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Abstract 

Background Accurate and efficient cell grouping is essential for analyzing single-cell transcriptome sequencing 
(scRNA-seq) data. However, the existing clustering techniques often struggle to provide timely and accurate cell 
type groupings when dealing with datasets with large-scale or imbalanced cell types. Therefore, there is a need 
for improved methods that can handle the increasing size of scRNA-seq datasets while maintaining high accuracy 
and efficiency.

Methods We propose  CDSKNNXMBD (Community Detection based on a Stable K-Nearest Neighbor Graph Structure), 
a novel single-cell clustering framework integrating partition clustering algorithm and community detection algo-
rithm, which achieves accurate and fast cell type grouping by finding a stable graph structure.

Results We evaluated the effectiveness of our approach by analyzing 15 tissues from the human fetal atlas. Com-
pared to existing methods, CDSKNN effectively counteracts the high imbalance in single-cell data, enabling effec-
tive clustering. Furthermore, we conducted comparisons across multiple single-cell datasets from different studies 
and sequencing techniques. CDSKNN is of high applicability and robustness, and capable of balancing the complexi-
ties of across diverse types of data. Most importantly, CDSKNN exhibits higher operational efficiency on datasets 
at the million-cell scale, requiring an average of only 6.33 min for clustering 1.46 million single cells, saving 33.3% 
to 99% of running time compared to those of existing methods.

Conclusions The CDSKNN is a flexible, resilient, and promising clustering tool that is particularly suitable for cluster-
ing imbalanced data and demonstrates high efficiency on large-scale scRNA-seq datasets.
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Background
The advancement of single-cell RNA sequencing 
(scRNA-seq) technology has propelled the development 
of single-cell data analysis methods, which is one of the 
key steps during the unsupervised clustering of cells 
based on gene expression patterns [1–3]. The quality of 
the clustering outcomes profoundly influences the cred-
ibility of subsequent analyses, including but not limited 
to cell type annotation, cell lineage inference, and the 
construction of cell developmental trajectories, playing a 
critical role in revealing the heterogeneity and diversity 
among cells [4, 5].
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Numerous mature clustering methods for single-cell 
data have emerged from prior research efforts. In addi-
tion to widely used community detection algorithms 
such as louvain [6] and leiden [7], there are also SC3 [8], 
SIMLR [9], CIDR [10], and SAFE clustering [11], each of 
which addresses the construction of clustering frame-
works from various perspectives, including iterative opti-
mization, different information representations, missing 
value imputation, and similarity matrices between cells 
[12]. Nevertheless, the surge in sequencing depth and 
the expansion of throughput coverage have led to a pro-
portional increase in the size of gene expression matri-
ces [13]. Implementing the aforementioned clustering 
methods for million-cell datasets often encounters chal-
lenges, including time-intensive procedures, exceedingly 
high computational complexity, and the necessity for a 
well-configured computing environment. Furthermore, 
manually selected clustering outcomes frequently dem-
onstrate pronounced subjectivity, compelling most meth-
odologies [14, 15] to prioritize the adoption of clustering 
quality evaluation metrics such as the Calinski–Harabasz 
(CH) [16] and Gap-Statistic [17] indices to determine the 
optimal clustering results. However, challenges persist in 
managing datasets of this magnitude, particularly con-
cerning issues related to protracted computational time.

Consequently, clustering frameworks have been devel-
oped specifically for large single-cell datasets. Nota-
bly, phenograph [18] employs the Jaccard similarity 
coefficient [19] to construct a similarity matrix for the 
K-Nearest Neighbor (KNN) graph [20] structure, subse-
quently employing the louvain algorithm for clustering; 
PARC [21] uses accelerated fine community partition-
ing to analyze phenotypes without resampling; Flow-
Grid [22] integrates DBSCAN [23] with grid-based 
methods, enhancing the robustness and scalability of 
DBSCAN for clustering extensive datasets, and selects 
the optimal parameter configuration using the CH index. 
Undeniably, the incorporation of graph-based cluster-
ing algorithms has emerged as the prevailing trend for 
clustering large-scale single-cell data. However, these 
methods often exhibit inconsistent performance, with 
room for improvement in terms of clustering scalability 
and robustness in diverse application scenarios [3, 24]. 
FlowGrid’s clustering framework exhibits unstable per-
formance concerning varying feature quantities of the 
data; phenograph encounter difficulties when dealing 
with highly imbalanced data, and although PARC exhib-
its high efficiency, uncertainties persist regarding cluster-
ing precision [24, 25].

