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Abstract 

Background The term eGene has been applied to define a gene whose expression level is affected by at least one 
independent expression quantitative trait locus (eQTL). It is both theoretically and empirically important to identify 
eQTLs and eGenes in genomic studies. However, standard eGene detection methods generally focus on individual cis-
variants and cannot efficiently leverage useful knowledge acquired from auxiliary samples into target studies.

Methods We propose a multilocus-based eGene identification method called TLegene by integrating shared genetic 
similarity information available from auxiliary studies under the statistical framework of transfer learning. We apply 
TLegene to eGene identification in ten TCGA cancers which have an explicit relevant tissue in the GTEx project, 
and learn genetic effect of variant in TCGA from GTEx. We also adopt TLegene to the Geuvadis project to evaluate its 
usefulness in non-cancer studies.

Results We observed substantial genetic effect correlation of cis-variants between TCGA and GTEx for a larger num-
ber of genes. Furthermore, consistent with the results of our simulations, we found that TLegene was more powerful 
than existing methods and thus identified 169 distinct candidate eGenes, which was much larger than the approach 
that did not consider knowledge transfer across target and auxiliary studies. Previous studies and functional enrich-
ment analyses provided empirical evidence supporting the associations of discovered eGenes, and it also showed 
evidence of allelic heterogeneity of gene expression. Furthermore, TLegene identified more eGenes in Geuvadis 
and revealed that these eGenes were mainly enriched in cells EBV transformed lymphocytes tissue.

Conclusion Overall, TLegene represents a flexible and powerful statistical method for eGene identification 
through transfer learning of genetic similarity shared across auxiliary and target studies.
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Background
In genomic studies the term “eGene” is used to define 
a gene whose expression level is affected by at least one 
independent single nucleotide polymorphism (SNP) 
nearby that gene (called cis-SNP); the corresponding SNP 
is called expression quantitative trait locus (eQTL) [1–4]. 
Identification of eGenes is imperative because genes are 
the major molecular unit in many biological processes, 
are interpretable and allow for subsequent network and 
pathway analyses [3]. The eQTL study provides not only 
the set of cis-variants related to gene expression, but also 
the set of eGenes for which eQTLs are identified [5–7], 
both of which exhibit an important implication regarding 
functional roles of significant loci discovered in genome-
wide association studies (GWAS) in influencing diseases 
and intermediate phenotypes [8, 9].

Further, the finding that a trait-related SNP or gene 
detected in GWAS is also an eQTL or eGene renders 
substantial evidence for causality of this variant or gene. 
For example, in the GWAS of inflammatory bowel dis-
ease (IBD) [10], Repnik et al. [11] utilized eQTL mapping 
to analyze associated loci and confirmed several genes 
(e.g., SLC22A5 and ORMDL3) involved in the pathogen-
esis of IBD. By integrating genetic associations from the 
GWAS of major depressive disorder (MDD) and brain 
eQTL data, Zhong et al. [12] discovered some risk vari-
ants contributed to MDD susceptibility through affecting 
the expression of FLOT1, providing new insights into the 
etiology of this disorder.

The standard method of identifying eGene is to exam-
ine the association of cis-SNPs of a given gene with its 
expression level to assess whether any of them are sig-
nificant. The permutation-based multiple testing cor-
rection is required to properly account for the linkage 
disequilibrium (LD) among variants, which is compu-
tationally intensive although novel improvements have 
been recently proposed [3, 13]. Due to the issue of mul-
tiple comparisons, a relatively small P value might not 
be sufficiently small to reach the significance level. Thus, 
the standard analysis is often underpowered for eGene 
detection [2, 14].

Alternatively, we consider the discovery of eGene from 
a statistical perspective of variant-set association analysis 
by evaluating the joint influence of all cis-SNPs on gene 
expression. SNP-set analysis has been widely employed in 
genomic studies [15–17], where a set of variants defined 
a priori within a gene or other genetic unit are analyzed 
collectively to examine their joint effects on a disease 
or phenotype, so that the power of eGene detection is 
acceptable even individual eQTLs cannot be detected. 
Therefore, compared to the standard analysis above, the 
SNP-set based method is expected to be more powerful 
to identify eGene because it aggregates multiple weakly 

correlated signals and reduces the burden of multiple 
comparisons [15].

However, the current SNP-set based approach is likely 
still sub-optimal if there exists additional knowledge that 
is informative for eGene discovery in target samples. 
For example, eQTLs are shared across tissues [18, 19], 
it is feasible to incorporate such sharing to boost power 
for association analysis [20–22] or improve accuracy for 
gene expression prediction in a specific tissue [23, 24]. In 
addition, it has been demonstrated that leveraging func-
tional genomic annotations of variants (e.g., distance 
from transcription start site or certain histone modifica-
tion) or utilizing cross-tissue genetic similarity can also 
increase power of eGene and eQTL detection [1, 2].

