
Niu et al. Journal of Translational Medicine          (2024) 22:186  
https://doi.org/10.1186/s12967-024-04971-9

RESEARCH

Characterizing hub biomarkers 
for post-transplant renal fibrosis and unveiling 
their immunological functions through RNA 
sequencing and advanced machine learning 
techniques
Xinhao Niu1,2†, Cuidi Xu1,2†, Yin Celeste Cheuk1,2,3, Xiaoqing Xu1,2, Lifei Liang1,2, Pingbao Zhang1,2 and 
Ruiming Rong1,2*   

Abstract 

Background Kidney transplantation stands out as the most effective renal replacement therapy for patients grap-
pling with end-stage renal disease. However, post-transplant renal fibrosis is a prevalent and irreversible consequence, 
imposing a substantial clinical burden. Unfortunately, the clinical landscape remains devoid of reliable biological 
markers for diagnosing post-transplant renal interstitial fibrosis.

Methods We obtained transcriptome and single-cell sequencing datasets of patients with renal fibrosis from NCBI 
Gene Expression Omnibus (GEO). Subsequently, we employed Weighted Gene Co-Expression Network Analysis 
(WGCNA) to identify potential genes by integrating core modules and differential genes. Functional enrichment 
analysis was conducted to unveil the involvement of potential pathways. To identify key biomarkers for renal fibro-
sis, we utilized logistic analysis, a LASSO-based tenfold cross-validation approach, and gene topological analysis 
within Cytoscape. Furthermore, histological staining, Western blotting (WB), and quantitative PCR (qPCR) experiments 
were performed in a murine model of renal fibrosis to verify the identified hub genes. Moreover, molecular docking 
and molecular dynamics simulations were conducted to explore possible effective drugs.

Results Through WGCNA, the intersection of core modules and differential genes yielded a compendium 
of 92 potential genes. Logistic analysis, LASSO-based tenfold cross-validation, and gene topological analysis 
within Cytoscape identified four core genes (CD3G, CORO1A, FCGR2A, and GZMH) associated with renal fibrosis. 
The expression of these core genes was confirmed through single-cell data analysis and validated using various 
machine learning methods. Wet experiments also verified the upregulation of these core genes in the murine 
model of renal fibrosis. A positive correlation was observed between the core genes and immune cells, suggest-
ing their potential role in bolstering immune system activity. Moreover, four potentially effective small molecules 

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

†Xinhao Niu and Cuidi Xu have contributed equally to this work and share 
first authorship.

*Correspondence:
Ruiming Rong
rongruiming1969@163.com
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1666-4058
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-04971-9&domain=pdf


Page 2 of 19Niu et al. Journal of Translational Medicine          (2024) 22:186 

Introduction
Kidney transplantation represents the most effective 
renal replacement therapy for patients facing end-stage 
renal disease. Advancements in matching techniques, 
the continuous evolution of immunosuppressive agents, 
and a deepened understanding of the pathophysiologi-
cal mechanisms behind transplant kidney rejection [1] 
have led to impressive one-year and ten-year transplant 
kidney survival rates exceeding 90% and 54.3%, respec-
tively [2]. However, post-transplant renal fibrosis poses 
a notable clinical challenge. Immunological mecha-
nisms affect chronic allograft injury (CAI) induced 
fibrosis and allograft survival via different mechanistic 
signaling pathways [3], and alloantigen mediated cyto-
toxic T lymphocytes play an important role in chronic 
allograft injury and renal fibrosis [4]. In addition, the 
innate immune response induced by ischemia–rep-
erfusion injury is also a factor in allografts injury and 
fibrosis after renal transplantation [5]. Histologically, 
post-transplant renal interstitial fibrosis is character-
ized by an increase in extracellular collagen fibers, 
tubular atrophy, and damage to peritubular capillaries 
[6]. This fibrotic transformation represents a common 
pathway to irreversible kidney damage, influenced by 
various harmful factors. Prior research has indicated 
that reduced peritubular capillary density resulting 
from kidney fibrosis leads to decreased renal perfusion. 
Consequently, this diminishes tissue oxygen availability, 
fosters the infiltration of inflammatory cells, and accel-
erates the generation of oxygen free radicals, all con-
tributing to tissue fibrosis progression [7]. Interstitial 
fibrosis [8], tissue oxygenation status [9], and peritubu-
lar capillary integrity [10] are pivotal factors influenc-
ing the advancement of transplant kidney damage and 
the overall survival of the transplanted kidney.