To address these difficulties, we propose the 
 CDSKNNXMBD, a novel single-cell clustering framework 
(CDSKNN: Community Detection based on a Stable 
K-Nearest Neighbor Graph) (XMBD: Xiamen Big Data, 

a biomedical open software initiative in the National 
Institute for Data Science in Health and Medicine, Xia-
men University, China.). It combines partition clustering 
algorithm and community detection algorithm with the 
following steps: (i) conduct preliminary data partition-
ing using the mbkmeans [26] algorithm, along with out-
lier detection and removal in each partitioned region; 
(ii) randomly sample in each partitioned region and con-
struct KNN graph structures under different K  values, 
employing community detection algorithms and apply-
ing Normalized Reduce Mutual Information [27] across 
multiple samplings to identify a stable graph structure; 
and (iii) perform louvain clustering based on the optimal 
graph structure, determine the optimal clustering resolu-
tion using the CH index, and map it to the entire dataset.

On the basis of the CDSKNN, we conducted a detailed 
evaluation of its clustering performance and compared 
it with that of the current mainstream clustering frame-
works for large-scale single-cell data, including PARC, 
FlowGrid, and phenograph. In highly imbalanced cellular 
population scenarios, CDSKNN demonstrates outstand-
ing clustering accuracy. It consistently provides precise 
cell type estimation, fully aligning with the gold stand-
ard and outperforming other clustering frameworks. 
Additionally, across datasets with diverse biological 
backgrounds, CDSKNN exhibits exceptional adaptabil-
ity and demonstrates superior computational efficiency 
when handling large-scale datasets. Finally, compared to 
existing clustering frameworks, CDSKNN exhibits more 
stable clustering performance across different feature 
quantities, effectively balancing computational efficiency 
and clustering precision.

Methods
Algorithm design
Overview of the CDSKNN workflow
CDSKNN leverages three interconnected modules for 
the effective clustering of single-cell data (Fig.  1). First, 
it involves an initial partitioning of the data along with 
the identification of outliers within distinct regions. Sec-
ond, resampling techniques are employed across various 
regions to construct a KNN graph structure to assess the 
stability of the network and determine the optimal struc-
ture K  . Third, the construction of a stable KNN graph 
involves utilizing centroids from the initially demarcated 
regions, followed by the application of the louvain clus-
tering algorithm across various resolutions, while the 
optimal resolution is determined by the Calinski-Hara-
basz (CH) index. Finally, the final clustering outcomes are 
projected back to all cells.
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Region division and outlier detection based on mbkmeans
A. We partition the data into coarse-grained regions 
using mbkmeans [26], which is an improvement of 
K-means that processes small batches of data subsets 
in batches to reduce the computation time. Assum-
ing we have P cells, the data are preprocessed to yield 
a P × N  matrix M , where N  represents the number of 
features. By employing mbkmeans, M is partitioned 
into g  regions. For any given region g  , it contains 
cells m(g)

l ∈ {m
(g)
1 ,m

(g)
2 , . . . ,m

(g)
n } , with the centroid 

denoted as C(g).
b. Based on the region partition, we employ the 

Mahalanobis distance [28] to examine the outliers of an 
arbitrary region g  . Unlike the Euclidean distance, the 
Mahalanobis distance is independent of the measuring 
units and takes into account the correlation between 
dimensions. The distance between any point m(g)

l  and 
the regional center C(g) is as follows:

For high-dimensional datasets, the squared Mahalano-
bis distance follows a chi-squared distribution with 
degrees of freedom P.

Through a hypothesis test, for any given significance 
level α , the corresponding quantile is tα ; then,

If the Mahalanobis distance of any point m(g)
l  to the 

center point C(g) cannot fulfill the Eq.  (3), suggesting a 
significant difference, then it can be considered an outlier.

c. The regional center point is updated to (C∗)
(g) after 

outlier elimination of each region.
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Fig. 1 Overview of the CDSKNN workflow. The enabling features include region division and outlier detection, finding a stable KNN graph, 
and community detection according to the CH index
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Finding a stable KNN graph based on resampling
The louvain algorithm is widely used in single-cell analysis 
and is capable of partitioning large-scale graphs into com-
munities without specifying the number of communities. 
Its performance heavily relies on the underlying graph 
structure, which is commonly constructed using the KNN 
approach. Here, K  represents the number of closest neigh-
bors used to represent each data point. An ideal K  can be 
obtained by all kinds of heuristic approaches. We use the 
following steps:

a. Sample a point m(g)
l  in each region, thereby creating a 

new matrix M∗ = {m
(1)
l ,m

(2)
l , . . . ,m

(g)
l }.