To integrate genetic information available from exter-
nal studies, we here propose a multilocus-based eGene 
identification method by borrowing the idea of trans-
fer learning [25–29] as well as the idea of SNP-set asso-
ciation analysis [15–17]. Particularly, within the transfer 
learning framework, we refer to individuals under anal-
ysis as target samples, and individuals of different but 
closely related studies as auxiliary samples. For efficient 
knowledge transferring, we assume the effect of cis-
SNP in the target study is analogous to that in auxiliary 
studies, and suppose the former could be predictive by 
the cis-SNP effect of auxiliary samples. Consequently, 
our eGene identification consists of two components: 
the first component represents the indirect influence of 
auxiliary study after transfer learning, and the second 
component represents the direct effect of target study. 
We refer to the proposed eGene identification statisti-
cal framework as TLegene. Further, even no eQTLs are 
discovered in target samples, significant eGenes are still 
likely identified due to the indirect influence of auxiliary 
samples. If the target samples are strongly associated to 
the auxiliary samples, these identified eGenes are likely 
biologically meaningful.

Specifically, to implement our method, we first make a 
novel decorrelation modification to generate two inde-
pendent statistics for each of the two components [20]; 
then we can easily construct a unified joint test based 
on the two uncorrected statistics through various com-
bination strategies including optimal weighted linear 
combination (TLegene-oScore), adaptive weighted lin-
ear combination (TLegene-aScore), and Fisher’s combi-
nation (TLegene-fScore). To further enhance power, we 
employ the recently developed harmonic mean P-value 
method (TLegene-HMP) [30] to aggregate the strength 
of the three joint test methods. Finally, we apply TLe-
gene to eGene identification for ten TCGA cancers 
(Table  1) which have explicit relevant tissues available 
from the GTEx project [18], and learn genetic effect of 
SNP in TCGA from GTEx. We also adopt TLegene to the 
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Geuvadis project [31] to further evaluate its usefulness 
in non-cancer studies. Overall, in line with the simula-
tions, we identified more candidate eGenes with TLegene 
than the methods that did not consider knowledge trans-
fer across target and auxiliary studies, and demonstrated 
that TLegene was powerful in real-data applications.

Methods
SNP‑set based eGene identification within linear mixed 
model
In TLegene we analyze one gene at each time. Suppose 
that there are n individuals and m cis-SNPs denoted by 
G = (g1, …, gm) for a given gene in the target study; we aim 
to assess whether the expression level (denoted by e) of a 
specific gene is affected by its local variants. To examine 
such relation, we construct a linear mixed model [32, 33]

where X stands for the design matrix of p covariates, with 
α = (α1, …, αp) the fixed effect vector; β = (β1, …, βm) is the 
random effect vector for these SNPs, βj ~ N(0, τ) (j = 1, 
…, m); and ε = (ε1, …, εn) is the normal residual vector. 
Under this modeling specification, evaluating whether 
the focused gene is an eGene is equivalent to examining 
the null hypothesis H0: τ = 0. The variance component-
based score test (denoted by Score) is often employed as 
it is powerful across distinct settings [15, 20, 34].

Transfer learning via genetic similarity integration
To make efficient use of existing auxiliary data resources 
that are closely analogous to the target samples, we pre-
cede TLegene using transfer learning techniques [35–
37]. First, let γ = (γ1, …, γm) be the vector of known SNP 
effects obtained from summary statistics of auxiliary 
studies; then, we assume the genetic effect β in the target 
study can be predicted by γ in a given auxiliary study [20]

where θ is the indirect effect of auxiliary study, and bj 
(j = 1, …, m) is the direct effect not completely interpreted 
by auxiliary data. We still assume bj ~ N(0, τ). Here, we 
are attempting to learn β based on auxiliary effect esti-
mate. Finally, plugging (2) into (1), we obtain the TLe-
gene model

where Gγ is a weighted genetic score which is also called 
burden component [38, 39], with θ quantifying its associ-
ation with the expression level. Under the TLegene mod-
eling framework, the null hypothesis turns into

(1)e = Xα+Gβ+ε,

(2)βj = γj × θ + bj , j = 1, ..,m,

(3)
e = Xα+G(γ× θ+b)+ε, bj ∼ N (0, τ)

= Xα+(Gγ)× θ+Gb+ε

This is a joint test which requires simultaneously 
assessing the significance of both fixed effects and ran-
dom effects: the first part of H0 evaluates the indirect 
influence of auxiliary samples, whereas the second part 
assesses the direct impact of target samples. If θ = 0, 
model (3) reduces to e = Xα +Gb + ε, testing the effects 
of all cis-SNPs equal to zero (H0: b = 0) is equivalent to 
examining the variance of b equal to zero (H0: τ = 0), 
which is a special case of the joint hypothesis test given 
in (4), and is particularly powerful when only the target 
effects are present [40]. The code for implementing the 
hypothesis test of TLegene is freely available at https:// 
github. com/ biost atpze ng/ TLege ne.

