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Abstract 

Background Bioactive lipids involved in the progression of various diseases. Nevertheless, there is still a lack of bio-
markers and relative regulatory targets. The lipidomic analysis of the samples from platinum-resistant in gastric cancer 
patients is expected to help us further improve our understanding of it.

Methods We employed LC–MS based untargeted lipidomic analysis to search for potential candidate biomarkers 
for platinum resistance in GC patients. Partial least squares discriminant analysis (PLS-DA) and variable importance 
in projection (VIP) analysis were used to identify differential lipids. The possible molecular mechanisms and targets 
were obtained by metabolite set enrichment analysis and potential gene network screened. Finally, verified them 
by immunohistochemical of a tissue microarray.

Results There were 71 differential lipid metabolites identified in GC samples between the chemotherapy-
sensitivity group and the chemotherapy resistance group. According to Foldchange (FC) value, VIP value, P 
values (FC > 2, VIP > 1.5, p < 0.05), a total of 15 potential biomarkers were obtained, including MGDG(43:11)-H, 
Cer(d18:1/24:0) + HCOO, PI(18:0/18:1)-H, PE(16:1/18:1)-H, PE(36:2) + H, PE(34:2p)-H, Cer(d18:1 + hO/24:0) + HCOO, 
Cer(d18:1/23:0) + HCOO, PC(34:2e) + H, SM(d34:0) + H, LPC(18:2) + HCOO, PI(18:1/22:5)-H, PG(18:1/18:1)-H, 
Cer(d18:1/24:0) + H and PC(35:2) + H. Furthermore, we obtained five potential key targets (PLA2G4A, PLA2G3, DGKA, 
ACHE, and CHKA), and a metabolite-reaction-enzyme-gene interaction network was built to reveal the biological pro-
cess of how they could disorder the endogenous lipid profile of platinum resistance in GC patients through the glyc-
erophospholipid metabolism pathway. Finally, we further identified PLA2G4A and ACHE as core targets of the process 
by correlation analysis and tissue microarray immunohistochemical verification.

Conclusion PLA2G4A and ACHE regulated endogenous lipid profile in the platinum resistance in GC patients 
through the glycerophospholipid metabolism pathway. The screening of lipid biomarkers will facilitate earlier preci-
sion medicine interventions for chemotherapy-resistant gastric cancer. The development of therapies targeting 
PLA2G4A and ACHE could enhance platinum chemotherapy effectiveness.
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Introduction
Gastric cancer (GC) represents one of the most lethal 
malignancies globally, due to a lack of early symptoms, 
many patients are diagnosed with locally advanced dis-
ease, which seriously impairs patient survival [1]. The 
median survival duration is between 12 and 15  months 
[2, 3]. Despite progress in initial detection and clinical 
intervention, the prognosis for advanced GC patients 
remains unsatisfactory [4]. The treatment for advanced 
GC  typically involves sequential chemotherapy regi-
mens, with platinum chemotherapy agents often being 
widely used as first-line treatment options [1]. Neverthe-
less, chemoresistance presents a significant hurdle for the 
optimal prognosis of GC patients due to the deficiency 
of effective biomarkers [5]. Therefore, the discovery of 
biomarkers that could be used to detect chemotherapy 
resistance in GC would greatly assist in clinical diagnosis 
and patient treatment.

Supported by the close connection between altered 
lipid metabolism and the pathogenic process, specific 
lipid profiles are emerging as unique disease biomark-
ers, with diagnostic, prognostic and predictive potential 
[6]. High throughput lipidomics and computational biol-
ogy techniques serve as potent tools in the personalized 
examination of tumor lipid signatures and unveiling of 
cancer-associated biomarkers [7]. Sophisticated com-
putational methods provide significant advantages in 
interpreting large-scale data, leading to a deeper under-
standing of metabolic processes and their underlying 
mechanisms [8]. It was found that phosphatidylethan-
olamine (PE) (36:3), PE (36:2), phosphatidylcholines (PC) 
(32:0), and sphingomyelin (SM) (d18:0/18:1(9Z)) were 
more abundant in patients with early gastric cancer than 
in a study investigating early markers of GC [9]. However, 
alterations in lipid metabolites linked to platinum-resist-
ant GC and the respective underlying gene regulatory 
mechanisms remain unreported.