b. K-nearest neighbor (KNN) graph structures were 
built with different K  ( K = {k1, k2, . . . , kz} ) values on 
the basis of M∗ . Run louvain community detection 
with default resolution ( res ). We obtain z clustering 
results U = {u1,u2, · · · ,uz}.

c. Repeat a-b L times. We suppose that if a graph struc-
ture built on a K  value is stable enough, then the 
similarity of the clustering results produced by that 
K  value in L resampling ought to be very high. There-
fore, we use the normalized reduce mutual informa-
tion (NRMI) [27] to construct the similarity matrix sk 
of the clustering results based on the same K  value. 
Reduce mutual information (RMI) is improved on 
the basis of mutual information (MI) [29]. In some 
cases, the problem of assigning high mutual informa-
tion values to completely different partitions can be 
resolved by the RMI. For example, if the clustering 
result is made up of a single vertex cluster, MI will 
consider the result to be very stable, which is unde-
sirable. The following is a definition of the RMI.

where �(a, b) is an integer equal to the number of P × N  
nonnegative integer matrices with row sums a = {aui } and 
column sums b = {buj } . Furthermore, the normalized RMI 
is defined as follows:

d. Calculate the coefficient of variation (CV) [30] of any 
similarity matrix sk , choose the matrix with the minimal 
CV, and the corresponding K  is a stable K  , i.e., K ∗.

Community detection based on a stable K∗
NN graph

a. Construct the K ∗NN  graph structure through (M∗)l 
produced by L resampling of K ∗ ; then, run the lou-

(4)RMI(ui;uj) = I
(

ui;uj

)

−
1

P
log�(a, b)

(5)

NRMI(ui;uj) =
RMI(ui;uj)

1
2 ×

[

RMI(ui;uj)+ RMI(ui;uj)
]

vian clustering algorithm under t different resolu-
tions;

b. For the L clustering results obtained at a specific res-
olution; we utilize the CH index to assess the stability 
of the clusters. The result with the highest CH means 
value among all the resolutions, denoted as res∗ , is 
chosen as the optimal result.

c. Finally, res∗ is mapped back to all cells according to 
the region dividing label to obtain the final clustering 
label.

Validation datasets
scRNA‑seq data
To highlight the advantages of CDSKNN, we collected 
two groups of scRNA-seq datasets from previous lit-
erature (Table 1). The first group of data originates from 
single-cell atlases of human fetal tissues [31] and encom-
passes 15 organs, with cell numbers ranging from 8,000 
to 1.7 million across different organs. We conducted 
robustness testing of the CDSKNN parameters using 
these datasets and evaluated the adaptability of the dif-
ferent methods to imbalanced data. The second group 
of datasets included multiple single-cell datasets from 
various studies [13, 31–38]; employed diverse library 
preparation methods; and involved different tissues from 
humans or mice, such as the hypothalamus, peripheral 
blood, and heart, with cell numbers ranging from 8,000 
to 1.46 million. We assessed the universality and opera-
tional efficiency of CDSKNN using these datasets.

All the datasets contained labels pertaining to the cell 
types, facilitating the comparison of clustering perfor-
mance. The majority of the data were downloaded from 
the Gene Expression Omnibus (GEO) website (https:// 
www. ncbi. nlm. nih. gov/ geo/) and the Single Cell Portal 
(SCP) website (https:// singl ecell. broad insti tute. org/ sin-
gle_ cell).

Data preprocessing
We preprocessed the various data before validating the 
method with the data. As the single-cell datasets grow 
larger, additional processing factors, such as batch effects 
and identification of highly variable genes, need to be 
taken into account. To reduce the impact of validation 
by other factors, we preprocessed each dataset using the 
original study’s processing steps, which included gene fil-
tering, normalization, and screening for highly variable 
genes. Like most methods, we choose to perform cluster-
ing based on principal component analysis (PCA) [40]. 
As a one-click clustering framework, the default number 
of principal components (PCs) used is 5 if not specified 
by the user. It is worth noting that some of the datasets 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
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had published preprocessing results, which we directly 
followed. The detailed preprocessing pipeline is shown in 
Additional file 2: Table S1.