Joint test in TLegene
Combination of two independent score tests
We here employ the score test to examine the joint null 
hypothesis given in because this test method successfully 
avoids estimating the variance parameter under the alter-
native and is thus computationally efficient. We can eas-
ily obtain the respective score statistics for θ and τ under 
the null, with the score statistic for θ following a χ2 distri-
bution with one degree of freedom and the score statistic 
for τ following a mixture of χ2 distribution [40]; however, 
the two statistics are statistically correlated if there are no 
any additional specifications [20–22]. Therefore, it is not 
straightforward to derive their joint null distribution.

To overcome this challenge, we decorrelate the two 
score statistics so that they could be asymptotically inde-
pendent. Specifically, we first derive the score statistic 
of θ under H0 (i.e., θ = 0 and τ = 0) as usual, but we next 
derive the score statistic of τ under the null of only τ = 0 
without restricting θ = 0. By doing this, it guarantees that 
the two score statistics are uncorrelated [20–22]. The 
decorrelation greatly simplifies the derivation of joint 
test statistic, and independence itself offers various pos-
sibilities of aggregating the two test statistics so that we 
can maximize the ability to target different types of alter-
natives. Finally, we construct the joint test statistic by 
combining the two unrelated statistics through several 
combination methods such as optimally weighted linear 
combination (TLegene-oScore), adaptively weighted lin-
ear combination (TLegene-aScore), and Fisher’s combi-
nation (TLegene-fScore) [20–22]; technical details of the 
three combination methods are given in Additional file 1.

Aggregation of three combination‑based joint test methods
The three combination-based joint test methods (i.e., 
TLegene-oScore, TLegene-aScore, and TLegene-fScore) 
have distinct advantages and would show higher power 
under respective modeling assumptions. To circumvent 

(4)H0 : θ = 0 and b = 0 ⇔ H0 : θ = 0 and τ = 0.

https://github.com/biostatpzeng/TLegene
https://github.com/biostatpzeng/TLegene
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the difficulty of selecting an optimal one, we aggregate 
their strengths via the recently developed harmonic 
mean P-value method (TLegene-HMP) to generate an 
omnibus test [30]

where Pt (t = 1, 2, 3) denotes the P value yielded from 
each of these methods, and fx denotes the Landau distri-
bution probability density function. It has been demon-
strated that HMP is robust against positive dependency 
among combined P values [30, 41].

Simulations for type I error control and power evaluation
We now carried out simulation studies to evaluate the 
performance of type I error control and power of TLe-
gene. To this aim, we extracted common SNPs within an 
LD block of genotypes from the 1000 Genomes Project 
(n = 503) [42] and the Geuvadis project (n = 465) [31]. We 
randomly selected m SNPs (with m following a uniform 
distribution from 20 to 50) and 165 individuals from the 
1000 Genomes Project to generate gene expression in the 
auxiliary study; among these selected SNPs, 30%, 50% or 
70% were null, while the remaining had non-zero effects 
following a normal distribution with a mean zero and a 
particular variance so that the gene expression pheno-
typic variance explained (PVE) by SNPs would be 30% or 
50%.

Second, in the target study we created gene expres-
sion using 300 individuals randomly selected from the 
Geuvadis project with the same set of selected SNPs, but 
calculated the effect as β = γ × θ + b, with b having a nor-
mal distribution with a mean zero and a variance τ. Two 
independent covariates were also generated (i.e., X1 is 
binary and X2 is continuous) in both target and auxiliary 
samples, each having an effect of 0.50. To evaluate type I 
error control, we set θ = 0 and τ = 0 with  105 replications. 
To evaluate power, we specified θ = 0, 0.1, 0.2, 0.3 or 0.4, 
and τ = 0, 0.02 or 0.04 (with at least one of θ and τ being 
non-zero) with  103 replications.

To assess the performance of power of TLegene when 
there existed obvious differences in the sample sizes of 
the auxiliary and target studies, we performed our simu-
lations with 400 randomly selected individuals from the 
1000 Genomes Project as the auxiliary samples and 100 
randomly selected individuals from the Geuvadis pro-
ject as the target samples. We also conducted our simu-
lations with 100 randomly selected individuals from the 
1000 Genomes Project as the auxiliary samples and 400 
randomly selected individuals from the Geuvadis pro-
ject as the target samples. Other simulation settings were 

(5)

T = 1

/(

3
∑

t=1

1

Pt

)

,P =

∫ ∞

1
T

fx

(

x| log T + 0.874,
π

2

)

dx

analogous to those as done before, but only θ = 0.3 or/and 
τ = 0.04 were considered.