The increasing research indicated that metabolic adap-
tations may also bolster resistance to both chemotherapy 
and targeted agents. The reprogramming of lipid metabo-
lism, a process integral to energy utilization and cellular 
signaling, promotes cell survival and facilitates the onset 
of multidrug resistance (MDR) in cancer cells [10–14]. 
Notably, lipids, including phospholipids and cholesterol, 
compose the plasma membrane and partake in the resist-
ance mechanism by modulating the activity of ATP-
binding cassette (ABC) multidrug efflux transporters [7]. 
PLA2G4A is a member of the cytosolic phospholipase 
A2 family, which is involved in the release of arachidonic 
acid from membrane phospholipids, and it subsequently 
participates in the biosynthesis of prostaglandins and leu-
kotrienes [15]. Some evidence pointed to high PLA2G4A 
expression in gastric cancer, and inhibition of PLA2G4A 

has been proposed as a therapeutic strategy to counteract 
chemo-resistance in this malignancy [16]. At the same 
time, ACHE is an enzyme that catalyzes the breakdown 
of acetylcholine and terminates synaptic transmission, 
mainly associated with neurological function [17]. Inhib-
iting ACHE enzyme activity could decrease the prolifera-
tion and metastasis of gastric cancer cells [18]. However, 
the mechanism by which PLA2G4A and ACHE on plati-
num resistance in gastric cancer has not been explored.

To preliminarily explore whether PLA2G4A and ACHE 
disrupt platinum-resistant lipid disorders in gastric can-
cer through glycerophospholipid metabolism, we under-
took an exhaustive analysis of the lipid profile in 21 GC 
patients with platinum chemotherapy resistance (CR) 
and 8 with platinum chemotherapy sensitivity (CS) using 
LC–MS-based untargeted lipidomics. We identified 15 
lipid metabolites as potential biomarkers. Simultane-
ously, PLA2G4A and ACHE regulatory genes were deter-
mined via KEGG functional enrichment, gene screening, 
correlation analysis and immunohistochemistry of tissue 
microarray. Our study also provides a theoretical basis 
for the development of future drugs to alleviate platinum 
resistance.

Materials and methods
Chemicals and reagents
MS-grade methanol (047192), MS-grade acetonitrile 
(51101), HPLC-grade 2-propanol (022906) were pur-
chased from ThermoFisher (USA). HPLC-grade for-
mic acid (5438040250) and HPLC-grade ammonium 
formate  (714690-4X4L) were purchased from Sigma 
(Germany).

Patients and sample collection
A total of 29 GC tissues (21 cases of oxaliplatin sensitiv-
ity and 8 cases of oxaliplatin resistance) were obtained 
from patients who underwent postoperative adjuvant 
chemotherapy with oxaliplatin‐based regimens (FOL-
FOX or XELOX). Follow‐up was conducted regularly via 
telephone or mail. Patients with local relapse were cate-
gorized as oxaliplatin‐resistant. Detailed clinicopatholog-
ical characteristics are listed in Table  1. Histopathology 
results for all cancer patients were confirmed by surgical 
resection of the tumors, while clinical characteristics and 
tumor stages were assessed based on biopsy results. Each 
patient’s age and clinical manifestations were statistically 
analyzed, and informed consent was obtained. All sam-
ples were collected in accordance with ethical guidelines, 
and written informed consent was obtained. All clinical 
experiments were approved by the Independent Ethics 
Committee of the Affiliated Hospital of Nanjing Uni-
versity of Chinese Medicine, Number: 2017NL-092–02. 
All patients were approached based on approved ethical 
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guidelines, and patients who agreed to participate in 
this study signed consent forms before being included in 
the study. We also confirmed that all methods were per-
formed in accordance with the relevant guidelines and 
regulations. All studies were conducted in accordance 
with the principles of the Declaration of Helsinki.

Sample preparation and lipid extraction
Lipids were extracted according to the MTBE method. 
Briefly, samples were homogenized in 200 µL of water 
and 240 µL of methanol. Then 800 µL of MTBE was 
added and the mixture was sonicated 20 min at 4 ℃ fol-
lowed by sitting still for 30 min at room temperature. The 
solution was centrifuged at 14000 g for 15 min at 10 ℃ 
and the upper organic solvent layer was obtained and 
dried under nitrogen.

LC–MS/MS method for lipid analysis
Reverse-phase chromatography was employed for 
LC separation using CSH C18 column (1.7  µm, 
2.1  mm × 100  mm, Waters). The lipid extracts were 

redissolved in 200 µL 90% isopropanol/ acetonitrile, cen-
trifuged at 14000 g for 15 min, finally, 3 µL of the sample 
was injected. Solvent A was acetonitrile–water (6:4, v/v) 
with 0.1% formic acid and 0.1  mM ammonium formate 
and solvent B was acetonitrile–isopropanol (1:9, v/v) with 
0.1% formic acid and 0.1  mM ammonium formate. The 
initial mobile phase was 30% solvent B at a flow rate of 
300 μL/min. It was held for 2 min, and then was linearly 
increased to 100% solvent B over 23  min, followed by 
equilibration at 5% solvent B for 10 min. The data were 
processed using Simca P14.1 software for multivariate 
statistical analysis, including principal component analy-
sis (PCA) and orthogonal partial least squares discrimi-
nant analysis (OPLS-DA). The OPLS-DA models were 
validated with a permutation testing and cross-valida-
tion. Variable importance projection values (VIP > 1.5) 
and t-test p-values (p < 0.05) were considered as differen-
tial lipids. Moreover, thresholds are established for lipids 
identified using LipidSearch software to reduce unreli-
able results, which improves the accuracy. Single-point 
internal standard calibrations were used to estimate 
absolute concentrations for lipids identified by accurate 
mass, MS/MS spectral match, and retention times.

