
Qiao et al. Journal of Translational Medicine          (2024) 22:185  
https://doi.org/10.1186/s12967-024-05005-0

REVIEW

Clinical data mining: challenges, 
opportunities, and recommendations 
for translational applications
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Abstract 

Clinical data mining of predictive models offers significant advantages for re-evaluating and leveraging large amounts 
of complex clinical real-world data and experimental comparison data for tasks such as risk stratification, diagnosis, 
classification, and survival prediction. However, its translational application is still limited. One challenge is that the 
proposed clinical requirements and data mining are not synchronized. Additionally, the exotic predictions of data 
mining are difficult to apply directly in local medical institutions. Hence, it is necessary to incisively review the trans-
lational application of clinical data mining, providing an analytical workflow for developing and validating prediction 
models to ensure the scientific validity of analytic workflows in response to clinical questions. This review systemati-
cally revisits the purpose, process, and principles of clinical data mining and discusses the key causes contributing 
to the detachment from practice and the misuse of model verification in developing predictive models for research. 
Based on this, we propose a niche-targeting framework of four principles: Clinical Contextual, Subgroup-Oriented, 
Confounder- and False Positive-Controlled (CSCF), to provide guidance for clinical data mining prior to the model’s 
development in clinical settings. Eventually, it is hoped that this review can help guide future research and develop 
personalized predictive models to achieve the goal of discovering subgroups with varied remedial benefits or risks 
and ensuring that precision medicine can deliver its full potential.
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Background
Big Data is currently reinventing medicine. Clinical 
management has undergone a digital transformation, 
leading to a vast array of data known as real-world data, 
ranging from electronic health records (EHR) of disease 

phenotypes [1, 2] to the molecular atlas of patient-
generated information [3], despite the acknowledged 
restrictions in comparison with randomized controlled 
trials (RCTs). Surveillance, Epidemiology, and End 
Results [4] is the most noteworthy example of the EHR 
data, while The Cancer Genome Atlas [5] represents 
the latter. Even the data obtained from comparative 
studies in which randomization is used also becomes 
an increasingly important source of clinical data mining 
[6]. With deeper involvement of machine learning, the 
availability of these data has led to the rapid adoption of 
data mining in medicine, demonstrating the prospects 
of developing predictive models [7–9], assessing patient 
risks [10–12], and facilitating physicians’ clinical 
decisions [13, 14]. For example, it has become possible 
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to predict the cytotoxicity of silver nanoparticles, which 
are biosynthesized with anti-cancer and antibacterial 
activity [15–17]. Through a systematic review and 
statistical integration of silver nanoparticle cytotoxicity 
data, machine learning model training and development 
on these aggregated data pools can enhance the precision 
of risk prediction and avoid over- or underestimation of 
the actual risk of human exposure to nanotoxicity [18]. 
Although there is potential to guide precision therapies, 
improve efficiency, and achieve better outcomes, limited 
progress has been made to deal with decision-making in 
the clinical context.

In clinical data mining research, two perennial 
concerns of clinicians experienced in clinical practice 
have not been addressed thoroughly. The first is that 
data mining takes place only when the data is available 
rather than when the clinical needs arise, due to 
absence of the clinician’s active cooperation [19, 20]. 
Still, the invigorating works of data mining with active 
involvement of the experienced physician have been 
accepted by clinical guidelines [21, 22], suggesting 
that data mining is merging with medical practice in 
a fascinating way of multidisciplinary integration and 
raising situations in which clinical actual needs may 
not yet be the leading strength but increasingly become 
an important part of clinical data mining. The second 
concern is that the exotic predictive model of data 
mining, which has been internally or externally validated 
by the research conductor, does not work for current 
patients in the local hospital [23–26].

Recently, well-established standards for clinical 
data mining such as STROBE [27], TRIPOD [28] and 
regulatory requirements for prediction model approval 
from the Food and Drug Administration [29] have 
been available to rely on. Yet, with the dispute over 
"the rigor of regulations such as ENCePP [30], scholars 
have also questioned their feasibility [31]. As a result, it 
is easy to form the perception that external validation 
with favorable performance for prediction models 
does not prove universal applicability, considering 
the heterogeneity in spatial, temporal, and healthcare 
contexts.

Given these concerns and the purpose of our review, 
we conducted a systematic literature search on PubMed 
for articles published from 1997 to 2023, using the 
Medical Subject Headings (MeSH) terms "Data mining" 
or "Prediction model". After reviewing, we propose a 
frame of four principles: Clinical Contextual, Subgroup-
Oriented, Confounder- and False Positive-Controlled 
(CSCF), to provide guidance for clinical data mining 
prior to the model’s implementation in clinical settings. 
The CSCF principles are as understandable as possible 
by individuals engaged in data mining and are held to 

traditional clinical research standards. Our aim is not to 
substitute these established authoritative regulations with 
another batch of such guidelines. Rather, the target is to 
recognize the leading principles of clinical data mining 
and propose conceptual innovations that robust analytic 
workflows fixing a clinical problem should be serviceable 
and transplantable more than developed models that 
can be used by clinicians. Although not exhaustive, the 
CSCF principles can not only maximize the authenticity 
of developing model workflows and their products in 
clinical data mining, but also endow them with improved 
clinical outcomes when implemented in practice.

Represent accurately and integrate into clinical 
practice seamlessly
There is no exception in clinical medicine where a large 
volume of data is generated from Hospital Information 
Systems, including but not limited to the Electronic 
Health Records (EHRs), Laboratory Information Systems, 
and Picture Archiving & Communication Systems. 
With such a large volume of data mining, many clinical 
questions could be addressed by developing predictive 
models. The use of predictive models in clinical settings 
includes, but is not limited to, curable factors [32], 
diagnosis [33], predictive and prognostic stratification 
[34], phenotypic occurrence [35], and the effectiveness 
of professional interventions [36–39]. In other words, 
analytical workflows of data mining encompass the 
whole process of the disease course, from prevention, 
diagnosis, treatment, and finally to prognosis. Various 
types of clinical questions are resolvable through clinical 
data mining, but the most common are summarized in 
Table 1.