Presently, the evaluation of renal interstitial fibrosis 
extent in transplant kidneys necessitates invasive kidney 
biopsies for a definitive diagnosis. However, this proce-
dure entails risks such as graft bleeding, peri-renal infec-
tions, and potential patient fatalities. Notably, a reliable 
biological marker for diagnosing post-transplant renal 
interstitial fibrosis is lacking in clinical practice. With the 
advancement of sequencing technologies, analyzing dis-
ease biomarkers has emerged as a viable alternative.

In this study, utilizing transcriptome and single-cell 
sequencing data from databases containing patients with 
kidney fibrosis, our objective was to identify central bio-
markers for renal fibrosis. Through logistic analysis, ten-
fold cross-validation with LASSO, and gene topological 
analysis in Cytoscape, we pinpointed four core genes 
significantly associated with renal fibrosis: CD3G, 
CORO1A, FCGR2A, and GZMH. These four genes dem-
onstrated outstanding predictive performance in the 
validation set. Experimental validation through Western 
blotting (WB) and quantitative PCR (qPCR) confirmed 
the elevated expression of these core genes in a murine 
model of renal fibrosis. Furthermore, all core genes 
exhibited a positive correlation with core immune cells, 
suggesting their potential role in enhancing immune sys-
tem activity in renal fibrosis and consequently contribut-
ing to disease progression.

Materials and methods
Datasets and data pre‑processing
RNA-seq datasets, including GSE22459, GSE76882, 
GSE135327, and GSE65326 were downloaded from the 
GEO database. The datasets GSE22459, GSE76882, and 
GSE135327 were subjected to log normalization, and the 
batch effects were removed using the “combat” function 
from the sva package [11]. These processed datasets were 
defined as the screening set, consisting of 100 samples 
with kidney fibrosis and 136 normal samples. The same 
method was applied to validate the results using the vali-
dation set GSE65326. For single-cell data analysis, with 
the dataset sourced from GSE183837, including three 
Ctrl samples and six RIF samples.

Screening of potential hub biomarkers
In the WGCNA analysis [12], the top 25% of genes with 
the highest variance were selected as the input matrix 
from the screening set. No samples were excluded. 
Topological calculations were performed using a range 
of soft-thresholding powers from 1 to 20. Based on the 
optimal soft-thresholding power (β = 11), the correla-
tion matrix was transformed into an adjacency matrix 
and then converted into a Topological Overlap Matrix 
(TOM). Average linkage hierarchical clustering was per-
formed using TOM to classify related modules, with each 

(ZINC000003830276-Tessalon, ZINC000003944422-Norvir, ZINC000008214629-Nonoxynol-9, and ZINC000085537014-
Cobicistat) were identified through molecular docking and molecular dynamics simulations.

Conclusion Four potential hub biomarkers most associated with post-transplant renal fibrosis, as well as four poten-
tially effective small molecules, were identified, providing valuable insights for studying the molecular mechanisms 
underlying post-transplant renal fibrosis and exploring new targets.
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module containing at least 30 genes. Subsequently, simi-
lar modules were merged based on a cut height of 0.25. 
The correlation between the merged modules and the 
occurrence of kidney fibrosis was calculated using the 
Pearson method, and the module with the highest corre-
lation was identified as the core module.Additionally, dif-
ferential expression genes (DEGs) were selected from the 
screening set using the limma package [13]. DEGs were 
identified using the criteria of |log2 fold change (FC)|> 1 
and adjusted p-value (adj.P.value)  < 0.05. The core genes 
within the core module were then overlapped with the 
DEGs to identify potential hub genes.