KEGG and receiver operating characteristic (ROC) curve 
analyses
MetaboAnalyst 5.0 (https:// www. metab oanal yst. ca/) was 
used for the pathway enrichment analysis and ROC curve 
analyses of the potential biomarkers. The area under the 
curve (AUC) of the ROC curve was calculated to quantify 
the accuracy.

Network analyzes
A total of 2327 disease targets were identified using 
“Platinum resistance” as the keyword in the GeneCards 
database. A total of 99 Glycerophospholipid metabolism-
related genes were extracted from the KEGG database 
and 5 targets related to platinum resistance were finally 
obtained. The potential lipid biomarkers were imported 
into Metscape 3.7.2 to generate a metabolite-gene net-
work. The protein–protein interaction (PPI) network was 
constructed by inputting the predicted targets into the 
STRING database (https:// string- db. org/). Based on the 
PPI results, we focused on their linked targets to discover 
the underlying mechanisms. Consequently, the network 
elucidating the relationships between metabolites and 
corresponding genes was established using Metscape. 
Through the analysis of this network, key targets within 
the interaction network were selected for further analysis.

Immunohistochemical (IHC) analysis
Immunohistochemical (IHC) analysis was carried out 
to assess GC tumor tissues. We collected 99 pairs GC 

Table 1 Information of platinum-chemotherapy gastric cancer 
patients

Characteristics Chemotherapy 
sensitivity n = 21

Chemotherapy 
resistance n = 8

Gender

 Female 9 8 1

 Male 20 13 7

Age

  < 60 12 10 2

  ≥ 60 17 11 6

Lauren classification

 Intestinal 5 4 1

 Diffuse and mixed 23 16 7

 Not stated 1 1 0

Depth of tumor invasion

 Localized in subserosa 7 5 2

 Beyond subserosa 18 12 6

 Not stated 4 4 0

Lymph node metastasis

 N0 7 5 2

 N1-3 18 12 6

 Not stated 4 3 0

pTNM stage

 I/II 10 8 2

 III/IV 15 9 6

 Not stated 4 4 0

Vascular invasion

 Yes 18 10 8

 No 12 11 1

https://www.metaboanalyst.ca/
https://string-db.org/
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samples from patients who were treated by surgical 
removal for tissue microarray (TMA). TMA included 
12 pairs of patients in this study, which 7 pairs belongs 
to chemotherapy sensitive group and 5 pairs belongs to 
chemotherapy resistant group. All clinical samples were 
collected at Affiliated Hospital of Nanjing University of 
Chinese Medicine and verified by histological and patho-
logical examinations. All participating patients had pro-
vided written informed consent. Immunohistochemical 
staining by using the following primary antibodies at 
the indicated dilution: PLA2G4A 1:100 (Zenbio Cat# 
822144), DGKA 1:100 (Zenbio Cat# R26679) and ACHE 
(Zenbio Cat# 160022).

Statistical analysis
Data were presented as mean ± standard deviation. All 
the performed statistical analyses are described in each 
figure legend. Statistical p-values were obtained by 
application of the appropriate statistical tests using the 
GraphPad Prism 8. For all tests, p < 0.05 was considered 
significant (*p < 0.05, **p < 0.01).

Results
Intrinsic lipid metabolic exerted variations in the platinum 
resistance GC patients
The base peak chromatogram (BPC) diagram of the qual-
ity control (QC) sample displayed spectral overlap, as 
shown in the Fig.  1A and B. The experimental results 
showed that the chromatographic peak response inten-
sity and retention time of QC samples basically over-
lap, indicating good experimental repeatability.

Additionally, an unsupervised principal component 
analysis (PCA) model was employed to examine the dis-
persion pattern. The PCA score plots showed that QC 
samples clustered tightly under both the positive and 
negative ion models, indicating that the instrument func-
tions quite well. The PCA score plots (Fig.  2A) showed 
a clear trend of separation of the model group and con-
trol group, indicating significant differences in the 
endogenous lipid profiles of GC patients with platinum 
chemotherapy resistance. Compared with the chemo-
therapy sensitivity (CS), the chemotherapy resistance 
(CR) group was significantly separated, indicating that 
there were significant differences in endogenous lipids 
in patients with platinum chemotherapy resistance in 
GC. The cumulative fitness (R2 value) of the PCA model 
was 0.597, indicating a suitable model fit. Moreover, 
The OPLS-DA supervised pattern recognition method 
was performed further to identify potential biomarkers 
related to patients with platinum chemotherapy resist-
ance in GC. The OPLS-DA analysis indicated clear sep-
arations between the chemotherapy-sensitivity (green 
dots) and chemotherapy-resistance (blue dots) groups 

(R2Y = 0.72, Q2 = 0.197, Fig. 2B). The results of the per-
mutation test strongly indicated that the original model 
was valid (R2 intercept = 0.4267, Q2 intercept = -0.4196, 
Fig.  2C). These results indicated that our experimental 
model can be used for lipid profile changes in platinum-
resistant GC patients.