Raising and defining the clinical question
The clinical problem arising from clinical practice is the 
starting point and destination of clinical data mining. 
It is a common myth that the clinical problem for data 
mining is not natural, but rather artificial, due to a poor 
understanding of the clinical settings of the problem 
[23]. The deep reasons causing this problem lies in the 
fact that the complex processes of clinical decision-
making are absent in the dataset for data mining [19]. 
By having access to shared clinical data, thousands of 
researchers can gain insight into a patient’s treatment 
plan prescribed by the physician, yet without being privy 
to the rationale behind the physician’s decisions and the 
factors they took into consideration. Consequently, it is 
essential to prioritize communication and collaboration 
with physicians on the clinical issue at the start of the 
research.

A true picture of the clinical problem directly deter-
mines the fate of clinical data mining results, whether 



Page 3 of 17Qiao et al. Journal of Translational Medicine          (2024) 22:185  

Ta
bl

e 
1 

Va
rio

us
 c

lin
ic

al
 p

ro
bl

em
s 

ba
se

d 
on

 d
at

a 
m

in
in

g

Ty
pe

Cl
in

ic
al

 d
at

a 
m

in
in

g 
qu

es
tio

ns
Ca

se
PM

ID

D
is

ea
se

 p
re

ve
nt

io
n

W
ha

t a
re

 th
e 

ris
k 

fa
ct

or
s 

as
so

ci
at

ed
 w

ith
 th

e 
de

ve
lo

pm
en

t o
f t

he
 d

is
ea

se
?

H
ea

rt
 d

is
ea

se
 ri

sk
 fa

ct
or

s 
de

te
ct

io
n 

fro
m

 e
le

ct
ro

ni
c 

he
al

th
 re

co
rd

s 
us

in
g 

ad
va

nc
ed

 
N

LP
 a

nd
 d

ee
p 

le
ar

ni
ng

 te
ch

ni
qu

es
37

13
80

14

A
re

 th
er

e 
hi

gh
-r

is
k 

in
di

vi
du

al
s 

w
ho

 m
ay

 b
en

efi
t f

ro
m

 p
re

ve
nt

iv
e 

in
te

rv
en

tio
ns

 
or

 e
ar

ly
 s

cr
ee

ni
ng

?
A

 C
ar

di
ac

 D
ee

p 
Le

ar
ni

ng
 M

od
el

 (C
D

LM
) t

o 
Pr

ed
ic

t a
nd

 Id
en

tif
y 

th
e 

Ri
sk

 F
ac

to
r 

of
 C

on
ge

ni
ta

l H
ea

rt
 D

is
ea

se
37

44
35

89

H
ow

 d
o 

lif
es

ty
le

 a
nd

 e
nv

iro
nm

en
ta

l f
ac

to
rs

 in
flu

en
ce

 th
e 

lik
el

ih
oo

d 
of

 d
ev

el
op

in
g 

th
e 

di
se

as
e?

Th
e 

Co
nt

rib
ut

io
n 

of
 G

en
et

ic
 R

is
k 

an
d 

Li
fe

st
yl

e 
Fa

ct
or

s 
in

 th
e 

D
ev

el
op

m
en

t 
of

 A
du

lt-
O

ns
et

 In
fla

m
m

at
or

y 
Bo

w
el

 D
is

ea
se

: A
 P

ro
sp

ec
tiv

e 
Co

ho
rt

 S
tu

dy
36

69
57

39

D
is

ea
se

 d
ia

gn
os

is
W

ha
t a

re
 th

e 
di

ag
no

st
ic

 m
ar

ke
rs

 o
r f

ea
tu

re
s 

th
at

 a
re

 m
os

t r
el

ev
an

t f
or

 a
cc

ur
at

e 
di

se
as

e 
id

en
tifi

ca
tio

n?
N

eu
tr

op
hi

l-,
 M

on
oc

yt
e-

 a
nd

 P
la

te
le

t-
to

-L
ym

ph
oc

yt
e 

Ra
tio

s, 
an

d 
A

bs
ol

ut
e 

Ly
m

ph
oc

yt
e 

Co
un

t f
or

 D
ia

gn
os

is
 o

f M
al

ig
na

nt
 S

of
t-

tis
su

e 
Tu

m
or

s
37

35
19

95

H
ow

 c
an

 d
at

a-
dr

iv
en

 a
pp

ro
ac

he
s 

be
 u

til
iz

ed
 to

 im
pr

ov
e 

th
e 

ac
cu

ra
cy

 o
f d

ia
gn

os
tic

 
te

st
s 

or
 im

ag
in

g 
te

ch
ni

qu
es

?
A

 s
em

i-s
up

er
vi

se
d 

m
ul

ti-
ta

sk
 le

ar
ni

ng
 fr

am
ew

or
k 

fo
r c

an
ce

r c
la

ss
ifi

ca
tio

n 
w

ith
 w

ea
k 

an
no

ta
tio

n 
in

 w
ho

le
-s

lid
e 

im
ag

es
36

32
76

54

D
oe

s 
da

ta
 m

in
in

g 
ha

ve
 th

e 
ab

ili
ty

 to
 d

iff
er

en
tia

te
 b

et
w

ee
n 

di
ffe

re
nt

 s
ub

ty
pe

s 
or

 s
ta

ge
s 

of
 th

e 
di

se
as

e?
M

ac
hi

ne
 le

ar
ni

ng
 m

od
el

s 
ba

se
d 

on
 im

m
un

ol
og

ic
al

 g
en

es
 to

 p
re

di
ct

 th
e 

re
sp

on
se

 
to

 n
eo

ad
ju

va
nt

 th
er

ap
y 

in
 b

re
as

t c
an

ce
r p

at
ie

nt
s

35
93

59
76

D
is

ea
se

 tr
ea

tm
en

t
W

hi
ch

 tr
ea

tm
en

ts
 o

r t
he

ra
pi

es
 a

re
 m

os
t e

ffe
ct

iv
e 

fo
r s

pe
ci

fic
 p

at
ie

nt
 s

ub
gr

ou
ps

 
or

 d
is

ea
se

 s
ta

ge
s?

