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Abstract 

Background CLAD (Chronic Lung Allograft Dysfunction) remains a serious complication following lung transplanta-
tion. Some evidence shows that portions of Extracorporeal Photopheresis (ECP)-treated patients improve/stabilize 
their graft function. In spite of that, data concerning molecular mechanisms are still lacking. Aims of our study were 
to assess whether ECP effects are mediated by Mononuclear Cells (MNCs) modulation in term of microRNAs (miRNAs) 
expression and growth factors release.

Methods Cells from leukapheresis of 16 CLAD patients, at time 0 and 6-months (10 cycles), were cultured 
for 48h ± PHA (10 ug/ml) or LPS (2 ug/ml). Expression levels of miR-146a-5p, miR-155-5p, miR-31-5p, miR181a-5p, miR-
142-3p, miR-16-5p and miR-23b-5p in MNCs-exosomes were evaluated by qRT-PCR, while ELISA assessed different 
growth factors levels on culture supernatants.

Results Our result showed miR-142-3p down-regulation (p = 0.02) in MNCs of ECP-patients after the 10 cycles 
and after LPS stimulation (p = 0.005). We also find miR-146a-5p up-regulation in cells after the 10 cycles stimulated 
with LPS (p = 0.03). Connective tissue growth factor (CTGF) levels significantly decreased in MNCs supernatant 
(p = 0.04). The effect of ECP is translated into frequency changes of Dendritic Cell (DC) subpopulations and a slight 
increase in T regulatory cells (Treg) number and a significant decrease in CTGF release.

Conclusions ECP might affect regulatory T cell functions, since both miR-142 and miR-146a have been shown to be 
involved in the regulation of suppressor regulatory T cell functions and DCs. On the other side ECP, possibly by regu-
lating macrophage activation, is able to significantly down modulate CTGF release.
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Background
The long-term outcome of lung transplantation is sig-
nificantly affected by the occurrence of chronic lung 
allograft dysfunction (CLAD). CLAD and its two main 
phenotypes, bronchiolitis obliterans syndrome (BOS) 
and restrictive allograft syndrome (RAS), have been 
redefined by the International Society of Heart and Lung 
Transplantation (ISHLT) [1]. Extracorporeal photopher-
esis (ECP), an immunomodulatory treatment based on 
the reinfusion of autologous UV-A irradiated peripheral 
blood leucocytes after the addition of 8-methoxypso-
ralen, is considered one of the most promising therapies 
for CLAD [2]. In particular, in BOS patients, ECP seems 
able to stabilize graft function without major side effects, 
even in highly compromised patients [3–5]. ECP has 
been shown to activate leucocytes and to induce some 
cell modifications, including apoptosis of T and NK cells 
[6–8]. It has been postulated that apoptotic T cells may 
be engulfed by activated monocytes that then differen-
tiate into immature dendritic cells (iDC). After phago-
cytosis, iDC can maintain their immature phenotype 
or differentiate into mature plasmacytoid DC (pDC) 
through increased production of pro/anti-inflammatory 
cytokines. The latter leads to the presentation of anti-
gens in a context of low co-stimulatory molecules with 
expansion of regulatory cell numbers and/or functions, 
increasing graft tolerance [9–11]. However, despite ECP 
treatment is being largely adopted in CLAD, some major 
questions are still open such as: (i) the exact mechanisms 
by which ECP exerts its therapeutic effect in CLAD 
patients, (ii) the possibility of predicting which patients 
will respond to ECP, (iii) the optimal treatment schedule 
and the impact of this treatment on patients’ quality of 
life. Few studies have investigated the ECP mechanism 
of action in CLAD, suggesting the occurrence of tolero-
genic mechanisms but results are, so far, inconclusive 
[9–11]. The prediction of “ECP response” has also been 
attempted by clinical CLAD sub-phenotyping and, more 
recently, on a small cohort of ECP treated patients by 
the identification of some serum miRNAs, which appear 
to be dysregulated at ECP initiation and significantly 
affected by ECP only among treatment responders [12]. 
We observed a significant downregulation of circulating 
hsa-miR-155-5p, hsa-miR-146a-5p and hsa-miR-31-5p 
in BOS patients at the start of ECP when compared to 
healthy subjects. In responders, increased miR-155-5p 
and decreased miR-23b-3p expression levels at 6 months 
were found [12].