Screening of hub biomarkers using machine learning
Logistic analysis was performed to determine the odds 
ratios (OR) of potential hub genes and understand their 
contributions to the development of kidney fibrosis. 
Redundant genes were eliminated using tenfold cross-
validation in the LASSO regression (glmnet package 
[14]). The Support Vector Machine-Recursive Feature 
Elimination (SVM-RFE) method [15, 16] was then applied 
to further select genes. The overlapping genes obtained 
from the LASSO regression and SVM-RFE were identi-
fied as the final set of genes.

Subsequently, the identified genes were input into the 
STRING database to construct a protein–protein inter-
action (PPI) network. Various algorithms in Cytoscape 
were used to calculate the topological features of each 
gene. The maximum overlap of different methods was 
used to determine the core genes.

Finally, the diagnostic performance of the combined 
set of core genes for kidney fibrosis was validated using 
multiple machine learning methods: Bayes, Decision 
Tree (DT), Fisher Discriminant Analysis (FDA), Gradi-
ent Boosting Machine (GBM), Neural Networks (NNET), 
Random Forest (RG), and XGBoost.

Enrichment analysis
GO enrichment analysis is a commonly used bioinfor-
matics method that explores comprehensive informa-
tion about large-scale gene data, including Biological 
Process (BP), Cellular Component (CC), and Molecular 
Function (MF) categories. Additionally, KEGG pathway 
enrichment analysis is widely used to understand bio-
logical mechanisms and functions. Meanwhile, Disease 
Ontology (DO) enrichment analysis can investigate the 
diseases primarily associated with the relevant genes. 
Finally, the results of GO, KEGG pathway, and DO analy-
ses can be visualized using the GOplot package [17].

To further explore important signaling pathways 
related to the core genes, the clusterProfiler package [18] 
and GSVA package [19] can be utilized.

Construction of regulatory network
Firstly, the mirDIP database [20] can be used to pre-
dict potential miRNAs targeting hub genes and iden-
tify the regulatory network of miRNAs. The upstream 
regulatory network can be established by selecting TF-
core gene interactions with a p-value < 0.05 from the 
TRRUST database [21]. Additionally, the Comparative 
Toxicogenomics database [22] can be queried to iden-
tify compounds potentially associated with the core 
genes. Finally, the regulatory network of core genes can 
be visualized using the NetworkAnalyst database [23].

Immune‑related algorithm
The MCPcounter algorithm calculates the proportions 
of different immune cell types based on the expression 
levels of immune cell-related genes. The ssGSEA algo-
rithm evaluates the activity of different immune func-
tions. Finally, the outputs of infiltrating immune cells 
and immune functions are integrated to generate a 
matrix for analysis.

Screening of hub immune cells
Differences in immune cell composition among dif-
ferent tissues are explored using the Wilcoxon test. 
Simultaneously, the Random Forest package is used 
to construct random forest trees for immune cells, 
determining the points with the lowest error. The 
immune cells are then ranked based on their impor-
tance, and genes with importance scores greater than 
2 are selected. Ultimately, the overlapping immune 
cells identified above are screened to identify the core 
immune cells that may affect the occurrence of kidney 
fibrosis. Immunological analysis identifies two core 
immune cells that may influence the development of 
kidney fibrosis: Cytotoxic lymphocytes and T cells.

Animal model
The murine renal ischemia–reperfusion injury mod-
els have been utilized in many studies to validate the 
results of bioinformatics analysis from transplant 
patients datasets [24]. In the light of the previous lit-
erature, we chose the murine IRI induced renal fibro-
sis model. Male C57BL/6 mice (6  weeks old, 20–25  g) 
were obtained from Shanghai JieSiJie Laboratory Ani-
mal Co., Ltd. (Shanghai, China) and housed in a spe-
cific pathogen-free (SPF)-grade animal facility. The 
mice were randomly assigned to two groups, and kid-
ney samples from both groups were harvested at day 28 
after surgery.