Validation method
To comprehensively evaluate the performance of the 
CDSKNN clustering framework, we compared it with the 
mainstream clustering frameworks in large-scale single-
cell transcriptomics, including PARC [21], phonograph 
[18], and FlowGrid [22]. These frameworks, which uti-
lize density and community discovery approaches, were 
assessed using their default settings.  Our comparison 
focused on the following aspects: clustering accuracy, the 
accurate estimation of the number of clusters, clustering 
speed, and the repeatability of marker genes in different 
clustering results.

Specifically, we conducted a robustness test of the 
CDSKNN parameters using the first group datasets and 
validated the method’s adaptability to imbalanced data 
ratios. Then, we assessed the method’s clustering per-
formance, computational efficiency, and its capacity to 
identify marker genes within the second group datasets. 
These datasets comprised single-cell data from various 
origins, featuring a range of cell quantities.

All the experiments were performed on our CentOS 
system with 48 CPU cores at 2.2 GHz, 250 GB of mem-
ory. For comparison under the same conditions, we con-
ducted comparison experiments on a single CPU.

Evaluation measurement
Clustering accuracy
We adopt Adjusted Rand Index (ARI) to evaluated clus-
tering accuracy, which was based on the Rand index (RI). 
We represent the known cell types as R and the identified 
clusters as E[RI] and ARI are defined as follows:

where TP is the number of true positives,  TN is the 
number of true negatives, FP is the number of false posi-
tives, and FN is the number of false negatives. As shown 
in Eq.  (7), where E[RI] represents the expected value. A 
higher ARI value indicates that the clustering result is 
more consistent with the actual situation.

(6)RI(R,E) =
TP + TN

TP + FP + FN + TN

(7)ARI(R,E) =
RI − E[RI]

max(RI)− E[RI]

Table 1 General information on the validation single-cell sequencing datasets

* PBMC: Peripheral Blood Mononuclear Cells; BALF: Bronchoalveolar Lavage Fluid

Group Accession Species Tissue Cell Number Cell Type Number Refs.

Group 1
GSE156793

Thymus Human thymus 8,779 5 [31]

Stomach stomach 12,106 16

Spleen spleen 13,180 9

Placenta placenta 29,876 12

Muscle muscle 30,872 11

Pancreas pancreas 45,653 14

Intestine intestine 51,650 12

Eye eye 51,836 16

Heart heart 101,749 16

Liver liver 113,138 9

Kidney kidney 155,386 9

Lung lung 217,738 13

Adrenal adrenal 387,771 12

Cerebellum cerebellum 1,092,000 9

Cerebrum cerebrum 1,751,246 9

Group 2 GSE111107 Mouse kidney glomeruli 12,954 5 [32]

GSE102827 Mouse visual cortex 48,266 8 [35]

GSE131907 Human lung 180,069 7 [36]

SCP1162 Human colorectal 370,115 7 [38]

SCP795 Human lobules 611,034 18 [39]

PRJEB38269 Human iPSC, neurons 1,027,398 12 [34]

MERFISHData Mouse neurons 1,027,848 16 [33]

GSE158055 Human PBMC*, BALF* 1,462,702 12 [13]
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Accuracy of the estimated number of cell clusters
Both CDSKNN and the three comparative methods offer 
streamlined approaches that do not require predefining 
the number of clusters, relying instead on each meth-
od’s comprehensive data analysis and interpretation to 
determine cluster counts. To assess the accuracy of cell 
type quantity estimations by these methods, we calcu-
lated deviation between the cell type numbers obtained 
from the clustering results and the benchmark cell type 
numbers. A positive deviation indicates an overestima-
tion, whereas a negative one suggests an underestimation.

The reproducibility of marker genes
The distinct marker genes, representing the biological 
origins of cell clusters, are essential for comprehending 
the biological context of a cell type. We conducted differ-
ential gene expression analysis on the clustering results 
and compared them with marker genes from original 
studies using Jaccard similarity [41]. This comparison 
allowed us to evaluate the accuracy of different methods 
in replicating essential cell type marker genes.

Results
CDSKNN parameter settings
We conducted multiple experiments on the first group of 
datasets to test the robustness of the key parameters in 
the CDSKNN and selected the optimal parameter con-
figuration. Specifically, for each parameter, we varied 
its settings within a certain range while keeping other 
parameters at their default values. To assess whether sig-
nificant changes occurred, the clustering performance 
of CDSKNN with different parameter configurations 
was evaluated using the Wilcoxon signed rank test. The 
assessment was based on ARI and deviation , along with 
considerations of time consumption. The default settings 
and search ranges for the main parameters are as follows:

1) g : the number of region partitions. The default set-
ting is 500. The tests were conducted within the 
range of 200–2000 at intervals of 300.