Methods
Aim, design and setting of the study
The aim of the present study was to assess whether ECP 
effects on miRNAs and cytokine dysregulation are due to 

the modulation of Mononuclear Cell (MNCs) activation 
and function.

This is a prospective pilot in vitro study, regarding Lung 
transplanted (LTx) patients who developed BOS and 
underwent ECP courses between 2018 and 2022. After 
BOS diagnosis (12% BOS stage 3, 19% BOS stage 2, 69% 
BOS stage 1), formulated according to recent ISHLT con-
sensus documents [13], patients were treated by off-line 
ECP. All patients were treated with calcineurin inhibitors 
(Tacrolimus or Cyclosporin A) in combination with low-
dose steroids; in addition, most patients also received 
Mycofeolate Mofetil. All patients had experienced a 
3  month-course of low-dose Azithromycin before start-
ing ECP.

16 adult patients with BOS were treated with ECP 
using the off-line method at the Apheresis Unit of the 
Immunohaematology and Transfusion Service of our 
hospital. Exclusion criteria were multi-organ transplan-
tation and age ≤ 18. Successful treatment of BOS is usu-
ally defined as stabilization or slowing of FEV1 decline. In 
our study, non-responders were defined as patients who 
had a decline >  10% after ECP treatment. Conversely, 
responder were defined as patients with > 10% improve-
ment of FEV1, compared with the value at the time ECP 
treatment was started, or stable patients with ≤ 10% 
improvement or ≤ 10% worsening of FEV1 compared to 
the value at the time of initiation of ECP treatment.

Plasma samples and MNCs were collected from all 
enrolled patients at two time-points: at ECP enrol-
ment and after 10 cycles of treatments. For 5 responder 
patients it is possible to cryopreserve MNCs collected 
from leukapheresis (pre-irradiation) for further T regula-
tory cells (Tregs) and dendritic cells (DCs) evaluated by 
flow cytometry.

ECP procedures
PBMCs were collected from the patient using a cell sepa-
rator device, processing 1 blood volume. A complete cell 
count on the leukapheresis product was performed at the 
end of each collection, as per routine (quality control). 
Then, cells were irradiated (UV-A at 2 J/cmq; Maco-
genic, Macopharma, France) after the dilution with a 
saline solution and the addition of 8-methoxypsoralen 
(at 200 ng/mL concentration). Finally, the photoactivated 
PBMCs were immediately reinfused into the patient [14]. 
During the entire ECP procedure, vital parameters, such 
as blood pressure, heart rate and oxygen saturation, were 
monitored basing on the patient’s clinical status. Any 
adverse event related to the procedure was registered [6, 
14].

Each ECP cycle comprises two treatment that are per-
formed every on consecutive days. ECP treatment sched-
ule consisted in 2 procedures weekly for 2 weeks followed 
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by cycles every other week and then 1 cycle a month. The 
schedule of ECP was reported in Additional file 1: Figure 
S2.

Mononuclear cell culture
MNCs, obtained from leukapheresis at the first and the 
tenth ECP cycle, were cultured for 48  h in RPMI sup-
plemented with 10% (v/v) heat-inactivated fetal bovine 
serum (FBS) and 10  ug/ml of Phytohaemagglutinin 
(PHA) or RPMI medium with 10% FCS and 2  ug/ml of 
Lipopolysaccharides (LPS). After incubation, the super-
natant was collected and stored at – 20 ℃ until analysis.

