we found significant haemodynamic 
effects during lactate infusion including increased CO.

Cardiac efficiency is calculated using SW and PVA. 
Whereas SW and PVA were not significantly altered, 
cardiac efficiency was significantly increased during 
lactate infusion. Caution should always be taken when 
interpreting a single statistically significant parame-
ter. However, cardiac efficiency has been shown to be 
increased with higher lactate levels in human patients 
with HF [39] and in rat hearts after haemorrhagic shock 
[24, 40]. Also, lactate has a higher ATP yield per oxygen 
molecule than FFAs [41, 42]. Furthermore, myocar-
dial lactate consumption increases with elevated levels 
of circulating lactate [14]. Hence, we believe that the 

results in the current study remain reliable. Still, the 
results should be seen as hypothesis generating and 
further studies confirming clinical application of lactate 
infusions are warranted.

We catheterised CS to evaluate changes in A-CS dif-
ference of metabolites across the heart. Though a pig 
model is suitable for cardiovascular physiology studies 
and displays close similarities to the human thoracic 
anatomy, the cardiac vein and CS functional anatomy 
vary from those of their human counterparts [34]. We 
controlled for correct positioning using fluoroscopy 
and contrast injection and through serial measure-
ments of saturation in blood samples. The calculated 
A-CS differences have limitations as coronary blood 
flow was not measured. Hence, the observed decrease 
in oxygen-difference across the heart during lactate 
infusion could be the result of increased CO and asso-
ciated relatively less oxygen uptake.

In a previous study, higher levels of the ketone body 
3-OHB were reported during lactate infusion [23] and 
3-OHB has been demonstrated to enhance ventricular 
systolic function and increase CO [6, 53–55]. As we 
found no difference in 3-OHB concentrations, this can-
not explain the haemodynamic findings.

Conclusions
Lactate infusion increased CO by 2.0  L/min compared 
with control infusion. The increase in CO was caused by 
increase in heart rate and reduction of systemic vascular 
resistance and arterial elastance. No change was observed 
in preload measures. Furthermore, lactate infusion 
improved peripheral perfusion and cardiac efficiency.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967‑ 024‑ 05064‑3.

Additional file 1: Figure S1. Cardiac output for each animal. Cardiac out‑
put for each animal, n = 8. The four animals in the lactate to control group 
(A) and the four animals in the control to lactate group (B) plotted from 
baseline, T0, to study end at T300. Each animal is shown with connected 
black lines. The pink line marks the mean of the group. The grey masked 
area from T120 to T180 marks the washout period. Figure S2. Haemody‑
namic values. Haemodynamic values plotted from baseline, T0, to study 
end at T300. The grey masked area from T120 to T180 marks the washout 
period. Data are expressed as mean ± standard deviation (SD). Each 
group comprised four animals. HR heart rate, MAP mean arterial pressure, 
mPAP mean pulmonary artery pressure, RAP right atrial pressure, PAWP 
pulmonary artery wedge pressure, SvO2=mixed venous saturation, P(v-a)
CO2 venoarterial CO2 difference, SVR systemic vascular resistance. Figure 
S3. Schematic pressure‑volume loops during lactate infusion compared 
with control infusion. Schematics of representative pressure‑volume loop 
during lactate (black) compared with placebo (pink). The drawings were 
made using mean values at the end of each infusion period. Figure S4. 
Biochemical parameters. Temporal evolution of arterial pH, bicarbonate 
concentration, sodium concentration and apparent strong ion difference 
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from baseline to study end. The grey area from T120 to T180 marks the 
washout period. Data are expressed as mean ± standard deviation (SD).
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