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Abstract 

Background Primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) variant syndrome (VS) exhibit a com-
plex overlap of AIH features with PBC, leading to poorer prognoses than those with PBC or AIH alone. The biomarkers 
associated with drug response and potential molecular mechanisms in this syndrome have not been fully elucidated.

Methods Whole-transcriptome sequencing was employed to discern differentially expressed (DE) RNAs within good 
responders (GR) and poor responders (PR) among patients with PBC/AIH VS. Subsequent gene ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted for the identified DE 
RNAs. Plasma metabolomics was employed to delineate the metabolic profiles distinguishing PR and GR groups. The 
quantification of immune cell profiles and associated cytokines was achieved through flow cytometry and immu-
noassay technology. Uni- and multivariable logistic regression analyses were conducted to construct a predictive 
model for insufficient biochemical response. The performance of the model was assessed by computing the area 
under the receiver operating characteristic (AUC) curve, sensitivity, and specificity.

Findings The analysis identified 224 differentially expressed (DE) mRNAs, 189 DE long non-coding RNAs, 39 DE 
circular RNAs, and 63 DE microRNAs. Functional pathway analysis revealed enrichment in lipid metabolic pathways 
and immune response. Metabolomics disclosed dysregulated lipid metabolism and identified PC (18:2/18:2) and PC 
(16:0/20:3) as predictors.  CD4+ T helper (Th) cells, including Th2 cells and regulatory T cells (Tregs), were upregulated 
in the GR group. Pro-inflammatory cytokines (IFN-γ, TNF-α, IL-9, and IL-17) were downregulated in the GR group, 
while anti-inflammatory cytokines (IL-10, IL-4, IL-5, and IL-22) were elevated. Regulatory networks were constructed, 
identifying CACNA1H and ACAA1 as target genes. A predictive model based on these indicators demonstrated 
an AUC of 0.986 in the primary cohort and an AUC of 0.940 in the validation cohort for predicting complete biochemi-
cal response.

Conclusion A combined model integrating genomic, metabolic, and cytokinomic features demonstrated high 
accuracy in predicting insufficient biochemical response in patients with PBC/AIH VS. Early recognition of individuals 
at elevated risk for insufficient response allows for the prompt initiation of additional treatments.
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Introduction
Autoimmune hepatitis (AIH) is a severe and chronic pro-
gressive inflammatory liver ailment characterized by an 
enduring autoimmune response directed against liver 
autoantigens [1, 2]. Primary cholestatic hepatitis (PBC) 
manifests as a chronic, cholestatic autoimmune liver con-
dition characterized by the destruction of biliary epithe-
lial cells and the presence of antimitochondrial antibodies 
(AMA) [3, 4]. PBC/AIH variant syndrome (VS) repre-
sents a variant form of either AIH or PBC, encompass-
ing AIH features with cholestatic attributes or elevated 
aminotransferases in the context of PBC, accompanied 
by autoantibodies and elevated Immunoglobulin G (IgG) 
levels [5–8]. The manifestation of variant syndromes 
occurs often sequentially over time with no overlapping 
features at the initial diagnosis. PBC/AIH VS remains an 
uncommon disorder, affecting about 5–20% of patients 
with diagnostic features of either AIH or PBC  [9]. This 
wide range reflects the lack of standardization of crite-
ria used to define PBC/AIH overlapping disease. From a 
biological perspective, it remains unclear whether these 
syndromes should be considered unique autoimmune 
entities causing damage to bile ducts and hepatocytes or 
whether they represent presentations of two distinct dis-
eases (PBC and AIH).

Based on the histologic, biochemical, and immu-
nologic features of each parent disorder, the Paris cri-
teria represent the most widely accepted diagnostic 
method for PBC/AIH VS [10]. The majority of investi-
gators have opted for a first-line treatment regimen that 
combines ursodeoxycholic acid (UDCA) and corticos-
teroids, with or without azathioprine (AZA) [10–17]. 
Nevertheless, patients with PBC/AIH VS often experi-
ence more unfavorable prognoses compared to those 
with PBC or AIH alone [18]. A retrospective cohort 
study in Korea demonstrated that overlap syndrome 
patients exhibited a lower remission rate to UDCA 
and steroid combination therapy, coupled with a sig-
nificantly shorter time-to-progression of liver disease 
than AIH patients [19]. Our previous study, encom-
passing 432 PBC patients, revealed that the biochemi-
cal remission rate of PBC patients with AIH features 
was markedly lower than that of patients with PBC 
alone, with 88.9% of liver biopsy specimens from non-
responders showing interface hepatitis [20]. In a retro-
spective study of a substantial PBC/AIH patient cohort, 
UDCA alone failed to induce a biochemical response 
in the majority of patients with interface hepatitis [13]. 
Despite this, there is a dearth of studies concerning the 

response in this patient subgroup. Our earlier inves-
tigation, which involved 134 PBC-AIH VS patients, 
indicated a significantly higher incidence of liver-
related adverse events in non-responders compared to 
responders, with high cholesterol levels, reduced histo-
logic bile ducts, and cirrhosis being potential risk fac-
tors for poor response [21]. The development of PBC/
AIH VS is a multifaceted, multistep process involving 
various molecular pathways and factors [5]. Identify-
ing more detailed regulatory molecules is imperative to 
better predict drug response in these patients, facilitat-
ing early intervention.