D
ar

ol
ut

am
id

e 
Pl

us
 A

nd
ro

ge
n-

de
pr

iv
at

io
n 

Th
er

ap
y 

an
d 

D
oc

et
ax

el
 in

 M
et

as
ta

tic
 

H
or

m
on

e-
Se

ns
iti

ve
 P

ro
st

at
e 

Ca
nc

er
 b

y 
D

is
ea

se
 V

ol
um

e 
an

d 
Ri

sk
 S

ub
gr

ou
ps

 
in

 th
e 

Ph
as

e 
III

 A
RA

SE
N

S 
Tr

ia
l

36
79

58
43

Ca
n 

da
ta

 m
in

in
g 

be
 u

se
d 

to
 o

pt
im

iz
e 

tr
ea

tm
en

t p
la

ns
 a

nd
 p

er
so

na
liz

e 
m

ed
ic

in
e 

ba
se

d 
on

 in
di

vi
du

al
 p

at
ie

nt
 c

ha
ra

ct
er

is
tic

s?
C

lin
ic

al
 O

ut
co

m
es

 W
ith

 a
nd

 W
ith

ou
t P

la
sm

a 
Ex

ch
an

ge
 in

 th
e 

Tr
ea

tm
en

t o
f R

ap
id

ly
 

Pr
og

re
ss

iv
e 

In
te

rs
tit

ia
l L

un
g 

D
is

ea
se

 A
ss

oc
ia

te
d 

W
ith

 Id
io

pa
th

ic
 In

fla
m

m
at

or
y 

M
yo

pa
th

y

36
72

98
74

H
ow

 d
o 

w
e 

pr
ed

ic
t t

re
at

m
en

t r
es

po
ns

e 
an

d 
po

te
nt

ia
l a

dv
er

se
 re

ac
tio

ns
 to

 s
pe

ci
fic

 
m

ed
ic

at
io

ns
?

Pr
og

no
st

ic
 a

nd
 p

re
di

ct
iv

e 
bi

om
ar

ke
rs

 fo
r i

m
m

un
ot

he
ra

py
 in

 a
dv

an
ce

d 
re

na
l c

el
l 

ca
rc

in
om

a
36

41
48

00

D
is

ea
se

 p
ro

gn
os

is
W

ha
t a

re
 th

e 
ke

y 
pr

og
no

st
ic

 fa
ct

or
s 

in
flu

en
ci

ng
 d

is
ea

se
 o

ut
co

m
es

 a
nd

 p
at

ie
nt

 
su

rv
iv

al
 ra

te
s?

Co
ns

tr
uc

tio
n 

an
d 

Va
lid

at
io

n 
of

 a
 U

PR
-A

ss
oc

ia
te

d 
G

en
e 

Pr
og

no
st

ic
 M

od
el

 fo
r H

ea
d 

an
d 

N
ec

k 
Sq

ua
m

ou
s 

Ce
ll 

Ca
rc

in
om

a
35

70
73

71

Ca
n 

da
ta

 m
in

in
g 

as
si

st
 in

 p
re

di
ct

in
g 

di
se

as
e 

pr
og

re
ss

io
n 

an
d 

po
te

nt
ia

l 
co

m
pl

ic
at

io
ns

?
A

n 
in

fla
m

m
at

or
y-

re
la

te
d 

ge
ne

s 
si

gn
at

ur
e 

ba
se

d 
m

od
el

 fo
r p

ro
gn

os
is

 p
re

di
ct

io
n 

in
 b

re
as

t c
an

ce
r

37
30

42
37

H
ow

 c
an

 p
re

di
ct

iv
e 

an
al

yt
ic

s 
he

lp
 to

 id
en

tif
y 

pa
tie

nt
s 

w
ho

 a
re

 m
or

e 
lik

el
y 

to
 e

xp
er

ie
nc

e 
a 

re
cu

rr
en

ce
 o

r r
el

ap
se

 o
f t

he
ir 

di
se

as
e?

Pr
og

no
st

ic
 ri

sk
 fa

ct
or

 o
f m

aj
or

 s
al

iv
ar

y 
gl

an
d 

ca
rc

in
om

as
 a

nd
 s

ur
vi

va
l p

re
di

ct
io

n 
m

od
el

 b
as

ed
 o

n 
ra

nd
om

 s
ur

vi
va

l f
or

es
ts

36
93

44
29

Po
pu

la
tio

n 
he

al
th

H
ow

 d
oe

s 
da

ta
 m

in
in

g 
co

nt
rib

ut
e 

to
 p

ub
lic

 h
ea

lth
 in

iti
at

iv
es

 a
nd

 d
is

ea
se

 
su

rv
ei

lla
nc

e 
eff

or
ts

?
Pe

rc
ei

ve
d 

Im
pa

ct
 o

f D
ig

ita
l H

ea
lth

 M
at

ur
ity

 o
n 

Pa
tie

nt
 E

xp
er

ie
nc

e,
 P

op
ul

at
io

n 
H

ea
lth

, H
ea

lth
 C

ar
e 

Co
st

s, 
an

d 
Pr

ov
id

er
 E

xp
er

ie
nc

e:
 M

ix
ed

 M
et

ho
ds

 C
as

e 
St

ud
y

37
46

30
08

W
ha

t p
at

te
rn

s 
an

d 
tr

en
ds

 e
m

er
ge

 w
he

n 
lo

ok
in

g 
at

 th
e 

oc
cu

rr
en

ce
 a

nd
 s

pr
ea

d 
of

 d
is

ea
se

 a
cr

os
s 

di
ffe

re
nt

 p
op

ul
at

io
ns

 o
r g

eo
gr

ap
hi

c 
re

gi
on

s?
A

na
ly

tic
al

 e
xp

lo
ra

to
ry

 to
ol

 fo
r h

ea
lth

ca
re

 p
ro

fe
ss

io
na

ls
 to

 m
on

ito
r c

an
ce

r p
at

ie
nt

s’ 
pr

og
re

ss
36

69
84

23



Page 4 of 17Qiao et al. Journal of Translational Medicine          (2024) 22:185 

the report is shelved after publication or takes root in 
clinical practice. And, the Cross-industry Standard Pro-
cess for Data Mining, which is widely accepted, empha-
sizes understanding and grasping application scenarios 
above all else [40]. Thus, what kind of clinical problems 
can be solved and to what extent fundamentally deter-
mines the clinical significance of findings in clinical 
data mining. Therefore, only by effectively transforming 
clinical problems into data mining needs can we vera-
ciously design data extraction of clinical characteristic 
variables, transparently establish a flowchart of statisti-
cal analysis, rationally select predictor parameters and 
significantly optimization target metrics, and iteratively 
implement predictive models, which requires that 
clinical thinking run through the entire data mining 
process.