2) kmax : the maximum value for the K  value search 
range. The default setting is 50. The test is conducted 
within {20, 30, 40, 50, 80, 110, 140, 170, 200}.

3) res : the resolution of the louvain algorithm during 
resampling. The default setting is 1.0. The tests were 
conducted within the range of 0.2–3.0 at intervals of 
0.4.

4) L : the number of iterations for resampling. The 
default setting is 50. The tests were performed within 
the range of 20–200 at intervals of 30.

In relation to the number of regional parti-
tions ( g  ), ARImed indicates that the clustering out-
comes demonstrate the highest alignment with the 
gold standard when adhering to the default con-
figuration ( ARImed = 0.66 ) (Additional file  1: Fig 
S1a). For g = 200 , there is a 55.5% reduction in 
timemed ( timemed = 1.318 ) compared to g = 500 
( timemed = 2.964 ), but the ARImed dropped signifi-
cantly ( ARIg=200

med = 0.5 ). Considering all these factors, 
we believe that accurately identifying cell types takes 
precedence over minimizing computational costs. Con-
sequently, we have established the optimal value for g 
to be 500.

Concerning the exploration of the K value in the 
KNN graph structure, we established the lower limit at 
3 and broadened the exploration range by adjusting the 
upper bound, denoted as kmax practical terms. There is 
no requirement for an excessively extensive exploration 
range, as a higher K  value implies a smoother graph 
structure, facilitating easier point connectivity and 
potentially overlooking localized structures within the 
dataset. When kmax is 50 or greater, the median values 
of ARI  and deviation remain constant ( ARImed = 0.66 , 
deviationmed = −7 ) (Additional file  1: Fig S1b). For K  
values less than 50, we observed an enhancement in the 
deviation results compared to the scenario with K  at 50 
( deviationmed ∈ [−5,−4] ). Consequently, we opt for a 
search window width of K  , ranging from 3 to 50.

Regarding the configuration of the resolution ( res ) 
in the context of the louvain algorithm during the 
resampling process, both the deviation and time 
consumption exhibit insensitivity to changes in the 
parameter, demonstrating no significant fluctuations 
(  deviationmed ∈ [−7,−5], timemed ∈ [2.964, 3.329]mins  ) 
(Additional file  1: Fig S1c). Therefore, we set the opti-
mal value for res to 1.

Concerning the number of resampling iterations ( L ), 
the most prominent observation is the increase in time 
consumption as the number of sampling iterations 
increases (L ∈ [20, 200], timemed ∈ [1.458, 15.58]mins ) 
(Additional file  1: Fig S1d). Additionally, there is 
no noteworthy fluctuation in clustering accuracy 
(ARImed ∈ [0.47, 0.66], deviationmed ∈ [−7, − 6] ), with 
the peak occurring atL = 50 . Consequently, we choose 
the optimal value for L to be 50.

In the following work, we will proceed with perfor-
mance comparisons against other methods based on 
the selected optimal parameter combination.

CDSKNN outperforms other methods in clustering data 
with highly imbalanced cell ratios
In scRNA-seq data, imbalances often lead to an overem-
phasis on certain cell types while neglecting others. The 
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imbalance ratio (IR) serves as a metric for measuring data 
imbalance and represents the ratio of the number of cells 
in the largest cluster to the number in the smallest clus-
ter [42]. A higher IR indicates greater data imbalance. We 
applied CDSKNN and three other methods to the first 
group datasets and evaluated the robust clustering capa-
bilities of these methods by displaying the IR values for 
the first dataset ( IR ∈ [48, 34967] ). To conduct a compre-
hensive performance comparison among the methods, 
we performed experiments on each dataset using multi-
ple clustering results, with the PC numbers ranging from 
5 to 30 at intervals of 5.