The advancement and decreasing costs of molecular 
measurement technologies have enabled the diverse 
profiling of disease molecular features, spanning the 
genome, transcriptome, proteome, metabolome, sin-
gle-cell sequencing, or cytokinome [22, 23]. Whole-
transcriptome analyses have revealed that a substantial 
portion of the human genome undergoes transcription, 
generating non-coding (nc) transcripts, such as long 
noncoding RNAs (lncRNAs), microRNAs (miRNAs), 
and circular RNAs (circRNAs) [24]. MiRNAs execute 
their biological roles by binding to miRNA response 
elements (MREs) on target mRNA, inducing gene 
silencing post-transcription [25]. LncRNAs have been 
implicated in modulating various cell phenotypes by 
influencing miRNA and mRNA expression and stabil-
ity [26]. CircRNAs, owing to their resistance to exo-
nucleases and enhanced stability compared to linear 
RNAs, can continuously accumulate within cells [27]. A 
comprehensive understanding of the molecular mecha-
nisms and intricate network of RNA-level interactions 
could unveil innovative diagnostic and prognostic bio-
markers [28, 29]. However, integrating this knowledge 
with other "omic" studies may provide a more profound 
understanding of disease processes [30, 31]. Metabolic 
profiling, or metabolomics, provides information-rich 
insights into metabolic alterations reflective of genetic, 
epigenetic, and environmental influences on cellular 
physiology [32, 33]. Cytokines, contributing to dis-
ease development and progression, exhibit deregulated 
serum levels in various liver diseases, correlating with 
patient outcomes [34, 35]. The integration of transcrip-
tomics with metabolomics or cytokinomics holds the 
potential to offer deeper insights into disease pathogen-
esis compared to either approach in isolation [36].

In this study, we utilized whole-transcriptome 
sequencing to discern driver genes exhibiting notable 
transcriptional variations among PBC/AIH VS patients 
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classified as good responders and poor responders. 
This thorough analysis sought to identify differentially 
expressed genes and non-coding RNAs (ncRNAs) 
linked to distinct metabolic and cytokine shifts in 
PBC/AIH VS. The discerned genetic, metabolic, and 
cytokine modifications were subsequently authenti-
cated in an independent cohort. Additionally, a com-
bined model integrating transcriptomic, metabolic, and 
cytokine data was formulated to predict an inadequate 
biochemical response to drug treatment in PBC/AIH 
VS patients.

Methods
Patient enrollments
This study enrolled 70 patients diagnosed with PBC/
AIH VS at the West China Hospital of Sichuan Uni-
versity from October 2018 to June 2023. The diagnosis 
adhered to the Paris criteria [10] or, for PBC patients, 
was confirmed when distinctive AIH features were 
present. These features included sustained elevations 
in serum transaminase levels exceeding threefold the 
upper limit of normal (ULN) for at least 3  months, 
serum immunoglobulin G (IgG) levels surpassing 1.3-
fold the ULN, and/or histological evidence demonstrat-
ing moderate to severe interface hepatitis. Exclusion 
criteria comprised (1) a variant syndrome with primary 
sclerosing cholangitis [37] or other chronic liver dis-
eases; (2) acute liver failure; (3) severe dysfunction of 
other organs or systemic infection; (4) follow-up less 
than 6  months after starting immunosuppressants. 
The primary cohort consisted of 50 patients, and 
their clinical characteristics are detailed in Additional 
file  1: Table  S1. Additional file  1: Fig. S1 presents a 
histopathological feature of PBC/AIH OS. Treat-
ment strategies involved administering UDCA along-
side methylprednisolone, either as a sole therapy or in 
combination with AZA or other immunosuppressive 
agents, following established guidelines [38]. A "good 
responder" (GR) achieved complete biochemical remis-
sion within 6  months of initiating immunosuppressive 
therapy, demonstrated by the restoration of normal 
serum aminotransferase and IgG levels. Patients not 
meeting these criteria were categorized as "poor 
responders" (PR). Additional file  1: Table  S2 provides 
a comparative analysis of the baseline clinical charac-
teristics of the two groups. Additionally, 20 patients 
constituted the independent validation cohort, and 
their clinical characteristics were not significantly dif-
ferent from the primary cohort, as shown in Additional 
file  1: Table  S3. Ethical approval for this research was 
obtained from the Ethics Committee of the West China 

Hospital of Sichuan University, and informed consent 
was acquired from each participating patient.

RNA sequencing
Total RNA was extracted from liver tissues of 5 patients 
each from the GR and PR groups using TRIzol reagent 
(Tiangen, China). Subsequently, RNA purity and con-
centration were evaluated using a NanoPhotometer® 
spectrophotometer. The integrity and quantity of RNA 
were assessed with the RNA Nano 6000 Assay Kit on the 
Bioanalyzer 2100 system. Fragment size selection was 
accomplished through agarose gel electrophoresis. Illu-
mina HiSeqTM 4000 and Illumina HiSeqTM 2500 plat-
forms were employed for whole transcriptome and small 
RNA sequencing, respectively. Whole transcriptome 
sequencing utilized paired-end sequencing (2 × 150  bp), 
while small RNA sequencing involved single-end 
sequencing (50 bp). The data obtained from whole tran-
scriptome sequencing were employed to quantify the 
expression levels of mRNAs, lncRNAs, and circRNAs. 
Similarly, small RNA sequencing data were used to assess 
the expression levels of miRNAs.

Differential expression analysis
The sequencing reads of mRNA, lncRNA, circRNA, 
and miRNA underwent alignment using the refer-
ence genome from the Genome Reference Consortium 
Human Build 38 Organism (GRCh38, GENCODE—
https:// www. genco degen es. org/) [39]. Annotation files 
for mRNA and lncRNA were obtained from GENCODE, 
while miRNA annotation files were sourced from miR-
Base. Quantification of mRNA and circRNA expression 
levels employed StringTie, and FeatureCounts was used 
for miRNA and lncRNA quantification based on their 
respective transcript characteristics. DESeq2 was applied 
for conducting differential expression analysis on the 
quantified transcripts. Bowtie facilitated the alignment 
of sequencing data from miRNA libraries, while HISAT2 
was employed for mRNA and lncRNA alignment. BWA 
was utilized for circRNA alignment. Specifically, CIRI2 
and find_circ were used for circRNA quantification and 
expression analysis. Genes exhibiting a p-value < 0.05 and 
an absolute log2-fold change (|log2FC|) ≥ 1 were consid-
ered differentially expressed (DE) between the GR and 
PR groups in this study.