Raising and defining the clinical question is the core 
process of clinical data mining research [41, 42]. Refer-
ence to RCT design principles [43–45], a clinical ques-
tion has three components: participants, interventions 
(absent in the diagnostic problem), and outcomes, plus 
one tenet of comparison, denoted by PIOC (Fig. 1). The 
size of the patients, the cost of the interventions, and 
the health damage of the disease all bind together to 
determine the potential of conducting the clinical prob-
lem. Special emphasis is placed on the fact that there 
are more than two standpoints to define the partici-
pants in a clinical problem, which a novice would not 
have the experience to differentiate. The reason behind 
this is that a diagnosis of a disease phenotype is made 
by a team of multiple clinical subspecialists, who are 
bound by certain disciplinary contexts consisting of 

inspection tools and angles, and by the applied pursuits 
of professionalism.

The outcome is defined by a set of measures using 
various subjective and objective tools and includes 
three subtypes: a measure of treatment effectiveness 
(rehabilitation or survival at three years), a measure of 
side effects (quantitative or qualitative), and a measure 
of patient trajectory by use of the professional scale 
following clinical guidelines. Beyond that together 
determining the optimal metric for prediction model 
training [46, 47], each subtype of outcome has its own 
clinical value; we urge investigators to first understand 
each one and then begin with the clinical practice need 
for data mining, even though this results in pooling data 
across institutions being challenging.

Above all else, the fundamental tenet of comparison 
is that both the intervention and the outcome variables 
have more than two possible values; that is, two or more 
treatments can be chosen for a patient, and then the 
outcomes of those patients could be either positive or 
negative. It is not appropriate to raise a research question 
involving participants who have only one available 
treatment or one treatment outcome. A schematic 
diagram for raising a clinical question is shown in Fig. 1.

The multidimensional heterogeneity of treatment 
effectiveness
The most undeniable problem that we face in defining 
the clinical problem is having a thorough grasp of a high 
degree of dimensional heterogeneity in clinical practice 
reality. The heterogeneity facing data mining comes 
from two sources: the existing variation of patients in 
risk factor, genotype [48] and phenotype [49, 50], and 
the artificial variation of data capture by a measurement 
system [51–54] including devices, algorithms and 
definitions. Controlling the latter at a reasonable level is 
the precondition for identifying the former [55, 56] and 
is the surmountable challenge unsurprisingly hindering 
most model validations of data mining.

Then, closer than that, recognizing the former 
should be based on three dimensions: the temporal 
clinical practice following a continually updated 
clinical guideline [57], the spatial variation of the 
patient demographics [58–60], and the infinitely varied 
efficiencies of hospital operational systems [61, 62]. The 
first raises a requirement on the prospective validation of 
prediction models and endows the prediction model with 
a remarkable valid period [57, 63]. The second requires 
an off-site validation when the predictive model is going 
to be used outside of the original development place 
[64–67].

But the use of drugs or medical devices off-site is 
largely due to high costs, high risks, and long cycles 

Fig. 1 A schematic diagram for raising a clinical question based 
on PIOC. The clinical problem components include patients (P), 
interventions (I), outcomes (O) and comparisons (C). The comparative 
fundamental tenet shows the possibility of two or more interventions 
and outcomes
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for their development, and it does not seem to be 
necessary for the predictive model in a new era of big 
data. Consequently, in a certain sense, there was hardly 
a need to introduce a non-indigenous prediction model 
due to a very low overhead for developing the native one. 
Furthermore, the heterogeneity of hospital operational 
systems in terms of efficiency means that the same 
utilization of technological and material resources can 
lead to a variety of outputs, which determines the service 
quality of a hospital that can be expected to improve 
through prediction models.

These things above tremendously aggravate the 
problem of heterogeneity in treatment effectiveness, 
fostering great uncertainty for externally validating 
predictive models in clinical data mining. Table  2 
summarizes the main heterogeneities in clinical practice 
for data mining in terms of participants, interventions, 
outcomes, and comparisons.

The most efficient model in clinical practice
To manage heterogeneity effectively during model devel-
opment, we suggest transforming a local clinical dataset 
into a prediction model that can be used by local doc-
tors to manage their patients; namely the best models are 
those that are seamlessly deployed, markedly assisting 
with clinical decision-making, and improving the clini-
cal paths in current practice. And one goal is to persuade 
you that internal validation is essential for confirming 
the predictive repeatability of analytic workflow using 

clinical data that originate from the same people as the 
training data. External validity, on the other hand, may 
not seem to be problematic, for being overly stringent 
and timid in clinical practice.

The assessment of verifying a predictive model in 
clinical data mining is a newer challenge. So far, there has 
been no scientific consensus about what constitutes the 
rule of externally verifying predictive model performance 
in clinical data mining, and about whether we need 
a unique set of standards for external validity. In our 
opinion, the precision of the prediction model based on 
data mining is more sensitive to the artificial variation 
of clinical data than the biomarker when conducting an 
external validity, while its cost is lower than that of the 
biomarker when conducting development. This review is 
not a discussion of these standards, nor does it end the 
discussion about them, but rather helps these standards 
evolve in a direction that is more adaptable to translation.

The optimal transplantable workflow developing 
indigenized models
Clinical prediction models are typically the products 
of developing analytic workflows processing massive 
amounts of clinical data of various types based on com-
puting power [13]. Internal and external validation do 
not necessarily guarantee the elimination of impacts 
from both natural and artificial variations, which inevita-
bly impede the accuracy of clinical prediction models [24, 
68]. In general, the external validation accuracy of clinical 

Table 2 The main heterogeneities in clinical practice for data mining

IPTW inverse probability of treatment weighting, SMRW standardized morbidity ratio weighting

Source of heterogeneity Attributes

Participants Demographic characteristics Spatial heterogeneity; Time 
heterogeneity; Space–time 
heterogeneity

Phenotype

Genotype

Behavioral characteristics and social factors

Interventions Proficiency in professional skills Diversity of therapeutic regimen 
(monotonically improvement); 
Diversity of clinical practice 
guidelines

Nursing quality

Medical quality

Accessibility of medical devices

Outcomes Type of the outcome: primary and secondary outcomes, side effects, disease progression Subjectivity: doctor subjective 
report and patient self-report

Definition of the outcome: including binary and continue with cut-off Objectivity: diagnostic report 
(imaging, pathology, laboratory 
tests)

Observation duration Time effect: timeliness or lateness 
of outcome occurrence time

Comparisons Case–control PS Matching Post-hot randomization

PS Weighting (IPTW, SMRW) Non-randomization

Cohort studies Instrumental variable Randomization-like

Randomization Randomized controlled trial
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predictive models tends to decrease, as evidenced by the 
data in Table 3. But for now, we have identified that the 
internal validation of outstanding performance endorses 
the overall development process of a clinical predictive 
model [59, 69]. And the analytic workflows of developing 
predictive models, namely the process flow or workflow, 
are robust to these variations of clinical data.