Glycerophospholipid metabolism could affect 
the endogenous lipids in platinum resistance GC patients
Based on the selection criteria (VIP > 1.5 and P < 0.05 
and fold change > 1.5 or < 0.67), 71 differential lipids were 
obtained. The volcano plot could directly indicate the 
overall differential expression ratio of lipid molecules 
in the comparison group. The volcano plot comparing 
chemotherapy-sensitive vs. chemotherapy-resistant data 
was shown in Fig. 3A. The rose-red areas in the plot high-
light the differential lipid molecules identified by uni-
variate statistical analysis. Hierarchical cluster analysis 
furthermore revealed the variable values. As depicted in 
Fig. 3B, the plot provided a direct visual representation of 
the differential lipid changes between the chemotherapy-
sensitive and chemotherapy-resistant groups.

Next, to elucidate the potential pathway of these dif-
ferential lipids in chemotherapy-GC patients, we charted 
these differential metabolites of lipids into their biochem-
ical pathways using metabolic enrichment and pathway 
analyses based on the KEGG database and MetaboAna-
lyst. As shown in Fig.  3C, KEGG pathway enrichment 
analysis identified five potential pathways including 
glycerophospholipid metabolism, Linoleic acid metabo-
lism, alpha-linolenic acid metabolism, Glycosylphos-
phatidylinositol (GPI)-anchor biosynthesis, Sphingolipid 
metabolism, Arachidonic acid metabolism. Notably, glyc-
erophospholipid metabolism was identified as the most 
significantly altered pathway. In conclusion, alterations in 
glycerophospholipid metabolism may affect the endog-
enous lipids of platinum resistance in GC patients.

15 differential lipid metabolites as potential biomarkers 
in platinum‑resistant GC patients
To refine the selection of biomarkers, we increased 
VIP and FC values to screen |FC|> 2 and VIP > 1.5 
as potential biomarkers. A total of 15 potential bio-
markers were obtained (Table  2). As shown in 
Fig.  4A, MGDG(43:11)-H, Cer(d18:1/24:0) + HCOO, 
PI(18:0/18:1)-H, PE(16:1/18:1)-H, PE(36:2) + H, 
PE(34:2p)-H, Cer(d18:1 + hO/24:0) + HCOO, 
Cer(d18:1/23:0) + HCOO, PC(34:2e) + H, SM(d34:0) + H, 
LPC(18:2) + HCOO, PI(18:1/22:5)-H, PG(18:1/18:1)-H, 
Cer(d18:1/24:0) + H, PC(35:2) + H were potential bio-
markers that match the screening. Meanwhile, they 
were significantly increased in chemotherapy resistance 
groups. Subsequently, for more rigorous and accurate 
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identification of potential biomarkers of chemotherapy 
resistance, we uploaded these 15 biomarkers to Metabo-
Analyst and conducted Receiver Operating Characteristic 
Curve (ROC) curves. A metabolite with an AUC ≥ 0.7 is 
considered to have moderate or higher diagnostic value. 

Notably, the AUC for Cer(d18:1 + hO/24:0) + HCOO was 
0.887, the highest among our biomarkers. We ranked the 
AUC area of these candidate markers from highest to 
lowest (Fig. 4B). Ultimately, it was found that, of the can-
didate markers, only SM(d34:0) + H and PC(34:2e) + H 

Fig. 1 Comparison of Base Peak chromatogram (BPC) of QC samples. A Sample positive ion pattern BPC overlap map B Sample negative ion 
pattern BPC overlap map
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had a low diagnostic value. These results indicated that 
the biomarkers we have identified possess diagnostic 
value and may serve as potential markers for the clinical 
diagnosis of platinum-resistant GC.