Gene ontology and pathway analysis
The study employed Gene Ontology (GO, http:// www. 
geneo ntolo gy. org) analysis to evaluate the potential 
enrichment of differentially expressed genes in specific 
biological processes. The GO categories encompass three 
structured networks, delineated as Cellular Component 
(CC), Molecular Function (MF), and Biological Process 

https://www.gencodegenes.org/)
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(BP). Concurrently, pathway enrichment analysis utilized 
the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
https:// www. genome. jp/ kegg). To mitigate the impact of 
multiple testing on enrichment results, the Benjamini & 
Hochberg procedure was implemented, and statistical 
significance was determined by an adjusted P-value < 0.05 
[40].

Competitive endogenous RNA (ceRNA) network 
construction
Our approach to constructing ceRNA networks involved 
integrating co-expression relationships between lncRNA-
mRNA and circRNA-mRNA pairs, coupled with regula-
tory connections encompassing DE miRNAs and their 
target DE mRNAs and DE lncRNAs. The co-expression 
network was established by computing Pearson correla-
tion coefficients and their corresponding p-values for 
multiple genes. Transcripts underwent stringent filtering 
criteria, preserving only those with a correlation coef-
ficient (COR) > 0.85 and a p-value < 0.05. Our focus was 
on identifying positively correlated expression patterns 
among circRNA-mRNA and lncRNA-mRNA pairs. Addi-
tionally, we identified miRNAs capable of concurrently 
regulating both lncRNAs/circRNAs and mRNAs. Subse-
quently, our analysis extended to establishing positively 
correlated co-expression relationships between miRNA-
regulated mRNAs and lncRNAs/circRNAs. Networks for 
lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA 
were constructed using Cytoscape (http:// www. cytos 
cape. org/).

Quantitative real‑time PCR analysis (RT‑qPCR)
To validate the observed differential expression levels in 
liver tissues between the GR and PR groups, RT-qPCR 
was employed. Total RNA was extracted from liver tis-
sues of 48 patients (27 GRs and 21 PRs). Subsequently, 
1 μg of extracted total RNA underwent cDNA synthesis 
using the PrimeScript RT reagent kit (Takara, Japan). The 
resulting cDNA was subjected to real-time qPCR ampli-
fication utilizing SYBR Green Supermix on a CFX96 
RT-qPCR detection system (BioRad, United States). The 
amplification protocol included an initial denaturation 
step at 95  °C for 3  min, followed by 39 cycles of 95  °C 
for 10  s, 60  °C for 20  s, and 72  °C for 20  s, concluding 
with 65 °C for 5 min in a 10 μl reaction volume [41]. To 
ensure quantification precision, the expression levels of 
genes were normalized to the expression level of actin. 
All primer used were listed in Additional file 1: Table S4 
and were obtained from Tsingke (China).

lc/ms‑based metabolomics analysis
Serum samples underwent preparation through centrifu-
gation at 2000g for 10 min. We collected plasma samples 

from 20 GRs and 30 PRs for metabolomic analysis. The 
resultant serum was transferred to Eppendorf tubes and 
reconstituted in pre-chilled 80% methanol by thorough 
vortexing. Following this, the samples were incubated 
on ice for 5  min, succeeded by high-speed centrifuga-
tion at 15,000×g at 4 °C for 20 min. The clarified samples 
were then transferred to fresh Eppendorf tubes and sub-
jected to an additional centrifugation step at 15,000×g for 
20 min before being readied for injection into the LC/MS 
system for analysis [42]. LC/MS analyses were performed 
using an ExionLCTM AD system (SCIEX) coupled with 
a QTRAP® 6500 + mass spectrometer (SCIEX), a process 
expertly executed at Novogene Co., Ltd. (Beijing, China). 
For the identification and annotation of detected metab-
olites, the KEGG, HMDB (http:// www. hmdb. ca/), and 
Lipidmaps (http:// www. lipid maps. org/) databases were 
utilized. Both Principal Component Analysis (PCA) and 
Partial Least Squares Discriminant Analysis (PLS-DA) 
were conducted using metaX [43, 44]. Metabolites with 
a Variable Importance in Projection (VIP) score > 1.0, 
FC > 1.2 or FC < 0.833 and a p-value < 0.05 were consid-
ered as differential metabolites [45, 46]. Moreover, to elu-
cidate the functional relevance of these metabolites and 
their associated metabolic pathways, in-depth investiga-
tions were carried out using the KEGG database.

Cytokinome evaluation
Cytokine concentrations in plasma were assessed 
employing the LEGENDplex Human Th Cytokine Panel 
(BioLegend, United States) [47], adhering to the manu-
facturer’s recommended protocols. In brief, plasma 
samples were incubated with beads coated with capture 
antibodies specific for IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, 
IL-13, IL-17 A, IL-17 F, IL-22, IFN-γ, and TNF-α for 2 h 
at room temperature on a shaker. Following incubation, 
beads were washed and incubated with biotin-labeled 
detection antibodies for 1 h, followed by a final incuba-
tion with streptavidin-PE for 30 min at room temperature 
on a shaker. The beads were then washed and resus-
pended using washing buffer. Flow cytometry analysis 
was conducted using a FACS Canto cytometer, and data 
analysis was performed with the LEGENDplex analysis 
software, which differentiated between the 12 analytes 
based on bead size and internal dye. These cytokines are 
secreted by T helper (Th) cells. Correlation analyses were 
carried out using the R package corrplot to explore rela-
tionships and associations within the cytokine data.