Among the 15 datasets characterized by varying IRs, 
CDSKNN surpasses the other three methods in 10 tis-
sues, yielding an ARImed of 0.46, in contrast to 0.19 
(PARC), 0.261 (phenograph), and 0.302 (FlowGrid) for 
the respective methods (Fig.  2a). Specifically, CDSKNN 
outperforms PARC in 13 tissues, excluding the cerebrum 
and spleen, with a clustering consistency difference rang-
ing from 0.032 to 0.58. In datasets with high IRs, such 
as the cerebrum and adrenal, CDSKNN shows margin-
ally less clustering consistency than FlowGrid but out-
performs it in low-IR tissues like the spleen, stomach, 
and cerebellum. Additionally, CDSKNN surpasses phe-
nograph in 11 tissues, aside from the spleen, eye, pan-
creas, and cerebrum, with the difference in clustering 
consistency varying from 0.08 to 0.566. Furthermore, 
we performed a comparison to determine if the cell type 
quantities identified by various methods matched the 
benchmark cell type numbers in the study, aiming for 
biologically interpretable results. The findings revealed 
that CDSKNN tended to underestimate the number of 

cell types, with deviationmed ranging from [−11.5,−0.5] 
and deviationsd ranging from [0.894,3.94]. Conversely, 
PARC and phenograph tended to overestimate the num-
ber of cell types in tissue data with diverse IRs (Fig. 2b). 
Compared to the established gold standard, these two 
methods estimate cell type numbers to be greater within 
the ranges of [15, 35] and [8.5, 29] . FlowGrid’s deviationmed 
spans a wide range across all tissues, varying from 
[−8.5, 60.5] , with deviationsd ranging from [1.83, 82.3] , 
indicating a notably unstable performance.

Overall, these findings demonstrate that CDSKNN is 
effective at addressing the imbalance within single-cell 
data. By confronting data characterized by imbalanced 
intercluster proportions, CDSKNN can reasonably per-
form clustering to a certain extent and provide a more 
accurate estimation of the number of cell types compared 
to other methods.

CDSKNN exhibits preferable scalability and good 
performance on large‑scale datasets
We applied CDSKNN alongside three other cluster-
ing frameworks to diverse datasets sourced from vari-
ous origins and tissues, including lung tissue, neurons, 
and peripheral blood, among others (Table 1, Additional 
file 2: Table S1). These datasets cover a broad spectrum 
of cell counts, ranging from 12,954 to 1,462,702 cells, and 
include three datasets comprising millions of single cells.

When the number of principal components (PCs) is 
set to 5, the distribution of clustering results from dif-
ferent methods within the embedding space further 
validates the effective clustering by CDSKNN (Addi-
tional file  1: Fig S2), with its predicted number of clus-
ters closely matching the benchmark cell types number. 
In contrast, the clustering outcomes of the other three 
methods often demonstrate an effect of over-clustering 
[43].  Integrating results across all principal component 
numbers, CDSKNN consistently outperforms the other 
methods in clustering consistency and accurately esti-
mating cell type quantities (Fig.  3).  For instance, in the 
GSE102827 (48,266 cells), CDSKNN achieved an ARImed 
of 0.882, signifying an enhancement ranging from 0.332 
(PARC) to 0.427 (FlowGrid) relative to other meth-
odologies (Fig.  4a). The margin of deviation between 
the estimated quantities of cell types and the reference 
standard remains within the interval [-2, -1], demon-
strating stability that surpasses other methods (Fig. 4b). 
Similar trends are evident in the GSE131907 (180,069 
cells) and SCP1162 (370,115 cells) datasets. Further-
more, the CDSKNN has demonstrated significant effec-
tiveness in managing large-scale single-cell datasets. For 
SCP795 (611,034 cells), ARImed of CDSKNN reached 
0.949, indicating an improvement over phenograph 
( ARImed = 0.116 ) and PARC ( ARImed = 0.099 ). In 3 

Fig. 2 Performance comparison of CDSKNN against 3 competitive 
tools with increasing IR datasets ranging from 48 to 34,967. a 
Evaluation with ARI . The actual values are presented as the mean 
± standard deviation. b Evaluation with deviation . The horizontal 
lines in the box represent median values, with whiskers extending 
to the farthest data point within a maximum of 1.5 × interquartile 
range
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datasets comprising millions of single cells, the compara-
tive methods exhibited deviation ranges in estimating 
cell type quantities of [22, 37] (PARC), [20, 31.5] (pheno-
graph), and [18, 207] (FlowGrid) (Fig. 4b). In contrast, the 
CDSKNN exhibits enhanced stability with a narrower 
margin of error ( deviation ∈ [−14,−7.5] ), emphasizing 
its applicability and dependability in the analysis of large-
scale single-cell data.