PLA2G4A, PLA2G3, DGKA, ACHE, and CHKA could be 
potential targets for regulating endogenous lipids 
in platinum‑resistant GC patients
In this study, glycerophospholipid metabolism was the 
top-altered pathway in the platinum-resistant sam-
ples. To explore the target of regulating the lipid profile, 
we first extracted the 99 genes related to the glycer-
ophospholipid metabolism pathway in KEGG database 
and then identified the gene of platinum resistance in 
the Genecard database with 2327 genes. As shown in 
Fig.  5A, five common genes  were found in both path-
ways. DGKA, PLA2G4A, PLA2G3, ACHE and CHKA 
were the potential targets that regulated the biomarkers 
we found above via the glycerophospholipid metabolism 
pathway. We then explored the protein–protein interac-
tion (PPI) network for these targets using the STRING 
database. As shown in Fig.  5B, PLA2G4A established 
interaction with PLA2G3, and likewise, ACHE interacted 
with CHKA. However, no interaction existed between 
DGKA and them. Next, network of metabolites were 
constructed with Metscape. We pinpointed 15 potential 
biomarkers via lipidomic analysis and five potential regu-
latory genes through target screening and bioinformatic 
analysis. To associate them, we employed Cytoscape to 
construct a lipid metabolite reaction-enzyme-gene net-
work aiming to elucidate this process. A pathway-based 
network was constructed through MetScape, in which 
significantly altered biomarkers were linked to relevant 
metabolites and lipids in the same pathway. Meanwhile, 
all the compounds enriched in the MetScape network 

were annotated via the MetDisease plugin. As shown in 
Fig. 5C, PLA2G4A and PLA2G3 belong to the Phospho-
lipase A (2) family, DGKA belongs to the diacylglycerol 
kinase family, CHKA is a choline kinase and ACHE is an 
acetylcholinesterase. They govern a range of metabolites 
via multiple metabolic pathways encompassing Arachi-
donic acid metabolism, Linoleic acid metabolism, and 
Glycerophospholipid metabolism, among others. It can 
be concluded that PLA2G4A, PLA2G3, DGKA, ACHE, 
and CHKA modulated lipid profiles in platinum-resistant 
GC patients through multifaceted metabolic pathways.

PLA2G4A, DGKA and ACHE regulated lipid 
profiles in platinum‑resistant GC patients 
through glycerophospholipid metabolic pathways
Extensive research indicates that the upregulation of 
ATP-binding cassette (ABC) transporters is implicated 
in conferring resistance to chemotherapeutic agents [19]. 
To gain a more comprehensive understanding, ACHE, 
DGKA, CHKA, PLA2G4 and PLA2G3, these genes can 
serve as viable targets for developing drug-resistant 
therapy strategies. We examined the correlation analysis 
between the potential therapeutic targets and the ABC 
transporters (ABCB1, ABCC1, and ABCG2). As shown 
in Fig. 6A, our analysis revealed a strong positive correla-
tion between ACHE and ABCB1, ABCC1, and ABCG2, 
with ABCB1 showing the highest correlation coefficient 
(R = 0.7). Conversely, CHKA showed weak correlations 
with these transporter genes. PLA2G3 exhibited a nega-
tive correlation with ABCB1, ABCC1 and ABCG2. In 
contrast, DGKA and PLA2G4A also exhibited notable 
correlations with them, with the strongest association 
evident with ABCC1 (R = 0.75 and R = 0.81, respectively). 
This underscores the potential roles of these proteins 
in drug resistance, underlining their significance as 

Fig. 2 Multivariate analysis of untargeted lipidomic research. A PCA score plots of metabolic profiles in chemotherapy sensitivity 
and chemotherapy resistance groups. B Score plots of OPLS-DA of the normalized LC–MS data from the chemotherapy sensitivity 
and chemotherapy resistance groups. C Corresponding permutation analyses for the statistical validation of the OPLS-DA models
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Fig. 3 Glycerophospholipid metabolism could affect the endogenous lipids in platin-resistant GC patients. A Volcano map showed the differential 
lipids (VIP > 1.5 and P < 0.05 and fold change > 1.5 or < 0.67). B Cluster heat map of differential lipids in chemotherapy sensitivity and chemotherapy 
resistance group. C Lipid metabolic pathway analysis based on significantly differential lipids in chemotherapy sensitivity versus chemotherapy 
resistance groups
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therapeutic targets. Finally, we evaluated the correlation 
of a three-gene combination model, derived from above, 
with each drug resistance marker individually. The gen-
erated models exhibited a high correlation coefficient 
with ABCB1(R = 0.77), ABCG2 (R = 0.59), and ABCC1 
(R = 0.81) respectively (Fig.  6B), indicating a significant 
association between these gene combinations and drug 
resistance markers. Our results revealed that DGKA, 
PLA2G4 and ACHE could be used as key targets to reg-
ulate the endogenous lipids in platinum-resistant GC 
patients through the glycerophospholipid metabolism 
pathway.