Flow cytometric analysis
Peripheral blood mononuclear cells were isolated from 
patients using human lymphocyte separation medium 
(Dakewei, China) and underwent a meticulous wash-
ing procedure with phosphate-buffered saline (PBS, 

https://www.genome.jp/kegg
http://www.cytoscape.org/
http://www.cytoscape.org/
http://www.hmdb.ca/
http://www.lipidmaps.org/
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Servicebio, China) [48]. Approximately 1 ×  10^6 prepared 
cells were suspended in 100 μl of PBS and subsequently 
stained with a variety of fluorochrome-coupled antibod-
ies. Staining was carried out for 30 min at 4 °C [49]. For 
intracellular cytokine and transcription factor staining 
[50], the incubated cells were collected, fixed for 10 min, 
and then permeabilized using intracellular fixation and 
permeabilization buffer (Thermo Fisher). Permeabilized 
cells were incubated with the respective monoclonal anti-
bodies at 4  °C for 30 min. Following the staining proce-
dure, cells were washed twice with PBS. Flow cytometric 
analysis was conducted using either an LSRFortessa flow 
cytometer (BD Bioscience, United States) or a CytoFLEX 
flow cytometer (Beckman, United States). Data analysis 
was executed using FlowJo software (TreeStar, United 
States). The antibodies utilized for flow cytometry anal-
ysis were all obtained from BioLegend (United States), 
including CD3-APC, CD4-BV650, CD25-PE, CD69-
BV605, Foxp3-AF647, IL-17-BV421, IFN-γ-PerCP-Cy5.5, 
IL-4-PE-Cy7, live/dead-APC-Cy 7, CD56-PE, CD8-APC-
Cy7, and DAPI-PB450, for the detection of T effector 
(Teff) cells, Th cells and natural killer (NK) cells.

Multiplex immunofluorescence (MIF) staining
Liver tissues from 5 GRs and 5 PRs were collected for 
MIF staining [51]. The MIF staining procedure entailed 
the preparation of 4 µm sections from entire FFPE liver 
tissue blocks, followed by dewaxing and fixation using 
10% neutralized formaldehyde. Antigen retrieval was 
achieved by subjecting the samples to heating in citrate 
buffer (pH 6.0) and/or Tris–EDTA buffer (pH 8.0) for 
15 min. Each section underwent four consecutive rounds 
of antibody staining, with the initial staining conditions 
established for each specific primary antibody and sub-
sequent optimization (Biossci, Wuhan, China). Quanti-
tative assessment of MIF staining results was conducted 
based on the proportion of cell subsets, including  CD4+, 
 CD8+ and  CD56+ cells, within the liver tissues under 
investigation.

Statistical analysis
Comprehensive statistical analyses were undertaken uti-
lizing GraphPad Prism 9, SPSS (version 25), and the R 
software (version 4.1.0). Continuous variables, reported 
as the mean ± standard, were compared using Student’s 
t test or the Mann–Whitney U test. For comparing cat-
egorical variables between the two groups, Pearson’s χ2 
test and Fisher’s exact test were employed. Pearson’s cor-
relation test assessed correlations. Discriminative per-
formance for each indicator was evaluated through the 
area under the receiver operating characteristic curve 
(AUC), sensitivities, and specificities. Univariable and 
multivariable logistic regression analyses identified 

clinical indicators, genes, metabolites, and cytokines 
for biochemical response and formed the predictive 
model. Variables with p < 0.05 in univariable analyses and 
AUC > 0.7 were included in multivariable analysis using a 
forward stepwise method. A nomogram was constructed 
for model visualization and utility based on regression 
coefficients. AUC assessed discriminative performance 
of a combined model using five indicators. Calibration 
curves were plotted for model calibration. The Hosmer–
Lemeshow (H–L) test evaluated goodness of fit between 
observed and predicted values in models. Statistical sig-
nificance was set at p < 0.05.

Results
Screening of differentially expressed RNAs in PR and GR 
groups
To investigate distinctive molecular profiles associated 
with treatment response in the liver tissues of patients 
with PBC-AIH VS, we conducted comprehensive whole-
transcriptomic sequencing on liver tissues obtained from 
five pairs of GR and PR patients (Fig. 1A). Rigorous qual-
ity assessments, including Pearson correlation analysis 
and PCA analysis, were performed on these samples, and 
the results are presented in Additional file  1: Fig. S2A 
and S2B. RNAs meeting the criteria of a p-value < 0.05 
and |log2FC|≥ 1 were considered differentially expressed 
between the GR and PR groups in this study. Our find-
ings unveiled 224 DE mRNAs, 189 DE lncRNAs, 39 DE 
circRNAs, and 63 DE miRNAs, as illustrated in Fig. 1B–
E. Heatmaps were generated to visually represent the 
expression patterns of clustered genes between the GR 
and PR groups, highlighting the top 50 DE mRNAs, lncR-
NAs, and miRNAs, along with all DE circRNAs (Fig. 1F–
I). Subsequent analyses involved a detailed examination 
of significantly different genes through GO and KEGG 
pathway analyses. Moreover, regulatory networks were 
established, depicting interactions among mRNAs, miR-
NAs, and lncRNAs/circRNAs.

Functional enrichment analysis of differentially expressed 
RNAs
To elucidate the primary biological processes involving 
the identified differential genes, we conducted com-
prehensive GO and KEGG pathway analyses across 
multiple categories, providing detailed functional and 
characterization annotations. GO analysis revealed 
that BPs associated with DE mRNAs were significantly 
enriched in metabolic and immune system processes, 
visually depicted in Fig.  2A. Subsequent KEGG path-
way analysis unveiled the enrichment of mRNA target 
genes in pathways primarily linked to hepatic metabo-
lism and immune response. These pathways included 
lipid biosynthesis and metabolism, humoral immune 
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responses, immune effector processes, and cytokine 
signaling, as illustrated in Fig. 2B. To explore the poten-
tial involvement of ncRNA-mediated regulatory net-
works in these pathways, we performed GO and KEGG 
analyses on DE miRNAs, lncRNAs, and circRNAs. The 
analyses associated with DE miRNAs demonstrated 
enrichment in metabolic processes, particularly fatty 
acid (FA) metabolism, and cell activities such as cell 
differentiation and various signaling pathways (Fig. 2C 
and F). DE lncRNAs were predominantly associated 

with immune response, encompassing T cell differenti-
ation, activation, and T cell signaling pathways (Fig. 2D 
and G). Likewise, DE circRNAs exhibited enrichment 
in FA metabolism and related metabolic pathways 
(Fig.  2E and 2H). These results collectively indicate 
that the reprogramming of FA metabolism and T cell-
mediated immune responses jointly contribute to the 
response process in VS patients. Previous studies have 
highlighted significant disorders in lipid metabolism in 
PBC patients, linked to disease progression [52], and 