Sham Group: The abdomen was exposed for 30  min 
without clamping of the renal artery.
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Ischemia–Reperfusion Injury (IRI) Group: Vascular 
clamps were applied to the renal pedicles of unilateral 
kidneys for 30 min to induce ischemia.

All animal procedures were conducted in compliance 
with the ethical guidelines and approved by the Ani-
mal Ethics Committee of Zhongshan Hospital, Fudan 
University.

Quantitative PCR (qPCR)
Total RNA was extracted from each sample using TRIzol 
reagent (Thermo, CA, USA). Approximately 1000  ng of 
total RNA was reverse-transcribed into cDNA using the 
PrimeScript™ RT reagent kit (TaKaRa, Japan). mRNA 
levels were quantified using SYBR Green-based quantita-
tive real-time PCR on an Applied Biosystems Real-time 
PCR System. All primers used in the study were synthe-
sized by Sangon Biotech (Shanghai, China). The mRNA 
expression levels were normalized to GAPDH for com-
parative analysis. The detailed primer sequences are 
shown in Additional file 2: Table S1.

Western blot analysis
Proteins were separated using 10% polyacrylamide dena-
turing gels and subsequently transferred onto polyvi-
nylidene fluoride membranes by electroblotting. The 
primary antibodies employed included CORO1A (1:1000, 
TP71761, Abmart, China), CD3G (1:1000, T58478, 
Abmart, China), FCGR2A (1:1000, PHZ8459, Abmart, 
China), and GZMH (1:1000, PA1522, Abmart, China). 
The results were standardized against either GADPH 
(1:1000 dilution, M20024, Abmart, China) or β-Actin 
(1:1000 dilution, T40104, Abmart, China).

Histological analysis
For morphological assessments, renal tissues preserved 
in paraffin, 28  days post-IRI, were sectioned into 5  μm 
slices. Subsequently, these sections were deparaffinized, 
rehydrated, and subjected to staining with hematoxylin 
and eosin (H&E), Sirius red, and Masson trichrome.

Immunohistochemistry
Immunohistochemistry was conducted on thin 
Sects.  (5  μm) of formalin-fixed and paraffin-embedded 
tissues. The sections underwent deparaffinization in 
xylene and rehydration using a descending series of etha-
nol. Tissue antigens were repaired by microwave heat-
ing, followed by incubation with 10% normal goat serum 
to block nonspecific reactions at room temperature for 
10  min. Monoclonal rabbit primary antibodies against 
CD3G (1:200; Abcam, UK), CORO1A (1:200; Abcam, UK), 
FCGR2A (1:200; Abcam, UK), and GZMH (1:200; Abcam, 
UK) were applied separately and incubated overnight 
at 4  °C. Biotin-labeled goat anti-mouse/rabbit IgG and 

streptavidin-peroxidase (UltraSensitiveTM SP IHC Kit; 
Maxim, China) were subsequently used. The sections were 
then developed using diaminobenzidine substrate.

Molecular docking and molecular dynamics simulations
The protein structure was retrieved from UniProt, 
screened as human species in the database, the full-length 
AlphaFold predicted structure was selected as the protein 
structure file, and the structure files of all FDA-approved 
drug small molecules were downloaded from the ZINC 
database, and virtual screening was performed using the 
Dock module in MOE v2022.02. The binding regions were 
predicted by SiteFinder, and the receptor proteins were set 
as rigid for virtual screening, and the best binding scores 
were generated. Based on the binding scores, sorting was 
performed, and among all the docking results, duplicates 
were removed and the top 20 drug small molecules with 
strong binding effects were retained for docking using the 
induced fit docking method in the Dock module.