Additionally, we meticulously documented the runtime 
of each algorithm. The time consumption of CDSKNN 
did not significantly increase with the number of cells, 
but remained stable (Fig. 4c). While handling 3 datasets 
comprising millions of single cells, the median level of 
time consumption for CDSKNN was only 6.18–8.22 min, 
representing a 33.3% to 99% reduction in runtime com-
pared to the other three methods. FlowGrid’s average 
runtime reached 1,403 min when processing 1.46 million 
data points, whereas CDSKNN required only 6.33 min.

CDSKNN has better clustering stability with different 
numbers of principal components
Based on the results obtained from datasets of varying 
sizes, we conducted a comparative analysis of clustering 
performance across different numbers of principal com-
ponents (PCs). Overall, the CDSKNN exhibited supe-
rior stability to that of the other three methods (Fig. 5). 
Both the efficiency of clustering and the runtime remain 
relatively steady despite changes in the number of PCs. 
As the number of PCs increases, the CDSKNN algo-
rithm displays slight fluctuations ( ARImed ∈ [0.62, 0.772] , 
deviationmed ∈ [−6,−3] ), while the time consump-
tion remains stable at approximately 3–7  min. Despite 
its shorter runtime, PARC demonstrates inadequate 
clustering performance, whereas phenograph also lack 
competitiveness.

Of particular note is FlowGrid, which shows compara-
ble performance to CDSKNN when the number of PCs is 
5 ( ARI (FlowGrid)med = 0.618 , ARI (CDSKNN )

med = 0.633 ) and con-
sumes less time (Fig. 5a). However, as the number of PCs 
increases to 20, FlowGrid experiences a sharp decline 
in clustering performance ( ARImed = 0.15 ), accom-
panied by a significant increase in time consumption 
( timemed = 527.7mins ) (Fig.  5c). In contrast, CDSKNN 
consistently exhibits strong clustering performance 
( ARImed = 0.636 ) and relatively minimal computational 
time ( timemed = 5.385mins ). These findings suggest that 
CDSKNN is more adept than FlowGrid at capturing 
the intricate data structures present within single-cell 
datasets. Similarly, the comparison results for deviation 
underscore the ability of CDSKNN to provide stable cell 
type estimation (Fig. 5b).

CDSKNN can reproduce marker genes of major cell types
The distinct marker genes, representing the biological 
origins of cell clusters, are pivotal for grasping the bio-
logical essence of a cell type. Through differential gene 

Fig. 3 Overall clustering performance comparison of CDSKNN 
and existing methods on diverse datasets sourced from various 
origins and tissues. Evaluation with ARI (a) and deviation (b). The 
horizontal lines in the box represent median values, with whiskers 
extending to the farthest data point within a maximum 
of 1.5 × interquartile range

Fig. 4 Comparison of the CDSKNN and existing methods 
for datasets with different numbers of cells. a Evaluation with ARI
. The actual values are presented as the mean ± standard deviation; 
b-c Evaluation with deviation (b) and elapsed time (minutes) 
(c). The horizontal lines in the box represent median values, 
with whiskers extending to the farthest data point within a maximum 
of 1.5 × interquartile range. For the sake of clarity, we truncated 
and compressed the y-axis
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expression (DGE) analysis grounded on clustering out-
comes, and benchmarking against marker genes vali-
dated in original research (log2 Fold change > 2, Adjust 
P-value < 0.01), we confirmed the clustering technique’s 
proficiency in mirroring marker genes of major cell types, 
quantitatively assessed by Jaccard similarity ( jac).

When the number of PCs is set to 5, the jacmed of 
the DGE results obtained from CDSKNN compared to 
the benchmark is slightly lower than that of  FlowGrid 
(Fig.  6). Nonetheless, CDSKNN demonstrates remark-
able performance in other evaluations. As the number 
of PCs increases, CDSKNN’s benefits become more evi-
dent, with the jacmed rising from 0.668 to 0.723. Addi-
tionally, we emphasized the jac between the clustering 
marker genes and benchmark results across three data-
sets, each boasting over a million data points. CDSKNN 
demonstrates a tendency to form fewer clusters, with 
each cluster corresponding to a specific major cell type 
(Additional file 1: Fig S3). This is confirmed by compar-
ing the expression heatmaps of the top 2 marker genes 
with the highest fold changes in each benchmark cell 
type across various clusters (Additional file 1: Fig S4). In 
contrast, the other three methods show a pattern of over-
clustering and over-representation, where a single cluster 
might include marker genes from multiple cell types.