Fig. 1 Screening of differentially expressed RNAs in GR and PR groups. A The flow chart of the whole-transcriptomic design. B–E The volcano plots 
of differential expressed mRNAs, lncRNAs, circRNAs and miRNAs. F–I The heatmaps of differential expressed mRNAs, lncRNAs, circRNAs and miRNAs
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emphasized the central role of T cells in the immune 
mechanism of AIH [53]. However, there is a paucity of 
research focusing on the metabolic and immunologic 
distinctions in different response settings among PBC/
AIH VS patients. Therefore, our study provides a more 
in-depth exploration of both aspects.

Dysregulated lipid metabolism is linked to the response 
of patients with VS
To elucidate the distinct metabolic processes implied by 
transcriptomics, we collected plasma from 30 PRs and 
20 GRs for metabolomics, as illustrated in Fig.  3A. Fig-
ure 3B presents the PCA analysis. Subsequent annotation 

Fig. 2 GO and KEGG pathway analysis of DE mRNAs, miRNAs, lncRNAs and circRNAs. A GO analysis of DE mRNAs. B Pathway analysis of DE mRNAs. 
C–E GO analysis of DE miRNAs, lncRNAs and circRNAs. F–H KEGG pathway analysis of DE miRNAs, lncRNAs and circRNAs
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Fig. 3 Metabolic profiles of PBC/AIH VS patients between PR and GR groups. A The flow chart of the metabolic design. B PCA analysis. C 
The annotation of the detected metabolites. D, E The volcano plot and heatmap of differential metabolites. F The enriched pathway analysis 
of the differential metabolites. G The joint pathway analysis of differential metabolites and genes. H Heatmap of the differential metabolites 
involved in the joint pathway analysis. I Correlation analysis between the differential metabolites and clinical indictors. J ROC curves 
of the differential metabolites. K The relative abundance of metabolites with AUC > 0.7. *P < 0.05, **P < 0.01, ***P < 0.001
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of these metabolites revealed a significant emphasis on 
lipid and lipid-related molecules (Fig. 3C). A total of 71 
metabolites exhibited significantly altered levels between 
the PR and GR groups (VIP > 1 and p < 0.05, Fig. 3D), and 
their expression is depicted in Fig.  3E. Mapping these 
metabolites to canonical metabolic pathways revealed 
predominant alterations in pathways associated with 
bile acid biosynthesis, beta-oxidation of long-chain fatty 
acids, and fatty acid biosynthesis (Fig. 3F). Elevated bili-
rubin is a clinical feature of PBC patients. Under healthy 
conditions, the liver eliminates bilirubin through glucu-
ronidation in hepatocytes, and its elevation indicates 
liver dysfunction. Bile acid biosynthesis is intricately 
linked to fatty acid metabolism through shared interme-
diates. Among all significantly altered metabolites, 39 
were lipid and lipid-related molecules. The liver, a major 
organ for complex lipid biosynthesis, plays a central role 
in lipoprotein synthesis. Dysregulation of these lipid spe-
cies suggests that lipid acid biosynthesis could impact 
drug response in these patients.

To identify metabolites serving as predictors of patient 
response, we conducted joint pathway analysis based 
on DE genes and metabolites. The results demonstrated 
impaired fatty acid degradation and biosynthesis in 
PR groups (Fig.  3G), with the metabolites involved in 
these processes listed in Fig.  3H. To assess the associa-
tion between these metabolites and liver function, we 
performed correlation analysis with clinical indicators. 
The results showed that these lipid species were pre-
dominantly positively associated with impaired liver 
function or biliary tract issues (elevated ALP and GGT 
levels, Fig. 3I). AUC, sensitivity, and specificity were cal-
culated to evaluate the discriminatory performance of 
each metabolite (Fig. 3J and Additional file 1: Fig. S2C). 
The relative abundance of metabolites with AUC > 0.7, 
including phosphatidylcholine (PC) (18:2/18:2), PC 
(16:0/20:3), PC (17:0/18:2), phosphatidylethanolamine 
(PE) (18:0e/20:4), PC (18:1e/22:6), sphingomyelin (SM) 
(d14:2/26:0), is shown in Fig. 3K. This group of metabo-
lites is also included as potential predictors in the subse-
quent analysis.

Involvement of Th cells and related cytokines 
in the response of VS patients
Given the enriched presence of immune response and 
T-cell activities pathways in our transcriptomic data, 
we conducted a comprehensive exploration of immune 
cells and related cytokines that might play pivotal 
roles in disease progression (Fig.  4A). Employing flow 
cytometry and multi-immunofluorescence, we detected 
immune cell profiles in the liver and peripheral blood, 
while immunoassay technology evaluated 12 cytokines 

within the plasma (Fig.  4B). T cells and NK cells, the 
main representatives of adaptive and innate immune 
responses, were characterized by CD3 and CD56, 
respectively [54]. CD4 primarily represented Th cells, 
and CD8 represented Teff cells [55, 56]. Our results 
demonstrated a significant increase in the propor-
tion of  CD3+CD4+ Th cells and a significant decrease 
in  CD3+CD8+ Teff cells and  CD3−CD56+ NK cells in 
the peripheral blood and liver of the GR group com-
pared to the PR group (Fig.  4C and E).  CD3+CD56+ 
NKT cells showed no significant difference between the 
two groups. Correlation analysis revealed that the per-
centage of Th cells was negatively associated with liver 
function (ALP and GGT levels, Fig. 4D), suggesting the 
positive roles of these cells in drug response. To eluci-
date the specific subpopulations of Th cells involved in 
disease progression, we further analyzed different sub-
populations using IFN-r for Th1 cells, IL-4 for Th2 cells, 
IL-17 for Th17 cells, and Foxp3 for regulatory T (Treg) 
cells [57]. Our results showed an upregulation of anti-
inflammatory Th2 cells and Tregs in the GR group com-
pared to the PR group, while pro-inflammatory Th1 and 
Th17 cells were downregulated in the GR group (Fig. 4F 
and G). Further analysis revealed significantly downreg-
ulated ratios of Th1 to Th2 and Th17 to Treg in the GR 
groups, suggesting that the dynamic balance between 
Th cells collectively influences disease progression and 
patient response (Fig. 4G). Correlation analysis showed 
a positive correlation between these pro-inflammatory 
Th cells and the severity of liver function, and a nega-
tive correlation between anti-inflammatory Th cells 
(Fig. 4H), further confirming that the dynamic balance 
of these cells influences patient liver function.