Hence, we suggest that the current focus on 
transporting new models should shift to a focus on a 
transparently analytic workflow consisting of widely 
spread, feasibly conducted, and realistically assumed 
algorithms. In our view, some clinical problems might 
permit the development of general models, and some 
might merely allow general development workflows. 
There is no doubt that what allows a general model also 
allows a general workflow, but not vice versa.

This may be argued that their predictive model has 
already incorporated the knowledge and experience of 
professional doctors, as evidenced by the training clinical 
dataset. In response, we believe that by consulting these 
experts and revising our clinical practices, the quality 
of our clinical data will be significantly improved before 
training the predictive model.

Aiming to identify clinically significant subgroups
Identifying clinically significant subgroups is a corner-
stone of personalized medicine, enabling the tailoring of 
treatments to patient characteristics that influence thera-
peutic outcomes. In clinical practice, a subset of patients 
are more likely to gain benefit from the current treat-
ment, outweighing the harm [70], whereas some are at a 
greater probability of the opposing situation [71]. Identi-
fying a subgroup of patients with a unique eigenvalue or 
effect emerges continuously across a broad range of med-
ical fields [72], often with the goal of delineating patient 
risk stratification and facilitating optimal decision-mak-
ing for varied patients. In addition, the data of RCT stud-
ies failing to meet the primary endpoint can be reused 
to explore possible benefits in specific subgroups of 

participants [73]. And the subgroup poorly represented 
in RCTs, such as minorities of younger patients with 
comorbidities, is also found in adequate numbers to per-
mit subgroup analyses in clinical data mining. Ultimately, 
identification of a clinically meaningful subgroup may 
lead to positive change in clinical practice [74], which is a 
sign of the success of the data mining.

Discover or construct variables that define subgroups
There is no doubt that sharing clinical data offers a variety 
of opportunities to detect or discover a subgroup. By 
performing unplanned subgroup analyses, it is possible 
to uncover new hypotheses from clinical data mining. 
More critically, it will unmask that patients with severe 
comorbidities or vulnerabilities who have been excluded 
from RCTs have received different therapeutic benefits 
post-launch [75].

Leveraging a new variable to define clinical subgroups 
of patients is the core of developing a prediction model in 
clinical data mining. There are two ways in which one can 
use a variable to define a subgroup. The first is to directly 
use key baseline characteristics, including demographic 
variables such as age [76] and gender [77, 78], as well as 
important clinical phenotypes [79], such as disease sever-
ity [71] and comorbidities [80], to define the subgroups 
in a separate or combined manner. By conducting sub-
group analyses based on natural features, it is possible 
to uncover the heterogeneity of the intervention effects 
among target patients, thus enabling the selection of 
those who would most likely benefit from the interven-
tion. As an alternative, one can use a aposteriori variable 
to divide into subgroups, to identify subgroups with ben-
eficial characteristics [81], such as improved therapeutic 
responses [34] or fewer treatment-related complications 
[82]. Researchers are increasingly reporting these cre-
ated variables, such as polygenic scores [83, 84], on a 
continuous scale, enabling them to investigate how the 
effectiveness of treatment changes as the value of the 
novel variable increases [85–87]. Despite the potential of 

Table 3 Accuracy summary of external validation for prediction model in clinical application scenario

LARC  locally advanced rectal cancer

Clinical scenarios Model developer Model feature Training set External verification set PMID

Optimal 
model 
accuracy (%)

Optimal 
model 
AUC 

Optimal 
model 
accuracy (%)

Optimal 
model 
AUC 

Predicting pathological complete 
response after neoadjuvant 
chemoradiotherapy in LARC 

Wei et al Clinical-Imaging 99.8 1.0 86.3 0.872 36355199

Defeudis et al Imaging 83 0.90 68 0.61 35501512

Bordron et al Imaging 90 0.95 85.5 0.81 35205826

Huang et al Clinical 87 0.79 86 0.81 32724164

Guo et al Gene pairs 92.86 0.95 90.91 0.91 29402470
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multivariable continuous models to reveal complex inter-
actions, investigators should ultimately rely on binary 
subgroups that require a reasonable cut-off for a simpler 
explanation.

Cut‑offs of variables define subgroups
Keeping the same definition of patient subgroups allows 
for comparison of results between analogous subgroups 
in different research reports of clinical data mining. 
Utilizing continuous variables to define subgroups is 
a common practice, and it is recommended to use pre-
existing or published cut-offs, as in reference [88]. As 
one embarks on the exploration, often there are no 
predetermined cutoffs for use in clinical data mining, as 
in reference [89].

The most classic example is that a new continuous 
predictive score of a clinical multivariable prediction 
model will be used to categorize patients into low and 
high risk of a benefited or adverse outcome [90–93]. 
Thus, the optimal cutoff point should be selected to 
maximize the disparity in outcomes or intervention 
benefits between the two subgroups. There are a couple 
of ways to specify the cutoff, and the most common, 
albeit inadvisable, one is that cutoff points are often 
identified groundlessly by simple percentiles, such as 
dichotomization using the median [94, 95]. By contrast, 
the better solution is to use the Subpopulation Treatment 
Effect Pattern Plot (STEPP) to identify the cut-off [96]. 
STEPP graphically explores the linear or nonlinear 
patterns of intervention effect across overlapping 
intervals of the definition variable of subgroups [96], 
in which the cutoff distinguishing the subgroups with 
different benefit patterns was determined.