Real data applications
TCGA datasets and quality control
We applied TLegene to multiple TCGA cancers to iden-
tify eGenes in various tumor tissues. We only focused on 
cancers for which there existed an explicit tissue avail-
able from GTEx [18]; thus, TCGA was our target study 
and GTEx was our auxiliary study. To avoid the influence 
of ethnic heterogeneity, we only contained patients of 
European ancestry. We selected several clinical covari-
ates such as age, gender as well as the tumor pathological 
stage (Table 1), because these variables could be obtained 
for the majority of TCGA patients [20, 43–45]. We would 
choose the clinical stage when the tumor pathological 
stage was unavailable for some tumors (e.g., OV). For 
each cancer we only retained samples of primary tumor 
tissues, and imputed missing values via the multivariate 
imputation by chained equation method. For genotypes 
of each tumor in TCGA, we performed quality control 
and imputation, with the details described elsewhere [20, 
46]. The sample size ranged from 75 for ACC to 455 for 
OV, and the number of SNPs ranged from 1,373,814 for 
OV to 4,592,516 for ACC.

GTEx summary statistics and the alignment with TCGA 
For each cancer, we obtained summary statistics data of 
the related tissue from GTEx (version 7) [18]. The sam-
ple size ranged from 101 for uterus to 383 for lung, and 
the number of SNPs ranged from 8,700,105 for liver to 
8,886,529 for adrenal gland. Then, we carried out strin-
gent quality control (Table  1): (i) reserved SNPs with 
MAF > 0.05; (ii) excluded non-biallelic SNPs and those 
with strand-ambiguous alleles; (iii) excluded SNPs with-
out rs ID or removed duplicated variants; (iv) removed 
SNPs not in the TCGA; (v) removed SNPs whose alleles 
did not match those in TCGA; (vi) aligned the effect 
allele of SNP between TCGA and GTEx. Finally, the 
sample size ranged from 75 for ACC to 455 for OV, the 
number of shared SNPs ranged from 1,373,814 for OV 
to 4,592,516 for ACC, and the final number of genes 
included ranged from 4236 for BRCA to 6897 for ACC. 
The details of used datasets are described in Table 1.

Correlation of SNP effects of SNPs between GTEx and TCGA 
To get an initial insight of the correlation of two types of 
SNP effects between TCGA and GTEx, we first gener-
ated the marginal effect of SNP in TCGA through a sin-
gle-marker linear model by regressing the expression of 
every gene on each of its cis-SNP in TCGA while adjust-
ing for cancer-specific covariates such as age and tumor 
stage [14]. Then, we performed a linear regression for 
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SNP effects between TCGA and GTEx to characterize 
their relation. For numerical stability, we only focused on 
genes with at least five SNPs.

Traditional method of identifying eGene
For every eGene discovered by TLegene across the can-
cers, we also performed the traditional linear regression 
for eGene identification by examining the association 
of each cis-SNP with the expression level. We adjusted 
for the same covariates as those in TLegene and applied 
Bonferroni’s method to explain the multiple test issue.

Geuvadis project
We further applied TLegene to the Geuvadis project 
[31] to identify eGenes in non-cancer studies. The Geu-
vadis project contains gene expression measurements 
in lymphoblastoid cell lines for 465 individuals. Follow-
ing previous work [32, 47, 48], we mainly analyzed pro-
tein-coding genes and lincRNAs defined according to 
GENCODE (version 12) [49]. We removed zero-count 
low-expressed genes in at least half of the individuals, 
obtaining 15,810 genes. Then, in terms of the previous 

study [50], we performed PEER normalization to remove 
confounding effects and unwanted variation. All indi-
viduals in Geuvadis were sequenced for their genotypes 
in the 1000 Genomes Project. Here, the Geuvadis indi-
viduals were our target samples, and the individuals with 
the cells EBV transformed lymphocytes tissue from the 
GTEx project were our auxiliary samples. A total of 7269 
genes and the number of 3,124,631 shared SNPs were 
finally included.

Results
Type I error control and power evaluation
First, we showed that all tests, including Score (i.e., the 
variance-component based score test), TLegene-oScore, 
TLegene-aScore, TLegene-fScore and TLegene-HMP, 
could maintain correct control of type I error (Fig.  1). 
We next compared the power of these tests under dis-
tinct alternative scenarios. To save space, here we only 
presented the estimated power under the scenario where 
the PVE in the auxiliary study was set to 0.3 or 0.5, θ (the 
effect of the auxiliary study) was set to 0 or 0.1, and τ (the 
variance of the direct effect of target study) was set to 0 

Fig. 1 QQ plots evaluating the performance of type I error control for Score, TLegene-oScore, TLegene-aScore, TLegene-fScore, and TLegene-HMP 
under the null in which both θ and τ were zero
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or 0.02. The results for other scenarios were displayed in 
Additional file 1: Figs. S1–S9.