Discussion
With the increasing profundity of sequencing and the 
increasing coverage of throughput, single-cell data ampli-
fied on an unparalleled scale necessitates novel compu-
tational tools for effective management of the magnitude 
and intricacy of single-cell datasets. By constructing a 
stable KNN graph structure, we proposed CDSKNN, 
an unsupervised cluster integration approach suitable 
for cell grouping. To address large-scale single-cell data, 
CDSKNN is primarily grounded in two key components: 
i) partitioning to reduce computational complexity and 
eliminate outliers; ii) data-centric construction of a sta-
ble KNN graph structure. To leveraging the stability of 
the graph structure, we apply cluster evaluation metrics 
to ascertain the best fitting cluster resolution. Valida-
tion revealed that initial data partitioning expedites the 
analysis pipeline, while a stable graph structure notably 
fortifies cell clustering. Firstly, we undertook param-
eter testing and comparative validation using a single-
cell dataset sourced from the human fetal atlas [31]. In 
comparison with existing methodologies, CDSKNN 
effectively captures data structures, executes proficient 
clustering, and delivers accurate estimations of cell type 
quantities, particularly when dealing with highly imbal-
anced data scenarios. Secondly, we conducted perfor-
mance comparisons across multiple single-cell datasets 
derived from diverse studies and library construction 
methods. This broader assessment highlights the flex-
ibility of CDSKNN in adapting to the inherent complexi-
ties of these datasets, as well as its ability to effectively 
preserve marker genes associated with major cell types, 

Fig. 5 Comparison of the CDSKNN and existing methods 
under different numbers of principal components. a-c Evaluation 
with ARI (a), deviation (b) and elapsed time (minutes) (c). The 
horizontal lines in the box represent median values, with whiskers 
extending to the farthest data point within a maximum 
of 1.5 × interquartile range. For the sake of clarity, we truncated 
and compressed the y-axis

Fig. 6 Comparison of the Jaccard similarity between clustering 
marker genes and benchmark cell type-specific marker genes based 
on different clustering methods across second group datasets
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thereby providing a biologically meaningful representa-
tion of the data. Thirdly, as the number of cells rapidly 
increases, CDSKNN demonstrates efficient clustering 
within a minimal time period, highlighting its superior 
scalability in managing extensive datasets relative to 
alternative approaches.

The above results underscore the practical applica-
tion of CDSKNN as a single-cell data clustering tool 
within complex and diverse biological systems. With the 
increasing throughput of single-cell sequencing, efficient 
data management and effective handling of imbalances 
are crucial for single-cell data analysis. CDSKNN, serv-
ing as a flexible framework for automated clustering, 
provides rapid data-driven clustering for researchers 
with different biological backgrounds, particularly dem-
onstrating high computational efficiency in large-scale 
datasets. Additionally, it effectively addresses imbalanced 
data issues, offers a more reliable underlying representa-
tion of biological processes.

While the CDSKNN offers a promising strategy for 
clustering single-cell data, recognizing its limitations is 
crucial. A notable challenge is its use of partition cluster-
ing algorithm for region partitioning, which might not 
effectively capture the non-linear relationships in the 
increasingly complex single-cell sequencing data. Addi-
tionally, the method for choosing the optimal cluster-
ing resolution currently relies solely on cluster quality 
assessment. Incorporating differential testing between 
clustering results could provide a more refined strategy 
for identifying the best resolution. Finally, the exclusive 
use of ARI for evaluating clustering performance may not 
comprehensively reflect result accuracy. Expanding the 
evaluation framework to include a broader array of met-
rics, while also considering the interpretability of clus-
tering outcomes and their influence on further analyses, 
can lead to a more thorough and precise evaluation of the 
method’s effectiveness.

Conclusions
We propose  CDSKNNXMBD, an unsupervised clustering 
framework designed to group cells by constructing a sta-
ble KNN graph structure. Compared to existing meth-
ods, CDSKNN accurately captures the data structure in 
highly imbalanced scenarios, achieving efficient cluster-
ing and accurately estimating the number of cell types. 
CDSKNN is applicable to single-cell data from diverse 
biological backgrounds and can efficiently and accurately 
cluster millions of single cells in a short time, highlight-
ing its universality and scalability. Moreover, CDSKNN 
showed consistent clustering performance across various 
numbers of features, offering a more dependable under-
lying representation of biological processes.
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