ACHE and PLA2G4A were up‑regulated 
in platinum‑resistant GC patients
In our target screening and correlation analysis, 
PLA2G4A, DGKA, and ACHE emerged as potential 
targets to mitigate resistance in platinum-resistant GC 
patients, potentially achieved through the modulation 
of the glycerophospholipid metabolism pathway. To sub-
stantiate our results, we performed immunohistochem-
istry (IHC) analysis of our screened targets in a Tissue 
Microarray (TMA) containing a selection of platinum-
based chemotherapy sensitive/resistant patients covered 
in this research. According to IHC from tissue microar-
ray, we identified a notably higher expression of ACHE 
in the GC chemotherapy-resistant samples compared to 
the GC chemotherapy sensitivity tissues (Fig. 7A). DGKA 
was not overexpressed like PLA2G4A in GC chemother-
apy-resistant samples, and only showed some elevated 
expression (Fig. 7B and C). Overall, our results identified 
the critical role of ACHE and PLA2G4A in platinum-
resistant GC patients.

Discussion
With the advent of effective tools to study lipids, includ-
ing mass spectrometry-based lipidomics, lipids are 
emerging as central players in cancer biology [6]. Tech-
niques such as nuclear magnetic resonance (NMR), 
gaschromatography-mass spectrometry (GC–MS), and 
liquid chromatography-tandem mass spectrometry (LC–
MS) are primarily used for metabolomic analysis [20], 
with LC–MS-based metabolomics gaining popularity 
due to its extensive metabolite coverage. Recent advance-
ments in LC and MS have further enhanced the detection 
sensitivity and data reliability for cancer metabolomic 
studies [21, 22]. In this investigation, we identified a 
range of lipid metabolic biomarkers linked with the prog-
nosis of platinum resistance in GC patients. The objec-
tive was to improve the diagnosis for platinum resistance 
in GC patients. We screened a total of 15 metabolites as 
potential biomarkers and identified 2 regulatory genes 
(ACHE and PLA2G4A) that could potentially influ-
ence endogenous lipid profiles in platinum-resistant GC 
patients through the glycerophospholipid metabolism 
pathway.

Platinum-based therapeutics, designated as cisplatin, 
carboplatin and oxaliplatin, are widely employed in clini-
cal practice due to their potent treatment efficacy and 
their clarified performance mechanisms [23–25]. Nev-
ertheless, platinum-based therapeutics lead to severe 
adverse effect as well as causing irreversible damage to 
healthy tissues [26, 27]. Meanwhile, an increasing num-
ber of patients exhibits drug resistance, thereby lower-
ing the lethality within the tumor. Although numerous 
studies has been conducted on molecular biomarkers, 
most of the identified biomarkers failed in the validation 

Table 2 15 potential lipid biomarker information

Classification Class Name Foldchange

Monogalactosyldiacylglycerol MGDG MGDG(43:11)-H 23.98185741

Ceramide Cer Cer(d18:1/24:0) + HCOO 2.171698636

Phosphoinositide PI PI(18:0/18:1)-H 2.123430427

Phosphatidylethanolamine PE PE(16:1/18:1)-H 2.062432856

Phosphatidylethanolamine PE PE(36:2) + H 2.593692118

Phosphatidylethanolamine PE PE(34:2p)-H 2.176050791

Ceramide Cer Cer(d18:1 + hO/24:0) + HCOO 11.64999933

Ceramide Cer Cer(d18:1/23:0) + HCOO 2.362004486

Phosphatidylcholine PC PC(34:2e) + H 2.661921223

Sphingomyelin SM SM(d34:0) + H 2.110219457

Lysophosphatidylcholine LPC LPC(18:2) + HCOO 4.395238596

Phosphoinositide PI PI(18:1/22:5)-H 2.22989599

Phosphatidyl glycerol PG PG(18:1/18:1)-H 2.678431893

Ceramide Cer Cer(d18:1/24:0) + H 2.279011683

Phosphatidylcholine PC PC(35:2) + H 2.081638556
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Fig. 4 Peak intensity and ROC curves of 15 potential markers. A Peak intensity maps of 15 potential markers. B ROC curves of 15 potential markers. 
Arrange from high to low values based on AUC values from MetaboAnalyst
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studies [28]. Therefore, it is important to explore effec-
tive biomarkers to improve the diagnosis of drug resist-
ance in order to help in the treatment of patients, and 
metabolite and lipid biomarkers offer expedited success 

rates, promising a significant breakthrough in precision 
medicine. Our results were based on the reprogramming 
of lipid metabolism in gastric cancer, using the tech-
nology of lipidomics to reveal biomarkers and targets 