In a subpopulation of responder patients (N = 5), leu-
kapheresis cells was used for the determination of DCs 
and 20 ×  106 cells were subjected to cryopreservation for 
subsequent determination of Treg cells numbers.

miRNAs selection
For the present study, we selected four miRNAs previ-
ously identified as being associated with BOS and/or ECP 
response in serum [12] and miRNAs previously reported 
in proliferation and function regulation of the main 
immune cell types of the innate and adaptive immu-
nity [15, 16]. In particular, we investigated the relative 
expression of hsa-miR-155-5p, hsa-miR-146a-5p, hsa-
miR-31-5p, hsa-miR-181a-3p, hsa-miR-16-5p, hsa-miR-
142-3p and hsa-miR-23b-5p, reported to be involved in 
the regulation of DCs, B ad T cell immunosoppressive 
properties. These cells are known to play a critical role in 
maintaining tolerance and/or driving graft rejection.

miRNAs analysis
Exosome-derived RNA were obtained using the exoRNe-
asy Serum/Plasma Midi Kit (Qiagen) from 1 mL MNCS 
culture supernatant. The kit provides exosome isolation 
followed by a total RNA isolation procedure.

Complementary DNA (cDNA) was synthesized with 
miRCURY LNA RT Kit (Qiagen) at 42 ℃ for 60 min and 
95 ℃ for 5 min. For the quality control of differences in 
RNA extraction or RT efficiencies, a synthetic cel-miR-39 
was utilized as spike-in control RNA. Real-time PCR 
analysis was performed to evaluate miRNAs’ expression 
levels using miRCURY LNA miRNA PCR-specific Detec-
tion Probe and miRCURY LNA SYBR Green PCR Kit 
(Qiagen) with a LightCycler 480 (Roche, Switzerland), 
according to the manufacturer’s recommendations. Ther-
mal cycling conditions consisted of initial denaturation at 
95 ℃ for 10 min, followed by 45 cycles of 95 ℃ for 10 s 
followed by 60 ℃ for 1 min. The threshold cycle (Ct) was 
defined as the fraction cycle number at which fluores-
cence exceeded the given threshold. The stable Ct values 
of cel-miR-39 obtained from all spike-ins indicated suc-
cessful RNA isolation, reverse transcription and qPCR 

detection system. Each experimental condition was per-
formed in triplicate. Relative quantifications were calcu-
lated with the comparative Ct method.

Normalization analysis and identification of endogenous 
reference
We first screened for the most stability expressed miR-
NAs. miRNAs were processed by NormFinder (http:// 
moma. dk/ NormF inder- softw are), which works with an 
algorithm for linear data to determine the most stable 
normalization candidate gene [17]. The tool calculates a 
stability value (SV) for every single candidate. The data 
output come with the stability values for all candidates 
together with standard deviations (SD) and announces 
the most stable candidate gene. The lower stability value 
identified the more stable and it is the expression of the 
corresponding candidate gene. Splitting data into study 
groups, results in additional intra- and intergroup varia-
tion and determination of the best endogenous normal-
izer combination.

Growth factor arrays
Connective tissue growth factor (CTGF), transform-
ing growth factor-beta (TGF-β), Vascular Endothelial 
Growth Factor (VEGF), Fibroblast growth factors (FGF) 
and Platelet-Derived Growth Factor (PDGF) levels were 
determined on culture supernatant by ELISA (Abcam) 
following the manufacturer’s instructions and the results 
were expressed as pg mL − 1.