As shown in Fig. 2, when the sample size of the target 
study was 300 and the sample size of the auxiliary study 
was 165, we found that Score was powerful when only the 
target effect was present (e.g., θ = 0 and τ = 0.02), but suf-
fered from power reduction when only the indirect aux-
iliary impact existed (e.g., θ = 0.4 and τ = 0) (Additional 
file 1: Fig. S6). In contrast, compared to Score, the three 
joint tests (i.e., TLegene-oScore, TLegene-aScore and 
TLegene-fScore) and the omnibus test (i.e., TLegene-
HMP) were better when both the target and auxiliary 
effects existed (e.g., θ = 0.3 and τ = 0.04) (Additional file 1: 
Fig. S7). Moreover, across all scenarios of power evalua-
tion, TLegene-HMP was more powerful or comparable 
compared to other methods.

When the sample sizes of the target and auxiliary stud-
ies were 100 and 400, respectively, we observed that the 
three combined tests and TLegene-HMP were better 
compared to Score when both the target and auxiliary 
influences existed (Additional file  1: Fig. S8). However, 
when the sample size of the auxiliary study was 100 and 
the sample size of the target study was 400, we did not 
observe that TLegene showed a substantially higher 
power compared to Score. This was likely due to the 
small sample size of the auxiliary study (Additional file 1: 
Fig. S9), which implied little learnable information from 
auxiliary samples to target samples and resulted in high 
uncertainty of auxiliary genetic effects during transfer 
learning.

Correlation of cis‑SNP effects for each gene between TCGA 
and GTEx
In the real application, we first assessed the relation of 
cis-SNP effects for all genes between TCGA and GTEx, 

with the estimated correlation summarized in Table  2. 
We found that the effects of the two sets of SNPs were 
substantially dependent for a great number of genes in 
each cancer. On average, most of genes (~ 75.4%) (ranging 
from 72.0% for OV to 77.5% for LUAD) had a significant 
regression coefficient (false discover rate [FDR] < 0.05), 
and a small proportion of genes (~ 5.2%) had a coefficient 
of determination (R2) larger than 0.10, suggesting the 
SNP effects in GTEx did possess the ability to inform the 
SNP effects for some genes in TCGA.

In addition, we recognized that the regression coef-
ficients were positive for some cancers but negative for 
other cancers (Fig. 3A), indicating the distinct influence 
of SNPs on the regulation of gene expression. Particu-
larly, there were 96 genes whose regression coefficients 
were significant across all the ten cancers in TCGA 
(Fig. 3B). In short, the relatively high correlation of SNP 

Fig. 2 Comparison of power for the five test methods under the alternative scenarios. Here, the PVE in the auxiliary study was set to 0.3 (top) or 0.5 
(bottom), the sample size of the target study was 300 and the sample size of the auxiliary study was 165, θ = 0.1 or/and τ = 0.02. A 30% of SNPs were 
null; B 50% of SNPs were null; C 70% of SNPs were null

Table 2 Summary information of cis-SNPs for the ten cancers 
and the correlation of cis-SNP effects for each gene in TCGA and 
GTEx

Median: the median number of cis-SNPs across genes; R2: the determination 
coefficient of the cis-SNPs effects for each gene in the linear regression; M: the 
number of genes whose regression coefficient is significant (FDR < 0.05)

Cancer Median M (%) R2 > 0.10 (%)

ACC 3096 5227 (75.5) 237 (3.4)

BRCA 2878 3191 (75.3) 265 (6.3)

COAD 3478 4724 (69.8) 283 (4.2)

LIHC 3119 4018 (73.5) 191 (3.5)

LUAD 3534 4701 (77.5) 232 (3.8)

LUSC 3313 4149 (75.9) 289 (5.3)

OV 1571 3176 (70.9) 766 (17.1)

PAAD 3560 5067 (75.5) 203 (3.0)

STAD 3397 4176 (76.2) 174 (3.2)

UCEC 3324 4663 (73.8) 137 (3.4)
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effects between TCGA and GTEx demonstrated substan-
tial similarity in expression regulation. Therefore, it was 
worthwhile to learn SNP effects of TCGA through GTEx 
to improve power for eGene identification.

Correlation evaluation in TCGA cancer
As described above, the effects of SNPs in GTEx were 
predictive and informative for the genetic influence of 
variants in TCGA; we could thus reasonably assume 
that smaller P values would be generated when imple-
menting TLegene. Consequently, we expected higher 
detection rate of eGenes (P < 0.05) for specific genes 
with significant regression coefficients compared to 
those with insignificant ones. To validate this conjec-
ture, for each cancer we classified all genes into four 
different groups by regression coefficients (whether 
FDR < 0.05) and the association results of the four tests 
constructed in TLegene (whether P < 0.05) (Additional 
file 1: Tables S1–S4).