Th cells produce cytokines in response to immune 
stimuli, mediating inflammation and modulating other 
immune cells. Understanding cytokine regulation and 
function has offered innovative treatment for many 
human diseases [58]. To this end, we evaluated Th-
related cytokines within the plasma of our patients. The 
results showed that pro-inflammatory cytokine levels, 
including IFN-γ, TNF-α, IL-9, and IL-17, were down-
regulated in the GR group, while anti-inflammatory 
cytokine levels, including IL-10, IL-4, IL-5, and IL-22, 
were elevated in the GR group (Fig.  5A), suggesting 
the involvement of cytokines in the drug response of 
PBC/AIH patients. Correlation analyses demonstrated 
the negative association between anti-inflammatory 
cytokines and liver function indexes (Fig.  5B), indi-
cating their protective roles in disease development. 
To ascertain whether these cytokines could serve as 
predictors of patient response, AUC was performed, 
with IL-4 and IL-22 showing good predictive ability 
(AUC > 0.7, Fig. 5C).
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Construction of ceRNA networks involved in metabolic 
and immune regulation
We integrated mRNA, miRNA, lncRNA, and circRNA 
data from whole-transcriptome sequencing to formulate 

ceRNA regulatory networks. This effort resulted in 
the construction of 256 lncRNA-miRNA-mRNA net-
works, encompassing 185 lncRNAs, 65 miRNAs, and 
70 mRNAs, and 19 circRNA-miRNA-mRNA networks 

Fig. 4 Immune cells alterations between the PR and GR groups. A, B The flow chart of the study design. C The proportion of  CD3+CD4+ T 
cells,  CD3+CD8+ T cells,  CD3−CD56+ NK cells and  CD3+CD56+ NKT cells in peripheral blood from PR and GR groups. D Correlation analysis 
between the immune cells above and clinical indictors. E Multiplex immunofluorescence (MIF) staining of liver tissues from GR and PR. Green 
represent CD4. Red represent CD8. Orange represent CD56. F, G The percentage of IFN-γ+ Th1 cells,  IL4+ Th2 cells,  IL17+ Th17 cells,  Fxop3+ Tregs 
in between the PR and GR groups. H Correlation analysis between these cells and clinical parameters. *P < 0.05, **P < 0.01
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comprising 13 circRNAs, 11 miRNAs, and 15 mRNAs 
(Additional file 1: Fig. S3A and S3B). Analyzing these net-
works using GO and KEGG pathway analysis revealed 
significant enrichment of target genes within metabolic 
and immune response pathways. In the functional anal-
ysis of lncRNA-associated ceRNA networks, PSMC3, 
STK11, and CACNA1H were implicated in T-cell-
related activities, SHC2 in NK-cell function, while ECl1, 
ACADS, and ACAA1 were linked to fatty acid metabo-
lism (Fig. 6A). For circRNA-associated ceRNA networks, 
SLC38A3, RARRSE2, and GLYCTK were involved in 
lipid metabolic processes, and PSMC3, PPP1R14B, and 
RARRSE2 were associated with immune response path-
ways (Fig.  6B). The gene patterns from our transcrip-
tomic data are illustrated in Additional file  1: Fig. S4A. 
To elucidate the regulatory molecules for these genes, we 
identified genes with expression trends opposite to their 

corresponding miRNAs and scrutinized the co-expres-
sion patterns of mRNA-lncRNA and mRNA-circRNA 
pairs. Significant networks were illustrated in Fig.  6A 
and B (COR > 0.85 and p < 0.05). Genes encode proteins, 
forming a fundamental link between genomic informa-
tion and cellular processes. We expanded the sample 
size to verify whether these genes exhibited differences 
in the PR and GR groups. Results revealed significant 
upregulation in the GR group compared to the PR group 
for SLC38A3, ACAA1, PSMC3, PPP1R14B, and SHC2, 
while CACNA1H and GLYCTK were downregulated 
(Fig.  6C), suggesting the involvement of these genes in 
patient response. The remaining genes showed no signifi-
cance, likely attributed to the limited sample size (Addi-
tional file  1: Fig. S4B). AUC analysis demonstrated that 
CACNA1H, SHC2 and ACAA1 had good predictive abil-
ity (AUC > 0.7, Fig.  6D). Due to the limited sample size, 

Fig. 5 Cytokine profiling in plasma from patients with PBC/AIH VS. A Plasma levels of different cytokines between the PR and GR groups. B 
Correlation analysis between the levels of cytokines and clinical parameters. C ROC curves of the significant differential expressed cytokines. * 
P < 0.05, **P < 0.01
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Fig. 6 Construction of ceRNA networks related to metabolic and immune pathways. A LncRNA-related ceRNA networks. Pink triangles represent 
miRNAs. Light blue squares represent lncRNAs. White circles represent mRNAs, including PSMCS, ECl1, ACADS, SHC2, STK11, ACAA1 and CACNA1H. 
B CircRNA-related ceRNA networks. Pink triangles represent miRNAs. Dark blue prisms represent circRNAs. White circles represent mRNAs, 
including SLC38A3, RARRES2, PPP1R14B, PSMC3 and GLYCTK. C Expression of the target genes in the lncRNA/circRNA-related networks. D ROC 
curves of the significant differential expressed genes. *P < 0.05
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further confirmation of the ceRNA network’s modula-
tion of patient response was not feasible, but these find-
ings provide potential targets for subsequent mechanistic 
studies.