T regulatory cells (tregs) and dendritic cells (DCs)
Tregs were evaluated by flow cytometry on cryopre-
served MNCs collected from leukapheresis (pre-irra-
diation). Cells were thawed and suspended in RPMI 
supplemented with 10% heat-inactivated fetal calf serum 
(Euroclone, Milan, Italy). For cell-surface staining, anti 
CD4, CD127 and CD25 antibodies (Becton Dickinson, 
Milan, Italy) were used. After incubation at + 4  ℃ for 
30 min, cells were than treated with fixation/permeabili-
zation buffer (eBioscience, Waltham, MA, USA) at + 4 ℃ 
for 40  min. After three washings, intracellular staining 
with forkhead box P3 transcription factor (FoxP3) spe-
cific antibody (eBioscience, ThermoFisher Scientific, 
Waltham, MA, USA) was carried out at + 4 ℃ for 30 min. 
Appropriate isotype-matched controls were used. Acqui-
sition and analysis were performed by Canto II flow 
Cytometer (Becton Dickinson). Tregs were defined 
as CD4 + CD127- CD25 + cells expressing FoxP3, and 
expressed as percentage.

For DCs, a sample of 100 µl obtained from leukapher-
esis (pre-irradiation) was diluited 1:10 in PBS Buffer 
(BeckmanCoulter Inc., USA), then 100  µl of solution 
was incubated with monoclonal antibodies (mAbs) 

http://moma.dk/NormFinder-software
http://moma.dk/NormFinder-software
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for 15  min in the dark at room temperature. The stain-
ing mAbs included: 20  µl Lineage cocktail (CD3 CD14 
CD16 CD19 CD20 CD56)-FITC, 20  µl HLA DR-PE, 
5  µl CD45-V500, 5  µl CD11c-APC, 2  µl CD123-BV605 
(BD Biosciences, San Jose, CA, USA) according to the 
manufacturer’s instructions. After 10  min of incuba-
tion in presence of 2  ml of Ammonium Cloride/Lysing 
buffer 1 × the sample, completely clear, was analyzed. 
The acquisition of events was performed using a medium 
flow rate, with 100000 CD45 + events as stop criteria. The 
analysis was performed as follows: cells were gated on 
CD45; after exclusion of Lineage Cocktail positive cells, 
HLA DR + population was selected and finally divided 
into plasmacytoid DCs (CD123 +), conventional DCs 
(CD11c +) and immature DCs (CD123-/CD11c-).

Plasma IL‑10 determination
The plasma Interleukin-10 (IL-10) was titled using a com-
mercial kit (Human Immunoassay, R&D Systems, Min-
neapolis, MN), with a quantitative enzyme immunoassay 
technique, according to the Manufacturer’s Instructions. 
The results are expressed in pg mL − 1.

Statistical analysis
The mean and standard deviation or median and inter-
quartile range were presented for continuous variables, 
and numbers and percentages were presented for cat-
egorical variables. For continuous variables, groups were 
compared using parametric or non-parametric tests, 
according to data distribution. Correlations were calcu-
lated using Spearman’s correlation test. One-way analysis 
of variance was used to calculate the differences in candi-
date reference genes between the patients and controls. 
Statistical analyses were performed using GraphPad 
Prism (GraphPad Software, Inc., San Diego, CA, USA). 
All statistical tests were two-sided, and a p-value < 0.05 
was considered statistically significant.

Results
Demographic and clinical features of patients
Sixteen patients were included in the analysis with a 
mean age at lung transplantation of 44 ± 16 years. 69% of 
patients were males (69/31 M/F). The most represented 
underlying diagnosis was idiopathic pulmonary fibro-
sis (IPF, 25%), followed by cystic fibrosis (CF, 12.5%) and 
lung fibrosis secondary to asbestos/alveolitis (12.5%). In 
Table 1 were summarized features of patients classified in 
responder and non-responder.

According to the stabilization or improvement of lung 
function from basal ECP entry value, 5 (31%) patients 
were classified as non-responders and 11 (69%) patients 
were deemed as responders after 6  months of ECP 
treatment.