Taking COAD as an example, there were 4724 
(= 602 + 4211) genes with significant regression coef-
ficients (FDR < 0.05), whereas 1497 (= 66 + 1431) with 
non-significant regression coefficients (FDR > 0.05); 
of these genes, the P values of 602 (12.7% = 602/4724) 
and 66 (4.4% = 66/1497) genes in TLegene-oScore 
were less than 0.05, indicating that TLegene-oScore 
had an approximate three-fold higher likelihood 
(2.9 = 12.7/4.4) of identifying an eGene after informa-
tive transfer learning. We further employed the χ2 test 
to formally evaluate the difference in detection rate 
(e.g., 12.7% vs. 4.4%), and observed significant evi-
dence in detection rate for nearly all cancers in TCGA 
and significant increase in detection rate for TLegene 
(Fig. 4).

Discovered eGenes and their characteristics
Detected eGenes by TLegene
The number of eGenes discovered by TLegene is sum-
marized in Table  3. Particularly, among these cancers 
only few eGenes (Bonferroni-corrected P < 0.05) were 
discovered for ACC, OV, and UCEC. Totally, 169 dis-
tinct eGenes were identified, of which 88 were identified 
only for one cancer, while 81 eGenes were detected for 
at least one type of ten TCGA cancers (Additional file 1: 
Table  S5). Specifically, one eGene was shared by eight 
cancers, three eGenes were shared by seven cancers, 
five eGenes were shared by six cancers, six eGenes were 
shared by five cancers, seven eGenes were shared by four 
cancers, 20 eGenes were shared by three cancers, and 39 
eGenes were shared by two cancers (Additional file 1: Fig. 
S10). Furthermore, we found that TLegene-HMP identi-
fied 325 eGenes across all the ten TCGA cancers, with 

Fig. 3 A Distribution of regression coefficient for each gene when regressing the SNP effect in TCGA on that in GTEx. B Summary of 96 genes 
whose estimated regression coefficients simultaneously significant (FDR < 0.05) across all cancers; the magnitude of the regression coefficient 
is represented by the density and size of the color

Fig. 4 Improvement in detection rate for genes with significant 
regression coefficients for all the ten TCGA cancers after learning SNP 
effect of TCGA from those of GTEx. The improvement was calculated 
by the ratio of the detection rate of genes with significant regression 
coefficients to the detection rate of genes with non-significant 
regression coefficients; thus, a ratio > 1 indicates an increase 
in detection rate
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more discoveries compared to the other TLegene tests. 
We also performed Score [51, 52], but failed to detect any 
eGenes.

For the identified eGenes of each cancer, we carried 
out the traditional method for eGene discovery via linear 
regression to identify the association of each cis-SNP in a 
given gene with its expression level. The results showed 
that on average 79.9% of the eGenes identified by TLe-
gene could be replicated by the traditional approach 
(Table 3 and Additional file 1: Fig. S11).

We also tried to validate the eGenes discovered by 
TLegene (G2 in Table  2) with those identified eGenes 
in PancanQTL [53]. PancanQTL aimed to comprehen-
sively provide cis-eQTLs and trans-eQTLs in 33 cancer 
types from TCGA, which allowed us to obtain validated 
eGenes (http://gong_lab.hzau.edu.cn/PancanQTL/). We 
found that that on average 92.4% of the eGenes identified 
by TLegene could be repeated by PancanQTL (Table  3 
and Additional file 1: Fig. S11).

We further selected only significant cis-SNPs 
(FDR < 0.05) in explicit tissues available from GTEx to 
estimate the correlation of SNP effects between TCGA 
and GTEx for these identified eGenes for each can-
cer. The results showed that, except a few eGenes, R2 of 
eGenes estimated only with significant cis-SNPs were 
much higher than that of eGenes estimated with insignif-
icant cis-SNPs. Taking ACC as an example, two eGenes 
(ERAP2 and LRRC37A2) were identified, the R2 was 0.3 
or 0.4 estimated with only significant cis-SNPs, respec-
tively, which was larger than the value (0.1 or 0.2) esti-
mated with insignificant cis-SNPs (Additional file 1: Fig. 
S12).