Fig. 5 PLA2G4A, PLA2G3, DGKA, ACHE, and CHKA may be potential targets for regulating endogenous lipids in platin-resistant GC patients. A 
Distribution of Platinum resistance and Glycerophospholipid metabolism target genes. B Protein–protein interaction (PPI) network revealed 
the interaction of PLA2G4A, PLA2G3, DGKA, ACHE, and CHKA. C Lipid metabolite-reaction-enzyme-gene network. The red hexagons represent 
the detected lipids and other metabolite biomarkers in our study. Pink hexagons represent metabolites participating in the same metabolic 
pathway but were not detected in our study. The dark green diamonds represent the metabolic reaction of the compound. The green squares 
represent the enzyme. The purple circle represents genes
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associated with platinum resistance in gastric cancer. 
We provided new ideas for the detection of platinum 
resistance in gastric cancer and the development of tar-
geted drugs. In addition, it also provided direction for 
early diagnosis and treatment of gastric cancer, and if 
there was a need to find means to control biomarkers 
will improve the recurrence of gastric cancer. It has been 
reported that serum lipid metabolites such as phosphati-
dylethanolamine (36:2), phosphatidylcholine (32:0), and 

sphingomyelin (d18:0/18:1(9Z)) could serve as markers 
for the early diagnosis of GC [9]. Our results will be a 
supplement to this, which can better detect the changes 
in patients with gastric cancer, so as to formulate more 
accurate treatment plans.

Conventional methods for detecting platinum resist-
ance in gastric cancer (GC) predominantly rely on 
imaging techniques and serum markers, the accuracy 
of which has become increasingly debated due to the 

Fig. 6 PLA2G4A, DGKA and ACHE regulated lipid profiles in platinum-resistant GC patients through glycerophospholipid metabolic pathways. A 
Utilizing the GTEx-stomach database, we conducted a Spearman correlation coefficient analysis to elucidate the interrelationships among DGKA, 
PLA2G4, ACHE, CHKA and the drug-resistant genes ABCB1, ABCC1, ABCG2. B Utilizing the GTEx-stomach database, we validated the association 
between the tri-gene model, comprising PLA2G4A, DGKA, and ACHE, and drug resistant genes ABCB1, ABCC1, ABCG2
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clinical complexities and heterogeneous nature of GC 
[29, 30].These methods can be invasive, costly, and may 
not offer the specificity required for early detection nor 
real-time treatment monitoring. Unlike these traditional 
approaches, our study provided a non-invasive and more 
accurate way for the detection and monitoring of plati-
num resistance. Both intrinsic tumor and TME-associ-
ated lipids can sustain the therapy-resistant cancer cell 
phenotype [28].  Our current study aimed to unravel 
the complex interplay between lipid metabolism disor-
ders and platinum resistance in GC based on lipidom-
ics. This novel set of biomarkers, which includes MGDG 
(43:11)-H, Cer(d18:1/24:0) + HCOO, and others, not only 

reflected the intrinsic metabolic state of cancer cells but 
also actively contributed to the mechanisms driving drug 
resistance. The high predictive performance, exempli-
fied by Cer(d18:1 + hO/24:0) + HCOO with an area under 
the receiver operating curve of 0.887, emphasizes the 
approach’s potential for superior accuracy. In our study, 
post-treatment-based lipidomic analysis, aimed at bet-
ter improving patient prognosis and paving the way for 
platinum-resistant precision medicine in gastric cancer.

Lipids, typically denoted as hydrophobic or amphi-
pathic small molecules, embody both hydrophilic and 
lipophilic traits. Such amphipathic lipids constitute 
plasma membranes, enabling cells to regulate their 

Fig.7 ACHE and PLA2G4A were over-expression in platinum-chemotherapy-resistant GC patients A Representative images of IHC staining of ACHE 
in GC chemotherapy sensitivity and resistance patient-tissues. B Representative images of IHC staining of DGKA in GC chemotherapy sensitivity 
and resistance patient-tissues. C Representative images of IHC staining of PLA2G4A in GC chemotherapy sensitivity and resistance patient-tissues. 
Scar bar = 200 μm
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internal biological activities and respond to fluctuations 
in the external milieu, such as ABC family mediated drug 
efflux-induced drug resistance [31]. As we all know, cel-
lular membranes predominantly comprise three classes 
of lipids: (1) Glycerophospholipids (PLs), encompass-
ing phosphatidylcholine (PC), phosphatidylserine (PS), 
phosphatidylethanolamine (PE), phosphatidylglycerol 
(PG), phosphatidylinositol (PI), and phosphatidylinosi-
tol phosphates (PIPs); (2) Sphingolipids, encapsulating 
sphingomyelins (SM) and glycosphingolipids; (3) Sterols, 
primarily cholesterol (Chol) in mammalian cells. Act-
ing as vital constituents of biological membranes, glyc-
erophospholipids maintain a minimum of one O-1-acyl, 
O-1-alkyl, or O-1-alkenyl residue affixed to the glycerol 
entity. Later, during glycerophospholipid metabolism, 
various bioactive lipid molecules, including inositol tris-
phosphate, diacylglycerol, arachidonic acid, phosphatidic 
acid, and lysophosphatidic acid, are produced, exert-
ing regulatory influence over different cellular signaling 
pathways [32]. Previous studies have shown that glyc-
erophospholipid metabolism played a significant role in 
proliferation of esophageal squamous cell carcinoma and 
breast cancer [33, 34]. However, the search for biomark-
ers of platinum-resistant GC and the discovery of related 
regulatory genes are still inadequate. Our study not only 
discerned that the differential lipids between the chemo-
sensitive and chemo-resistant cohorts were strongly 
enriched within the glycerophospholipid metabolism 
pathway but also innovatively proposed targets against 
glycerophospholipid metabolism.