Exploratory and confirmatory subgroups
Clinical data mining enables two types of subgroup 
analyses: a confirmatory analysis that relies on a 
hypothesis (hypothesis-driven), and an exploratory 
analysis to build a hypothesis (data-driven). In 
confirmatory cases, the subgroups must be clearly 
predetermined on the solid evidence of hypotheses, 
and the endpoints must be established regarding the 
subgroup-specific treatment effects [97–100]. Moreover, 
a strategy limiting the type I error rate and ensuring 
adequate power for testing the subgroup treatment 
effects must be established before the research [99].

Exploratory subgroup analyses are conducted either 
post hoc [101] or prespecified at the design stage [102], 
although the latter usually lacks the strength to formally 
assess intervention effects [103]. When planning for 
prespecified exploratory subgroups analyses, one should 
consider the definition of the subgroup, the endpoints, 
and the method carrying out the subgroup analyses. 

The difference between confirmatory and exploratory 
subgroup analyses has been summarized in reference 
[104]. Recognizing the difference between them, we 
caution that both are equally important and work 
together [105] to form a complete entity.

Matters needing attention in subgroup analyses
Subgroup analysis, however, increases the possibility of 
introducing bias and making interpretation more difficult 
on the variables that define subgroups. Consequently, it 
is vital to distinguish between the inexplicable subgroup 
analyses and those that are conducted appropriately. 
Certainly, it is improbable that a subgroup analysis will 
satisfy all or none of the current regulations for RCTs 
[106–108].

There is not yet a consensus on the value and 
significance given to each of these regulations in 
observational studies. Despite this, there is a high rate 
of methodological inadequacies in subgroup analyses 
[109, 110], especially in the illogical absence of statistical 
interaction tests [99] and arbitrary cut points for dividing 
subgroups [111]. In terms of testing the interaction, 
the multiplicative and additive interactions could have 
completely different impacts and clinical interpretations 
[112] so it is essential to understand how to properly 
conduct and interpret them.

We caution, however, that the statistical methods 
applied in current studies have not been adhered to 
as recommended. Firstly, when conducting subgroup 
analysis, the sample size should be adequate to robustly 
demonstrate the hypothesized subgroup effects. 
Additionally, a data-driven subgroup analysis should be 
accompanied by a hypothesis-driven subgroup analysis. 
Furthermore, the definition of subgroups should be based 
on the pathophysiology of the disease, its mechanisms, 
and high-quality internal and external data. Finally, 
and most importantly, caution should be taken when 
interpreting the findings of a subgroup analysis. Please 
refer to the literatures [72, 113–117] for more detailed 
methodological points.

Evaluating the consequences of controlling 
confounders on the potential for bias in research 
findings
Clinical data mining complements RCTs by leveraging 
historical data to identify patient groups that may 
respond differently to existing treatments, thus enriching 
the evidence base for personalized care. Data mining 
of EHRs has been demonstrated to be able to replicate 
the findings of clinical trials [118–120], and to be more 
realistically assessed than in RCTs given their size and 
multifariousness of patients. However, it is unlikely to 
substitute but rather to be complementary to RCTs [121], 
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for the justification that data mining is not as good at 
controlling imbalance confounders of unmeasured or 
crudely measured variables as RCTs.

Swollen risk of confounding factors in clinical data mining
For clinical data mining studies, two analytical 
frameworks are available: a historical cohort study and 
a case–control study, both of which are observational in 
nature. Historical cohort studies require that the patient’s 
data be organized and presented over time, often referred 
to as an ad hoc database and a result of clinical data 
governance dealing with fragmented data storage [121, 
122]. In contrast, case–control studies do not necessarily 
require any systematic data governance and are thus far 
more commonly used than historical cohort studies in 
clinical data mining.

Regardless of the analysis frameworks used in clinical 
data mining, researchers cannot randomize patients to 
receive treatment [123, 124]; rather, the patients have 
tendentiously received the treatments in past clinical 
practice [125]. Unfortunately, in most cases, this specific 
information on treatment selection is also missed 
or unrecorded in EHRs for clinical data mining. For 
instance, patients with a severe phenotype usually receive 
intensive treatment, yet this often leads to unfavorable 
results in practice, creating a misconception that 
intensive treatment yields poorer outcomes. This has led 
to the most common bias problem, namely, the treatment 
uptake mechanism introducing indication bias, which 
is a form of selection bias and occurs when selecting 
participants based on the presence of certain factors.

Moreover, compared to RCTs, data quality control is 
particularly intricate, and its impact is difficult to assess, 
inevitably resulting in the generation of bias, particularly 
in gathering non-structured clinical data from EHRs 
[119, 126]. Consequently, it is almost impossible to 
prevent confounding, or a threat to internal validity, 
without taking deliberate steps, including data collection 
and processing.

Commonly used methods of propensity score
Comparison is essential in clinical research [127, 128], 
and the fundamental feature of various research designs 
is to identify the most comparable control group to 
the observed group [120, 129]. It is well known that 
confounders, which cause selection bias, are associated 
with both the intervention variable and the clinical 
outcome. Naturally, there are two approaches to reducing 
the effects of confounders: the Propensity Score (PS) and 
Mendelian Randomization (MR).

The PS seeks to create screening conditions [130], 
namely PS, for the observed and control groups that 

allow for secondary selection and make the two groups 
similar in terms of known confounding variables. A 
patient’s PS is a continuously distributed probability 
value, ranging from 0 to 1, of receiving the experimental 
treatment given the pretreatment confounding variables 
[131]. Hence, it is necessary to have knowledge and 
measurement of confounders, in addition to participants 
having a chance of being assigned either the observed or 
the control intervention [132].

To attain unbiased treatment effects in clinical data 
mining, PSs can be used in four ways: PS matching, PS 
hierarchy, PS correction, and PS weighting [133]. Their 
distinguishing features are outlined in the Table  4. 
Therein, two special reminders are needed: (1) In 
subgroup analyses, one must use the PS within each 
prespecified subgroup for matching or weighting; (2) 
The PS approaches are incapable when a confounder 
or intervention is time-varying, as is often the case for 
chronic diseases.

The PS method does not address the confounders 
directly; yet it is able to produce a randomization-like 
effect by re-recruiting participants to even out the two 
groups, thus diminishing or balancing the effect of the 
confounders on the results. Hence, it is also referred to as 
post-hoc randomization [134].