100  ns molecular dynamics (MD) simulations were 
performed using GROMACS 2020.6 software to further 
validate the reasonableness and reliability of the docking 
results. The OPLS-AA/L all-atom force field and Amber 
GAFF force field were utilized to generate parameter and 
topology files for proteins and small molecule ligands, 
respectively. Periodic boundary conditions were set and 
optimized to simulate the size of the limiting box to fill the 
box with water molecules. To make the simulated system 
electrically neutral, some of the solvent water molecules 
were replaced with Na + and Cl- at a concentration of 
0.15  mol/L. Use of the steepest descent method to mini-
mize the energy consumption of the whole system. Pre-
equilibrium was performed in two phases, the first phase 
equilibrium was simulated using the NVT system at 300 K 
and 100 ps to stabilize the temperature of the system, and 
the second phase equilibrium was simulated using the NPT 
system at 1 bar and 100 ps to stabilize the pressure of the 
system.

Statistical analysis
All statistical analyses were performed with GraphPad 
Prism software version 8.0 (GraphPad.

Software, San Diego, CA, USA). Differences between 
experimental groups were assessed by one-way analy-
sis of variance (ANOVA). Data are presented as the 
means ± SEMs. P values < 0.05 were considered statistically 
significant.

Results
WGCNA and differential expression analysis were used 
for screening
To establish a link between clinical information and key 
genes, WGCNA analysis was conducted. The samples 
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displayed robust clustering with no outliers. Topologi-
cal calculations were executed with a soft-thresholding 
power ranging from 1 to 20, and the optimal soft-thresh-
olding power of 11 was determined (Fig.  1a). Utiliz-
ing this soft-thresholding power, the correlation matrix 
underwent transformation into an adjacency matrix and 
was subsequently converted into a Topological Overlap 
Matrix (TOM). Average linkage hierarchical clustering, 
utilizing TOM, was applied to classify related gene mod-
ules, each containing a minimum of 30 genes (Fig.  1b). 
Merging similar gene modules resulted in the identifica-
tion of six modules (Fig. 1c).

Furthermore, the correlation between module-specific 
genes and clinical traits was calculated. Notably, the blue 
module, encompassing 751 genes, exhibited the highest 
positive correlation with the occurrence of kidney fibro-
sis (r = 0.54), thus earning its designation as the core 

module. Subsequent differential gene expression analysis, 
using the limma package, led to the identification of 104 
DEGs, including 95 upregulated genes and 9 downregu-
lated genes (Fig. 2a-b). Lastly, the genes within the blue 
module were overlapped with the DEGs, yielding the 
identification of 92 potential core genes.

Enrichment analysis in overlap genes
To unravel the potential biological mechanisms driving 
the development of kidney fibrosis, KEGG analysis eluci-
dated specific pathways, including the Chemokine signal-
ing pathway, Cytokine-cytokine receptor interaction, and 
T cell receptor signaling pathway (Fig.  2d). DO analysis 
revealed disease categories sharing common pathogenic 
mechanisms, encompassing bacterial infectious disease, 
primary bacterial infectious disease, and Human Immu-
nodeficiency Virus infectious disease (Fig.  2e). Further 

Fig. 1 WGCNA analysis identified core modules associated with renal fibrosis. A Analysis of the scale-free fit index for various soft-thresholding 
powers (β) and the mean connectivity for various soft-thresholding powers. B The dendrogram of all genes is clustered based on a dissimilarity 
measure (1-TOM). C The heatmap shows six modules were identified between Normal and RIF. Red and blue represents a positive/negative 
correlation between MEs and samples
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Fig. 2 Identification of potential core genes of RIF. A Heat map of DEGs between normal and RIF samples. B Volcano map of DEGs. C Venn 
diagram of the intersection of DEGs and genes in the blue module. D Bubble diagram showed KEGG analysis of intersection genes (E) DO analysis 
of intersection genes (F) The heatmap showed GO analysis of intersection genes
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GO analysis unveiled significant enrichment of processes 
such as T cell activation, humoral immune response, and 
neutrophil degranulation (Fig.  2f ). These results under-
score the influence of immune-related factors on the 
progression of kidney fibrosis. GSEA analysis, integrat-
ing the gene set with the expression matrix, highlighted 
the significant involvement of pathways such as ALLO-
GRAFT_REJECTION and ANTIGEN_PROCESSING_
AND_PRESENTATION (Additional file 1: Figure S1). In 
summary, a robust evidence chain suggests that immune 
pathways and pathways related to bacterial infection may 
regulate kidney fibrosis.