In recent years, targeted therapies for cancer have 
achieved remarkable results [35]. Determining targeta-
ble gene and biomarkers as alternative or combinational 
treatments can add to the clinical efficacy of the current 
therapies and overcome potential resistance [36]. In our 
study, DGKA, CHKA, PLA2G3, PLA2G4A, and ACHE 
have been preliminarily identified as potential targets 
for overcoming platinum-chemotherapy-resistant GC 
through glycerophospholipid metabolism. Diacylglyc-
erol kinase α (DGKA), the inaugural member of the DGK 
family, is known for its phosphorylation of diacylglyc-
erol (DAG) into phosphatidic acid (PA), modulating lipid 
metabolism [37]. Evidence suggested that DGKA and its 
product PA may function as mediators of platinum resist-
ance in ovarian cancer [38]. Analogously, our research 
suggested that DGKA might offer a new therapeutic tar-
get for mitigating platinum resistance in gastric cancer. 
Choline kinase alpha (CHKA) is integral to the Kennedy 
pathway, phosphorylating free choline (Cho) into PC. 
Upregulation of CHKA in multiple cancers, including 
gastric cancer, majorly contributes to augmented PC lev-
els [39–42]. Inhibiting CHKA could potentially amplify 
platinum-based chemotherapy sensitivity in ovarian 

cancer [43]. Both PLA2G3 and PLA2G4A are members 
of the Phospholipase A2 family (PLA2s), which hydro-
lyze the sn-2 acyl bond of glycerophospholipids (GPLs) 
to yield lysophospholipids (LPLs) and free fatty acids 
[44], playing pivotal roles in carcinogenesis. Elevated 
expression of Group III Phospholipase A2 (PLA2G3) in 
human colorectal adenocarcinoma tissues has labeled it 
as a diagnostic biomarker of colorectal carcinoma [45]. 
Moreover, high levels of group IVA cPLA2 (PLA2G4A) 
have been associated with a dismal prognosis in perihi-
lar cholangiocarcinoma (PHCCA) and distal cholangio-
carcinoma [46]. In our study, we emphasized PLA2G4A 
and ACHE were the key targets for overcome platinum 
resistance in GC. Some evidence points towards high 
PLA2G4A expression in gastric cancer, and inhibiting 
PLA2G4A has been proposed as a therapeutic strategy to 
counteract chemo-resistance in this malignancy [16, 47]. 
However, targeting PLA2G4A as key evidence against 
drug resistance is still lacking. Acetylcholinesterase 
(ACHE), a crucial enzyme in catalyzing the hydrolysis of 
cholinergic neurotransmitters, has been linked to various 
roles in cancer pathogenesis [48, 49]. Inhibition of ACHE 
reportedly promotes cell death [50]. However, it has only 
been reported to be associated with resistance in ovarian 
cancer [51], and there is no evidence of platinum resist-
ance in GC. Together, our study innovatively revealed 
PLA2G4A and ACHE as targets of platinum chemother-
apy resistance in GC from a clinical perspective based on 
lipidomics.

While we have identified PLA2G4A and ACHE as 
notable targets and a variety of lipid-biomarker in plat-
inum-resistant GC, we acknowledged the limitations 
stemming from LC/MS- mediated lipidomics as a sin-
gular analytical technique, the confined sample size, and 
the limited scope of the study population. We fully rec-
ognized that our research represents only a fraction of 
the exhaustive work required to translate these biomark-
ers into clinically viable tools. Enhancing the clinical rel-
evance of our findings should base on larger sample sizes 
that include racial and regional differences, etc. Moreo-
ver, the precision of biomarker identification can be sig-
nificantly enhanced through the application like targeted 
lipidomics. Meanwhile, a more holistic exploration of the 
full biological spectrum could be processed to enrich our 
understanding of platinum-resistant GC by proteomics 
and genomics.

Conclusion
In summary, we identified 15 lipid metabolites through 
lipid metabolomics as biomarkers for diagnosing the 
platinum resistance in gastric cancer patients, which 
greatly improve for diagnosis of platinum-based chemo-
therapy resistance in gastric cancer patients. Moreover, 
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we identified 2 potential targets (PLA2G4 and ACHE) for 
combating platinum chemotherapy resistance in gastric 
cancer treatment though glycerophospholipid metabo-
lism. These results not only strength our understand of 
mechanism underlying platinum-based chemotherapy 
resistance but also provide a new insight about the devel-
opment of target drug.
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