Promising Mendelian randomization
Despite their efforts, PS methods are unable to address 
unmeasured confounders in clinical data mining. In 
clinical practice setting, if two patients with the same 
measured features receive different treatments, there 
may be valid but undocumented contributors [135]. Such 
items as extramural labs, clinical features, lifestyles, and 
cognitive and physical functioning that are obtained 
outside the hospital and affect both treatment decisions 
and outcomes are often not documented in HER. This 
presents a great opportunity to apply MR to clinical data 
mining.

MR is a poster-child example of the Instrumental 
Variable (IV) method [136], which can be used to 
determine the causal-effect estimates, even when 
unmeasured confounding is present [137]. The basic 
idea of MR is to find an instrumental variable that acts 
as a natural randomizer to mimic the obligation of 
randomizing the allocation of interventions [138]. For 
IVs to be valid, they must be able to affect treatment 
assignment, be independent of any measured or 
unmeasured confounders, and not have a direct effect on 
the interested outcomes [139], referred to as relevance, 
restriction, and independence.

In the opinion of experts, inherited genetic variants 
from parents can certainly be used as an excellent IV in 
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research, as they are allocated randomly, remain unmodi-
fied, and are not influenced, perfectly suited to the rig-
ors of these laws at conception [140]. MR can pinpoint 
the variant sites from thousands of options that fulfill the 
three criteria, thus making them a flawless IV. Moreover, 
utilizing multiple IVs which all point to the same conclu-
sion would strengthen the persuasiveness of the evidence.

MR analysis consists of two steps: examining the 
three core assumptions and evaluating the causal effect 
between variables and outcomes, as in conferences [141, 
142]. This process, where the two steps are carried out 
in the same sample, is known as one-sample MR [143], 
and when done in two distinct samples from the same 
population, it is referred to as two-sample MR [144]. 
MR is becoming increasingly popular among clinical 
data miners due to its time- and cost-effectiveness, 
largely attributed to the availability of chances to screen 
an abundance of published genetic associations [145]. 
Thus, genic IVs can be identified by searching through 
databases or reports that assess the relationship between 
genetic factors and the observed variable in question. 
Previous genome-wide association studies (GWASs) are 
especially useful in this regard [146, 147], as they are 
hypothesis-free scans that depict the correlation between 
millions of SNPs and the observed variables and clinical 
outcomes.

Yet, Mendelian randomization studies can be distorted 
by sample selection and misclassification if the observed 
variables are not universally measured with the same 
definition in all participants [148, 149]. Moreover, when 
utilizing MR, two aspects should be mulled over: (1) 
Population stratification, which involves the presence of 
subpopulations that are more likely to possess the genetic 
variant; (2) and the potential of the genetic variant used 
as an IV and its genetically linked genes to initially affect 
the outcome through a route other than the variable 
being observed [150–153]. Even so, it is important to 
bear in mind that the restricted access to dependable IVs 
and the minimal sample size may cause substantial finite 
sample bias and standard errors.

What is indispensable may not have desired consequences
Clinical data mining studies are advantageous in terms 
of efficient design schemes, yet they can be biased 
if the control group fails to reflect the distribution 
of contributors in the population from which the 
participants were taken. Locating this population is 
usually difficult, and controls can be selected to a certain 
extent for convenience. We must be cognizant that no 
single control strategy is optimal for all clinical questions, 
and all of them have certain drawbacks.

In comparison to PS strategies, IV tactics may be more 
intricate and less explicable, yet can be more dependable 
in scenarios of unmeasured confounders. Meanwhile, 
unless there is evidence that the controlling confounders 
approach will be significantly impacted by unobserved 
confounding, PS approaches should be preferred in clini-
cal data mining. More importantly, in this paper, we seek 
to raise awareness that both approaches are equally nec-
essary for obtaining precise intervention effects that vary 
across subgroups, as observational data is being increas-
ingly used. Researchers must understand the basic sup-
positions of these approaches and the situations in which 
these approaches are most suitable, as unavoidable exam-
ples leading to distorted estimates in the literature still 
exist [154–156].

Vigilance and mitigation of increased false 
positives due to multiple hypothesis
The concept of false positive findings has a long history 
in statistics, and especially in data mining, is far from 
trivial [157, 158]; indeed, they can cause unsafe predic-
tion failures. Until now, this essential issue, which greatly 
determines the success of clinical data mining, has not 
been given sufficient attention. Clinical data mining stud-
ies strongly involve numerous analytic steps (Fig. 2), and 
at each step, hypotheses must be thoroughly evaluated, 
thereby leading to a heightened risk of false positives due 
to multiple hypothesis tests [159, 160].

Intentional or unintentional multi‑testing
From a data scientist’s point of view, the near 
exhaustiveness of data analyses is advantageous; however, 
it also means that coincidental random fluctuations can 
be misinterpreted as significant changes in the clinical 
practice context, resulting in erroneous positive results 
and potentially deceptive conclusions. In clinical data 
mining research, concerns about excessively bloated rates 
of false-positive findings have led to a serious lack of 
confidence in prospectively validating results, incurring 
costs in money and time; this is the main reason why 
translational application is few and far between. In the 
following, we enumerate the more prevalent types.

Clinical data mining involves multiple comparisons 
of clinical outcomes [161], such as assessing if a 
selected clinical outcome differs between more than 
two intervention groups [162], or which of these 
outcomes vary between two intervention groups [163], 
especially in data from basket and umbrella trials [164]. 
Simultaneously, clinical data mining screens frequently 
clinically relevant variables or IVs, with multiple 
judgments being made to determine whether thousands 
of characteristics, such as genomic nucleotide site 
polymorphisms [165], transcriptomes [166], proteomes 
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[167], metabolomes [168], and microbiomes [169], are 
linked to a certain observed variable or endpoint [170]. 
As the definitions of subgroups and endpoints become 
more intricate in clinical data mining, this issue is 
becoming more complex as well.

Extremely inflated false positives in data mining
A false-positive result is a risk with any statistical test, as 
it is caused by chance rather than any difference between 
the comparison groups [171]. This means that if the 
original hypothesis is rejected, a Type I error has been 
made. Unexpectedly, as the number of tests increases, the 
likelihood of a false-positive result also rises surprisingly 
[172]. To ensure that the total number of Type I errors 
remains below a predetermined level, appropriate 
methods must be employed.