Candidate miRNAs for endogenous normalization
We investigated the relative expression of hsa-miR-
155-5p, hsa-miR-146a-5p, hsa-miR-31-5p, hsa-
miR-181a-3p, hsa-miR-16-5p, hsa-miR-142-3p and 
hsa-miR-23b-5p, involved in maintaining tolerance and/
or driving rejection of grafts as knowing regulator of 
immunosoppressive properties of DCs, B cells ad T cells 
[15, 16].

To identify potential miRNA references for exosomal 
RNA quantification, we screened for the most stable 
expressed miRNAs by NormFinder. Expression levels of 
the small nuclear RNA RNU6 were also included in the 
normalization analysis.

Based on NormFinder analysis, miR-16-5p ranked as 
the most stable miRNA and then it was used for normali-
zation (Additional file 1: Figure S1).

Expression levels of selected miRNAs in unstimulated/
stimulated MNCs‑derived exosomes
Following our previous results on the levels of circulat-
ing miRNAs [12], in order to define if ECP effects are 
mediated by modulation of MNCs in term of differen-
tial miRNA expression and release. The present study 

Table 1 demographic and clinical features of patients included in the study

BOS patients (n = 16) Responder patients (n = 11) Non responder 
patients (n = 5)

Males (n, %) 11 (69%) 8 (73%) 3 (60%)

Age at transplantation (mean ± DS) 44 ± 16 45 ± 17 41 ± 9

Underlying diagnosis (n, %):

 - IPF 4 (25%) 2 (18%) 2 (40%)

 - Cystic Fibrosis 2 (12.5%) 1 (9%) 1 (20%)

 - Lung Fibrosis secondary to asbestos/alveolitis 2 (12.5%) 1 (9%) 1 (20%)

 - Other 8 (50%) 7 (64%) 1 (20%)

Bilateral lung transplantation (n, %) 12 (75%) 7 (64%) 5 (100%)
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represents an extension of the previous one [12] and 
it regard patients subjected to ECP using the off-line 
method at the Apheresis Unit of the Immunohaematol-
ogy and Transfusion Service of our hospital.

In the present study, we determined the expression 
levels of miR-155-5p, miR-146a-5p, miR-31-5p, miR-
181a-3p, miR-142-3p and miR-23b-5p in unstimulated/
stimulated MNC-derived exosomes. In Additional file 1: 
table S1, we reported the overall results of the seven miR-
NAs in the studied population.

After 10 cycles of ECP we observed that the release 
in exosomes of miR-142-3p by unstimulated MNCs 
was down-regulated compared to pre-treatment lev-
els (Fig.  1A,  p =0.0215). This was also replicated when 
MNCs were stimulated with LPS (Fig. 1B, p = 0.0048), but 
not with PHA (Fig. 1C).

On the other hand, miR-146a-5p resulted up-regulated 
by ECP when MNCs were stimulated by LPS (Fig.  1E, 
p = 0.0329). No significant difference was detected in 

miR-146a-5p levels when MNCs were unstimulated or 
stimulated with PHA (Fig. 1D–F).

In order to investigate whether any miRNAs could pre-
dict the response to ECP, we compared their baseline lev-
els in MNCs exosomes of patients who showed a clinical 
response/no response to therapy at last follow up (Fig. 2). 
However, we could not detect any significant difference 
between these two groups of patients. Limiting the analy-
sis to responders, a significant downregulation of hsa-
miR-142-3p in exosome was present when MNCs were 
stimulated with LPS (p = 0.0117).