Prediction of biochemical response in PBC/AIH VS
To identify reliable biomarkers for predicting biochemi-
cal response in PBC/AIH VS patients, we conducted 
a comprehensive analysis integrating data on differen-
tially expressed metabolites, cytokines, and genes. Sig-
nificant predictors of complete treatment response in 
univariate analysis included ALP level, PC (18:2/18:2), 
PC (16:0/20:3), PC (17:0/18:2), PC (18:1e/22:6), SM 
(d14:2/26:0), IL-5, IL-4, IL-22, PSMC3, CACNA1H, 
SHC2, GLYCTK, PPP1R14B, ACAA1, and SLC38A3. 
However, in multivariate analysis, only PC (18:2/18:2) 
(p = 0.041), PC (16:0/20:3) (p = 0.043), IL-4 (p = 0.028), 
CACNA1H (p = 0.047), and ACAA1 (p = 0.046) emerged 
as significant predictors of complete response to treat-
ment (Additional file 1: Table S5). A nomogram was con-
structed based on these indicators (Fig. 7A). ROC curves 
were employed to compare the predictive efficiencies 
of the combined model in the primary and validation 
cohorts. The combined model exhibited excellent pre-
diction efficiency, with an AUC of 0.986 in the primary 
cohort and an AUC of 0.940 in the validation cohort for 
complete biochemical response prediction (Fig.  7B and 
C). The calibration curve, representing a visual nomo-
gram, demonstrated near-perfect alignment, indicating 
robust agreement between prediction and observation 
(Fig.  7D and 7E). The H–L test confirmed the model’s 
goodness of fit (p = 0.989 in the primary cohort; p = 0.973 
in the validation cohort).

Discussion
PBC/AIH VS, a morbid condition within autoimmune 
liver diseases, poses challenges for rigorous study due 
to its rarity in the general population. Despite numer-
ous small-scale studies over recent decades, uncertainty 
persists regarding optimal treatment strategies for this 
syndrome. While UDCA and corticosteroids, with or 
without AZA, have been acknowledged as the first-line 
treatment for PBC/AIH VS, 40%-60% of patients exhibit 
inadequate biochemical responses, remaining at risk 
of progressing to advanced disease stages, such as liver 
fibrosis and cirrhosis [20, 21]. Second-line therapies, 
including tacrolimus [13], mycophenolate mofetil (MMF) 
[59, 60], or cyclosporine [13, 15], are anticipated to 
enhance the prognosis and survival of patients within this 
subgroup. However, evaluating the biochemical response 
necessitates a wait of 6 months or more after treatment. 
Thus, there is an urgent need for predictive indicators 
to identify patients more likely to exhibit insufficient 

biochemical responses, facilitating early access to addi-
tional treatment. In this preliminary study, we observed 
significant alterations in transcript levels associated with 
metabolic and immune responses in the livers of patients 
in the PR and GR groups via whole transcriptome anal-
ysis. Furthermore, we elucidated specific metabolic 
pathways, metabolites, and immune cytokines through 
metabolomic and cytokinomic analyses. Lipid species 
(PC (18:2/18:2) and PC (16:0/20:3)), cytokines (IL-4), and 
genes (CACNA1H and ACAA1) were identified as indic-
ative of insufficient biochemical responses in PBC/AIH 
VS patients. The combined model, incorporating these 
five indicators, demonstrated proficiency in predicting 
the risk of insufficient response in PBC/AIH VS.

In our transcriptome analysis, the target genes CAC-
NA1H and ACAA1 exhibited significant expression 
differences between the PR and GR groups. Func-
tional analysis revealed that CACNA1H was primar-
ily associated with T cell differentiation, activation, and 
aggregation, while ACAA1 was enriched in fatty acid 
metabolism. CACNA1H encodes a protein for the α1 
subunit of voltage-gated calcium channels, playing a 
regulatory role in calcium ion entry into cells. Its pres-
ence spans all  CD4+ T cell subsets, including Th1, Th2, 
Th17, and Tregs [61], modulating T cell expansion and 
apoptosis through voltage-gated calcium channel func-
tion. Notably, CACNA1C and CACNA1G, encoding α1 
channel subunits, have been linked to Th2 and Th17 cell 
function, respectively, through voltage-activated calcium 
influx [62, 63]. AIH and PBC are characterized by T cell-
mediated autoimmune responses against liver autoanti-
gens with distinct patterns of destruction [1, 2]. Hence, 
CACNA1H may contribute to the patient response pro-
cess by modulating T cell activity, although more in-
depth studies are warranted. ACAA1, or acetyl-CoA 
acyltransferase 1, serves a key role in lipid metabolism, 
specifically in the beta-oxidation of fatty acids within 
mitochondria [64]. Dysregulation of ACAA1 is associ-
ated with disturbances in lipid metabolism, implicat-
ing its role in various metabolic disorders [65]. Altered 
ACAA1 expression leads to hepatic lipid metabolism 
abnormalities in our PBC/AIH VS patients, influencing 
their drug response. The ceRNA network constitutes a 
sophisticated regulatory network encompassing diverse 
RNA molecules vying for binding to shared miRNAs. 
Within this intricate interplay, lncRNAs, circRNAs, and 
mRNAs harbor MREs, enabling them to sequester miR-
NAs and consequently exert influence on each other’s 
expression levels [25]. This competitive binding gives 
rise to a network wherein changes in one RNA type can 
impact the abundance and function of others within the 
network [66]. The ceRNA hypothesis posits that these 
molecules engage in crosstalk, thereby contributing to 
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the regulation of gene expression and cellular processes. 
Our findings showcase the involvement of a ceRNA net-
work in the regulation of target genes, encompassing 
lncRNAs, circRNAs, and miRNAs. However, owing to 

the limitations of the sample size, further validation of 
these regulatory mechanisms was unattainable in this 
study, underscoring the need for future investigations in 
this direction.