Benjamini and Hochberg were the first to introduce the 
concept of False Discovery Rate (FDR) [173], which is the 
proportion of false positive test results [174]. They also 
proposed a corresponding control method, known as the 
BH method. Compared to Type I error correction, FDR 

can be adjusted according to the needs of data mining 
and used as a criterion for variable selection or feature 
extraction.

We strongly recommend taking note that FDR is 
calculated based on the P-value under certain conditions 
that the assumptions are independent of each other [171]. 
The extensive existence of correlations between variables 
or outcomes is always inconsistent with the assumptions 
mentioned above, thus FDR does not guarantee a finding 
in fact, but rather provides a conservative approach in 
statistics. Before coming to any sweeping conclusions, 
it is imperative to understand the statistical caveats and 
limitations of the approaches [175, 176].

Focuses and outlooks
Over the past decade, technological advances in data 
have greatly enhanced our ability to stockpile and revisit 
complex processes of clinical diagnosis and treatment 
on a large scale and to be in ascendance. The sheer 
volume of clinical data has necessitated the utilization 
of data mining methods that are being specifically 

Fig. 2 Clinical data mining studies analyze workflows. The analytic workflows for developing a model consist of eight steps, including phase 1: 
problem definition (show in purple); phase 2: data collection (show in orange); phase 3: data processing (show in light green); phase 4: feature 
analysis (show in blue); phase 5: model developing (show in light yellow); phase 6: model validation and visualization (show in dark yellow); phase 
7:model evaluation (show in dark green); phase 8: model application and upgrades (show in pink)
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upgraded in tandem. Clinical data mining is largely 
aimed at clinical scenarios of actual practice, in which 
unrestricted patients range from whole genotypes to 
whole phenotypes and are tendentiously given various 
treatments in a non-randomized manner. And with data 
collection in the glare of scientific organization, RCT 
presents a new source of clinical data that is measured 
on-demand. Tying the two together, data mining has the 
potential to produce an enhanced version of the findings 
and is therefore expected to yield valid evidence for 
medical decision-making.

The limited translational application prevents any 
improvements from being seen in clinical practice. 
Various standards and guidelines have been suggested by 
academics, yet their impact has not been perceptible. The 
standards, to some degree, are too rigorous to be met, 
and there is no agreement among them as to whether the 
same standards of pharmaceuticals or medical devices 
should be applied. Perhaps it may take some time to 
observe the positive impacts of the existing regulations. 
But we all know deep down that the omnipresent 
heterogeneity of curative effects and prognoses is not 
a temporary bet, but a major impediment to their use 
in long-span populations, making it difficult for many 
predictive models of clinical data mining to match our 
field observations.

The time is right for a new doctrine. More concretely, 
to satisfy the needs of translational applications, we pro-
pose that adjustments must be made to the principles 
of clinical data mining. Most importantly, the present 
conception, namely PIOCs, maximizes the significance 
of clinical issues that are defined in clinical data min-
ing. Subsequently, systematic analysis of the effect of 
heterogeneity on each of the PIOCs interprets as much 
as possible the failures of the translational application of 
predictive models in clinical data mining. Recognizing 
these, this review has devised a strategy for contributing 
to the speed-increasing gearbox of translational applica-
tions by prioritizing the execution of development ana-
lytic workflows from clinical data mining in the future. In 
other words, clinical data mining research should focus 
on recognizing and assessing data inconsistencies and 
confirming the analytic procedure and its executable 
files employed to develop the predictive model, instead 
of simply popularizing the developed model. Rather than 
simply providing predictive models, the sharing of ana-
lytic processes for creating them should be more wide-
spread in the same medical field among hospitals. In 
short, by utilizing external but credible analytical work-
flows, clinical data mining employs local data to train an 
indigenized model to play an auxiliary role in a clinical 
specialty during a period in local hospitals, upgrading 

the predictive model when clinical practices isomerize 
significantly.

Of these, identifying the subgroup of patients with 
markedly different intervention results or risk of side 
effects can be achieved by using the natural variables 
or constructing novel variables to leverage subgroup 
analysis. In this process, one must address these creeping 
cracks of potential bias due to the non-randomization 
of the intervention and patient characteristics, and 
we propose a set of heuristics to help select the most 
suitable method that compromises those assumptions 
to the least extent. And if there is a pitfall to address, it 
would be the false positives, reducing which demand us 
gathering information on the background of the FDR and 
its resolution in clinical data mining.

It is the responsibility of clinical decision makers 
to develop personalized prediction models that are 
transparent, clinically effective, and beneficial for 
the patients they are caring for. Most importantly, an 
analytic workflow developing a tailored model for the 
data-mined evidence is practicable for decision makers 
now. Automatically, the data-mined evidence will be 
employed by clinicians to make distinct prescribing 
decisions without any doubt. As the translation of single-
hospital discovery to single-hospital application is being 
increased, an increase in the accessibility of clinical 
data and analytical codes [157, 177] combined with a 
mitigation of conceptual and metric shifts for PIOCs [178, 
179], guarantees that precision medicine will reach its 
full potential. Moreover, precise models hold significant 
potential in the current biomedical field. In contrast to 
the majority of application universality models, our CSCF 
framework emphasizes diversity and personalization of 
models. We believe that personalization and accuracy 
of the model should not be compromised for the sake of 
generalization. The CSCF framework ensures that the 
model is truly customized to the specific needs of patient 
populations or geographic regions by considering factors 
such as the clinical context, subgroups, confounders, 
and false positives, leading to a deeper understanding 
of disease mechanisms. This targeted approach not only 
improves the predictive accuracy of the models, but 
also ensures their usefulness and operability in clinical 
settings. By promoting diversity and personalization 
of models, we can avoid the trap of overgeneralization, 
thereby preventing a loss of correlation between model 
accuracy and specific patient populations. We are certain 
that clinical professionals will be able to increase the 
curative quality they offer due to the implementation 
of clinical data mining, and this will remain true in the 
days to come. Clinical data mining will not substitute 
for clinical professionals, but rather will facilitate them 
to carry out their duties more effectively and give them 
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more time to collaborate with data scientists, exchange 
ideas with their peers, and engage with patients.
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