Growth factor levels in supernatant of unstimulated/
stimulated MNCs
Growth factor levels were assessed in supernatant of 
unstimulated/stimulated MNCs at the two distinct time 
points: pre-ECP and after 10 cycles (Fig. 3). CTGF release 
by LPS-stimulated MNCs was significantly reduced by 
ECP (p = 0.0475, Fig. 3A).
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Fig. 1 Quantitative expression of (A, B, C) miR-142-3p and (D, E, F) miR-146a-5p in exosome of MNCs patients before ECP therapy and after 10 
cycles of treatment. Relative expressions were expressed as log2 transformed values. *p < 0.05, ** p < 0.01
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Dendritic cell subsets and regulatory T cells
We next sought to understand mechanism by which 
ECP and miRNAs mitigates CLAD in a subpopulation 
of responder patients (N = 5). Our data demonstrated 
how the effect of ECP was translated into frequency 
changes of DC subpopulations by monitoring the rate 
of CD123 + plasmacytoid DC (pDC) (Fig.  4A) and 
CD11c + myeloid DC (mDC) (Fig.  4B). We observed 

that both pDC and mDC were increased in responder 
patients over 10 cycles of ECP treatment, which how-
ever does not reach significant differences, but the 
pDC/mDC ratio remained unaltered (Fig. 4D). Our data 
also show how the number of immature DCs remains 
unchanged before and after treatment (Fig. 4C), under-
lining the association of DC maturation to the thera-
peutic mechanism of ECP.
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responder (grey box) patients. Relative expressions were expressed as log2 transformed values. *p < 0.05
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ECP treatment does not induced an increase in Treg 
numbers (Fig.  5A) as well as in IL-10 plasma levels 
(Fig. 5B) after 10 cycles.

Discussion
Epigenetic changes, including miRNAs deregulation, 
have been suggested to play a significant role in develop-
ment of CLAD in LTx recipients. Many studies have tried 
to identify miRNA ideal candidate, and the downstream 
pathways implicated in the bronchiolar fibro-oblitera-
tive process [17]. Different studies evaluated the immu-
nomodulatory effect of ECP therapy in patients after 
solid organ transplant rejection [18–22], but few studies 
have explored the molecular regulation associated with 
ECP treatment [12].

Our data on patients with obstructive CLAD phe-
notype show that ECP is able to up-regulate the release 
of miR-146a-5p by MNCs upon stimulation with LPS. 
These data are consistent with those previously observed 
in the serum of ECP-treated patients where we found a 

different expression profile of specific circulating immu-
noregulatory miRNAs. In fact, in patients with BOS at 
the time of ECP enrolment miR-146a-5p was significantly 
downregulated in serum compared to healthy controls 
[12]. Within the BOS patient population, we found a non-
significant trend towards an increase, was observed for 
post-ECP miR-146a serum levels. Based on the present 
results, we hypothesize that miR-146a-5p levels in serum 
were potentially due to its release by MNCs and achieved 
significant differences when were directly assessed on the 
exosomes released by MNCs, as in the present study. The 
role of miR-146a has been documented in the negative 
regulation of immune responses, particularly of myeloid 
cells due to limiting TNF receptor-associated factor 6 
(TRAF6) stimulation and interleukin receptor-associated 
kinase 1/2 (IRAK1/ 2)-mediated signaling in inflamma-
tory conditions [23, 24]. MiR-146a expression has been 
reported to be elevated in Tregs and was induced upon 
activation [25]. Increased expression of miR-146a has 
also been observed in human monocytes in response to 
TLR4 stimulation by lipopolysaccharides through direct 
NF-κB–mediated induction [24]. In addition, miR-146a is 
crucially involved in the survival and TLR-induced mat-
uration of pDCs, which influence their ability to induce 
CD4 + T cells proliferation and IFN-γ production [26].

In the present study, we also observed a significant 
upregulation of miR-142-3p by unstimulated MNCs 
and after culturing in the presence of LPS. Several pub-
lished studies demonstrated that miR-142-3p plays a role 
in the modulation of Treg function and in particular, its 
down-regulation confers suppressor functions to Treg 
cells [27]. In mice, miR-142 is constitutively expressed 
in immature bone marrow DCs, and following LPS acti-
vation, its expression is decreased [28]. An association 
between miR-142 and monocyte-derived DCs (moDCs) 
of patients with Systemic Lupus Erythematosus (SLE) 