Fig. 7 Performance of the combined model for prediction of biochemical response. A Nomogram based on the combined model to predict 
biochemical response in PBC/AIH VS patients. B, C ROC curves showing the performance of the combined model in primary cohort and validation 
cohort. D, E The calibration curve of the combined model in primary cohort and validation cohort
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The liver plays a central role in lipid metabolism, 
encompassing functions ranging from lipid synthesis 
and storage to lipid breakdown and energy release. Our 
metabolomic data unveil dysregulated lipid metabolism 
between the PR and GR groups, suggesting its implica-
tion in the response of our patients. Levels of ALP and 
GGT in our patients were significantly higher in the PR 
group than in the GR group. ALP and GGT, enzymes 
primarily localized in the liver, are involved in bile acid 
metabolism. Dysregulation of bile acid metabolism 
affects the digestion and absorption of lipids in the intes-
tinal tract, thereby contributing to the differences in lipid 
molecules between the two groups. These lipid mol-
ecules have been reported to participate in the progres-
sion of various diseases and are regarded as biomarkers 
[67, 68]. Our results identified PC (18:2/18:2) and PC 
(16:0/20:3) as suggestive predictors for predicting the 
risk of insufficient response in PBC/AIH VS, indicating 
their involvement in disease development. Addition-
ally, lipid species have been reported to participate in 
various cellular activities, providing energy and serving 
as signaling molecules. Our previous study found that 
lipid species, including lysophosphatidylcholine (LPC) 
16:0, 18:1, 18:2, and 18:3, were associated with monocyte 
activation in AIH [69]. However, whether PC (18:2/18:2) 
and PC (16:0/20:3) can regulate the immune response 
to participate in disease development requires further 
investigation.

PBC/AIH VS is characterized by a T cell–mediated 
autoimmune response against liver autoantigens, yet its 
immunological foundations are largely unexplored. Our 
findings revealed a significant Th1/Th2 and Th17/Treg 
cell immune imbalance in both PR and GR groups. Th1 
and Th17 cells, secreting IFN-γ and IL-17, contribute to 
the inflammatory response, while Th2 cells, secreting 
IL-4, and Tregs play a critical role in maintaining immune 
tolerance and preventing autoimmunity by suppressing 
excessive immune responses. The balance and coordina-
tion of these Th cell subsets are crucial for a well-regu-
lated immune system, and their dysregulation can lead 
to various immunological disorders and diseases [68]. 
The majority of VS patients exhibited AIH-like signa-
tures, characterized by a more prominent inflammatory 
cytokine signature with the highest levels of IFN-γ, TNF-
α, IL-9, and IL-17, aligning with AIH data from others 
[70, 71]. Additionally, our results identified IL-4 as a sig-
nificant predictor of biochemical response to treatment 
in multivariate analysis. IL-4, a multifunctional cytokine 
produced by various immune cells, exerts its effects by 
binding to the IL-4 receptor and prompting the differen-
tiation of naive T cells into Th2 cells. IL-4 possesses anti-
inflammatory properties by inhibiting the production of 
pro-inflammatory cytokines and promoting the activity 

of Tregs, crucial for maintaining immune homeostasis 
[72]. Elevated levels of IL-4 and Th2 cells collectively sup-
press inflammation in patients, potentially facilitating 
biochemical remission, though further investigation is 
warranted.

We developed a nomogram to visually represent and 
validate the predictive capability of the combined model 
based on the aforementioned indicators. Despite the 
study’s relatively modest sample size, the findings are 
promising. The multi-omics-based combined model 
demonstrated excellent predictive efficacy, exhibiting 
an AUC of 0.986 in the primary cohort and 0.940 in the 
validation cohort for anticipating complete biochemi-
cal response. This suggests that genes, metabolites, and 
cytokines may offer insights into pathological changes 
associated with the disease process earlier than con-
ventional laboratory markers. Previous investigations 
predominantly concentrated on assessing biochemi-
cal response in PBC/AIH VS patients through clinical 
symptoms, pathological staging, and biochemical indi-
cators [12]. To our knowledge, our study represents the 
first attempt to utilize multi-omic features for predict-
ing insufficient biochemical response in PBC/AIH VS 
patients. Our findings hold significant generalizability 
and application potential. The selection of pretreatment 
indicators can aid in identifying high-risk patients with 
a poor response, enabling the implementation of early 
interventions.

This study is subject to several limitations. Firstly, the 
retrospective design introduces significant selection bias, 
potentially hindering the accurate representation of real 
clinical conditions. Secondly, the limited sample size 
and challenges in sampling led to most patients being 
assessed for metabolism and cytokines only prior to 
treatment, with a lack of gene expression testing. Future 
investigations should prospectively involve a larger sam-
ple size to identify more robust indicators for predicting 
biochemical responses in patients with PBC/AIH VS. 
Subsequent large-scale multicenter studies are essential 
to validate our model. Lastly, the absence of suitable ani-
mal models prevented further exploration of the iden-
tified indicators’ role in disease development. Further 
validation of the underlying mechanisms is warranted in 
future studies.

In conclusion, our integrated analysis of whole tran-
scriptomics, metabolomics, and cytokineomics revealed 
substantial alterations in lipid metabolism and immune 
responses, particularly in Th cells and their associated 
factors among patients with PBC/AIH VS. We identified 
ACAA1 and CACAN1H genes that likely play regula-
tory roles in these processes. The amalgamation of these 
features allowed us to construct a predictive model, sug-
gesting an insufficient biochemical response in PBC/
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AIH patients post-treatment. Moreover, a nomogram 
incorporating potential risk factors emerges as a valu-
able tool for clinicians, enabling the early identification of 
patients with insufficient response and facilitating timely 
interventions.
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