Characteristics of eGenes and functional enrichment analysis
Previous studies provided evidence for some of these 
identified eGenes to support their connections with cer-
tain cancers, with some examples given in Additional 
file  1. Moreover, we performed KEGG and GO enrich-
ment analyses for these eGenes using the clusterProfiler 
package [54] (Additional file  1), and identified several 
enriched pathways for BRCA, LUAD, LUSC, PAAD 
and STAD (Additional file  1: Figs. S13–S14). We also 
conducted functional analysis with FUMA [55]. How-
ever, except for the eGenes found in BRCA, which were 
enriched in whole blood tissue, as well as the eGenes 
detected in STAD, which were enriched in brain puta-
men basal ganglia tissue, we did not find that the expres-
sion levels of these identified genes were significantly 
enriched in the most relevant tissue for the correspond-
ing cancer (Additional file  1: Figs. S15–S16); see Addi-
tional file 1 for more information.

Applying TLegene to Geuvadis
When applying TLegene to the Geuvadis data, we found 
that TLegene-HMP identified 329 eGenes, which was 
slightly less than the number of eGenes identified by 
TLegene-fScore (340), but was much more than the 
number of eGenes identified by TLegene-oScore (221) 
and TLegene-aScore (288). We also performed the score 
test, but only identified 27 eGenes. Furthermore, the 
KEGG and GO enrichment analyses and the functional 
analysis with FUMA [55] identified several enrichment 
pathways (Additional file 1: Fig. S17), and showed these 
eGenes were mainly enriched in cells EBV transformed 
lymphocytes tissue (Additional file 1: Fig. S18).

Table 3 Number of significant genes identified by TLegene for all the ten TCGA cancers

G1: the number of eGenes simultaneously identified by all the four TLegene tests; G2: the number of eGenes identified by any of the four tests; the last two columns 
denote the number (proportion) of eGenes replicated by the traditional eGene identification method using linear regression or PancanQTL

Cancer TLegene G1 G2 Linear regression (%) PancanQTL (%)

oScore aScore fScore HMP

ACC 2 2 2 2 2 2 2 (100) 2 (100)

BRCA 72 73 85 83 68 87 74 (85.1) 80 (92.0)

COAD 39 40 35 39 34 41 34 (82.9) 36 (87.8)

LIHC 13 13 9 12 9 13 8 (61.5) 13 (100)

LUAD 68 67 65 69 60 71 54 (76.1) 69 (97.2)

LUSC 39 40 40 40 37 42 32 (76.2) 40 (95.2)

OV 9 9 10 10 9 10 7 (70.0) 10 (100)

PAAD 42 43 40 41 36 47 38 (80.9) 41 (87.2)

STAD 21 22 24 24 21 24 20 (83.3) 22 (91.7)

UCEC 5 5 4 5 3 6 5 (83.3) 4 (66.7)

Total 310 314 314 325 279 343 274 (79.9) 317 (92.4)
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Discussions
Summary of our proposed method and real data 
applications
In this paper, we have proposed a powerful eGene iden-
tification method called TLegene by efficiently transfer-
ring auxiliary information into target task [35–37]. The 
efficient utilization of existing eQTL knowledge acquired 
from different but related problems can not only enhance 
power but also save time and cost for additional data col-
lection. We derived two separate score test statistics for 
the auxiliary effect and the target effect, respectively, and 
carried out novel combination to construct three joint 
tests in TLegene; however, it is hard to know which of 
them are optimal in practice. We thus sought to further 
aggregate the advantages of these joint tests. The chal-
lenge emerged due to the non-negligible positive depend-
ence among test statistics of the three methods because 
they were implemented on the same dataset with the 
similar logic [20, 30, 41]. The minimum P-value and per-
mutation methods can be used but they are either com-
putationally intensive or difficult to conduct since the 
correlation structure is unknown. To overcome this dif-
ficulty, we employed HMP (i.e., TLegene-HMP) to gen-
erate an omnibus test. The advantage of HMP is that it 
allows us to aggregate correlated P-values obtained from 
distinct tests into a single well-calibrated P-value without 
the knowledge of correlation structure while maintaining 
correct control of type I error [30, 41].

In our real application, by examining the genetic effects 
of SNP between GTEx and TCGA, we observed sub-
stantial similarity between the two types of impacts for 
many genes. This offered pivotal foundation for transfer-
ring knowledge acquired from GTEx to TCGA for power 
improvement when identifying eGenes. As expected, 
we revealed that leveraging this similarity could iden-
tify substantially more eGenes which were otherwise 
not detected if not transferring such knowledge. We also 
applied TLegene to the Geuvadis project, and showed 
that TLegene identified more eGenes and that these 
eGenes were mainly enriched in cells EBV transformed 
lymphocytes tissue, which further demonstrated the use-
fulness of TLegene in non-cancer studies.