Fig. 4 DCs subpopulations at baseline and after ECP: CD123 + plasmacytoid DC (A), CD11c + myeloid DC (B) and immature DCs (C). Plasmacytoid 
and myeloid DC ratio before and after 10 ECP cycles (D)

Fig. 5 Treg frequency (A) and plasma IL-10 (B) in responder patients, 
pre-ECP and after 10 cycles
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has been described in the literature [29]. In the same 
study, the overexpression of miR-142-3p caused the 
elevation of IL-6 and TNF-α, leading to a decrease of 
CD4 + CD25 + Foxp3 + Tregs (which have anti-inflam-
matory effect), and an imbalance of IL-17 and IL-10. 
Therefore, overexpression of miR-142-3p in moDCs sup-
pressed Tregs increase, which correlated with a reduced 
capability to suppress responder T cell proliferation and 
might thereby contribute to the development of SLE [29]. 
This therefore induces us to speculate that a decrease in 
release of miR-142-3p by MNCS in ECP treatment might 
contribute to modulating the activity or the frequency of 
Tregs clones.

Previous studies indicate a key role played by DCs and 
Tregs in the immunomodulatory mechanism of ECP and 
suggest that ECP induces Tregs expansion and/or tolero-
genic DCs [30–32]. Moreover, it was demonstrated that 
ECP might influence the frequency of circulating Tregs 
[31]. In the present study, we observed a slight increase 
in Tregs in responder patients, even in the absence of an 
increase in plasma IL-10 levels. Our data show how the 
effect of ECP is translated into frequency changes in DC 
subpopulations with an increase of both pDC and mDC. 
Although the lack of statistical significance indicates the 
need for analysis in a larger cohort to ascertain the valid-
ity of these findings, higher pDC and mDC support an 
ECP-induced effect.

These miRNAs may be involved in the modulation 
of other regulatory cell clones. Indeed, published data 
indicate that miRNAs are also involved in modulating 
transcriptional factors to become complex regulatory 
networks that regulate the Myeloid/Derived Suppres-
sor Cells (MDSC) [33]. In melanoma, miR-146a was 
responsible for the conversion of monocytes into MDSC 
(CD14 + HLA-DR neg cells) mediated by melanoma 
extracellular vesicles and were shown to recreate MDSC 
features upon transfection [34], suggesting that its levels 
can influence the fine-tuning of pro- or anti-inflamma-
tory pathways, depending on the cell type. Interesting 
future developments could be aimed at the search for 
myeloid suppressor cells in patients who will undergo 
ECP together with their correlation with flow cytometric 
markers of suppressive activity.

Lastly, we also detected a significant variation in CTGF 
release, which resulted significantly down regulated 
by ECP treatment, when cells were stimulated by LPS. 
CTGF is an important mediator in several fibrotic dis-
orders. CTGF in plasma and urine has previously been 
proposed as a biomarker monitoring tool to measure the 
extent of ongoing fibrosis in several fibrotic disorders and 
was correlated with disease severity [35]. This growth 
factor plays a relevant role in post-transplant fibrogenesis 
and its expression in Broncho Alverolar Lavage (BAL) 

has been recently shown to be associated with fibrosis 
in CLAD, although no significant difference in plasma 
CTGF levels was found [36]. This data, if confirmed in 
a larger cohort, could suggest a possible interference 
of ECP in graft fibrogenesis via modulation of CTGF 
release.

Conclusion
We can infer that ECP might affect regulatory T cell 
functions, since both miR-142 and miR-146a have been 
shown to be involved in the regulation of suppressor reg-
ulatory T cell functions and DCs. On the other side ECP, 
possibly by regulating macrophage activation, is able to 
significantly down modulate CTGF release. This prelimi-
nary study opens some future directions, including a bet-
ter definition of miRNAs role in DC subpopulations and 
Treg functions and the confirmation of their implication 
in the ECP mechanism of action.
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