However, we noted that many of eGenes identified by 
TLegene in the TCGA project were not enriched in the 
same cancer tissue. We here discussed this point from 
multiple aspects. First, it is important to highlight that 
we have shown supportive evidence for these discovered 
relationships between the identified eGenes and TCGA 
cancers (Additional file 1), and most of the eGenes could 
be replicated by the traditional method or PancanQTL 
[53]. Furthermore, we found that some eGenes not repli-
cated by PancanQTL had been demonstrated to be likely 
associated with certain cancers. For example, HLA-L 

showed strong evidence of association with lung cancer 
[56], PSORS1C1 was implicated in adenocarcinoma at the 
gastroesophageal junction [57]. Therefore, these eGenes 
were still of great value for further cancer research.

Second, when applying TLegene to the Geuvadis data, 
we found that TLegene-HMP identified 329 eGenes and 
that these eGenes were mainly enriched in cells EBV 
transformed lymphocytes tissue, which demonstrated the 
usefulness of TLegene in non-cancer studies. Moreover, 
compared to the number of eGenes identified in Geu-
vadis, the number of eGenes identified in TCGA was 
much less, which implied that more TCGA eGenes were 
not discovered yet and may be a possible reason why the 
identified eGenes in TCGA were not enriched in cancer-
specific tissues.

Third, eGenes likely play functional roles in only a small 
fraction of biological processes and pathways involved in 
cancer development and progression [58, 59], and may be 
also involved in other processes or pathways that are not 
directly related to cancers. For examine, the discovered 
eGenes may be associated with normal tissue develop-
ment, cell homeostasis, or other biological functions that 
indirectly promote cancer susceptibility or progress [60, 
61]. Therefore, the lack of enrichment in cancer-associ-
ated tissues does not negate the potential involvement of 
eGenes in the cancer biology.

Comparison with previous work
TLegene distinguishes itself from previous approaches 
in four aspects. First, TLegene is based on a set of cis-
SNPs rather than individual variants. This SNP-set based 
method has been shown to possess higher power in many 
cases compared to single-marker analysis [15].

Second, TLegene is different from Func-eGene [2] 
which attempted to improve the power of eGene detect-
ing with own genomic functional annotations of vari-
ants rather than auxiliary information. In addition, 
Func-eGene analyzed individual cis-variants and was 
time-consuming; thus, it was not yet applicable for simul-
taneously handling a great many annotations. In contrast, 
integrating multiple auxiliary studies into TLegene is 
conceptually and practically easy.

Third, from the statistical and methodological perspec-
tive, TLegene is related to RECOV [1]. However, RECOV 
was proposed to utilize information shared cross distinct 
tissues with the aim to identify eGene within any of tis-
sues under consideration, which is different from our 
objective that we hope to discover eGene within one spe-
cial target tissue by exploiting knowledge acquired from 
different but possibly related auxiliary samples. Moreo-
ver, RECOV also focused on eGene identification with 
individual variants.
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Fourth, the most pronounced distinction is that, as far 
as we know, TLegene is among the first to explicitly con-
struct the eGene identification method under the transfer 
learning framework [25–29, 35–37]. Actually, the perva-
sive genetic similarity of shared across distinct tissues 
[18], populations [62–69] and studies [70–78] provides 
solid foundation for eGene identification by exploiting 
existing genomic knowledge via transfer learning.

Furthermore, from a Bayesian point of view [79], the 
genetic overlap between the target and auxiliary studies 
was integrated via a prior function in TLegene. The effect 
similarity of many genes means informative and predic-
tive, which would produce more accurate parameter 
estimation and more powerful hypothesis test method. 
Compared to the classical Bayesian model, the main dif-
ference of TLegene is that we adopted a probabilistic 
approach [80], instead of sampling techniques or vari-
ational methods [33], to estimate unknown parameters 
and assess the hypothesis test. In addition, in TLegene 
we ignored the uncertainty of the SNP effects estimated 
from auxiliary populations.

Future study directions
Out proposed method is not without limitations. Obvi-
ously, TLegene did not consider how to further pinpoint 
eQTLs within a discovered eGene. The step-down pro-
cedure can be applied to determine which cis-variants 
likely drive the association [81]. Indeed, using the step-
down procedure after detecting eGenes, we observed 
that approximately 90% of discovered eGenes had only 
one independent eQTL and the remaining had at least 
two uncorrelated eQTLs, indicating allelic heterogeneity 
of gene expression [82]. However, the step-down proce-
dure is not suitable for eGene if the gene only includes 
cis-SNPs with considerably weak effect, where no single 
eQTL would be picked out. We reserve the topic of fur-
ther eQTL determination in TLegene as an important 
direction for future study. Finally, as a methodological 
study, our work cannot perfectly validate these discov-
ered eGenes for various cancers although many of the 
eGenes detected by TLegene could be replicated by the 
traditional method or PancanQTL. Therefore, our find-
ings warranted further validations by extensive experi-
mental studies.

Conclusions
TLegene represents a flexible and powerful statistical 
method for eGene identification through transfer learn-
ing of genetic similarity shared across auxiliary and target 
studies.
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