Exploration of hub biomarkers
Logistic analysis was performed to determine the odds 
ratios (OR) of each overlapping gene, clarifying their 
contributions to kidney fibrosis development. The major-
ity of potential core genes exhibited a risk effect, with a 
forest plot displaying genes having an OR greater than 4 
(Fig. 3a). LASSO regression with tenfold cross-validation 
was then applied to further eliminate redundant genes, 
resulting in the selection of 17 potential genes (Fig.  3b, 
c). Within the overlapping genes, an SVM machine learn-
ing method was employed for further screening, reveal-
ing that when 31 genes were included, the root mean 
square error (RMSE) was minimized (Fig. 3d, e). Finally, 
the genes identified by the above algorithms were over-
lapped, leading to the identification of ISG20, CORO1A, 
ARHGAP30, HLA-DPB1, SERPINA3, EGF, FCGR2A, 
MMP7, GZMH, CD3G, and SLC1A3 as potential core 
genes (Fig. 3f ).

Subsequently, these genes were input into the STRING 
database to construct a protein–protein interaction (PPI) 
network (Fig. 4a). Various algorithms in Cytoscape were 
utilized to calculate the topological features of each gene, 
and the maximum overlap of different methods was 
employed to determine the core genes (CD3G, CORO1A, 
FCGR2A, GZMH) (Fig.  4b). Analysis of single-cell data 
from kidney fibrosis further confirmed the expression of 
the identified core genes (Additional file 1: Figure S3).

Validation of hub biomakers
To assess the diagnostic performance of the combina-
tion of the four core genes (CD3G, CORO1A, FCGR2A, 
GZMH) for kidney fibrosis, various machine learn-
ing methods, including Bayes, Decision Tree (DT), 
Fisher Discriminant Analysis (FDA), Gradient Boost-
ing Machine (GBM), Neural Networks (NNET), Ran-
dom Forest (RG), and XGBoost, were employed. In most 
machine learning algorithms, CORO1A and FCGR2A 
consistently ranked first in importance (Fig.  4c). Nota-
bly, the XGBoost model demonstrated the highest AUC 
(Fig. 4d).

Subsequent ROC analysis and differential expres-
sion analysis on the two genes in the screening set 
revealed that all core genes were significantly upregu-
lated in kidney fibrosis samples (Fig.  5a) and exhib-
ited good predictive performance in the screening set: 
CORO1A (AUC = 0.856), CD3G (AUC = 0.819), FCGR2A 
(AUC = 0.830), GZMH (AUC = 0.815) (Fig. 5b). External 
validation using the GSE65326 dataset showcased similar 
expression patterns for most core genes in kidney fibrosis 
tissues, demonstrating upregulated expression (Fig.  5c). 
Furthermore, they exhibited robust diagnostic perfor-
mance: CORO1A (AUC = 0.866), CD3G (AUC = 0.670), 
FCGR2A (AUC = 0.696), GZMH (AUC = 0.781) (Fig. 5d). 
The findings were further confirmed in an additional 
external validation set: GSE53605, consisting of 10 RIF 
samples and 45 non-RIF samples. The validation results 
show a high level of consistency with the training set 
(Additional file 1: Figure S5).

Additionally, the regulatory networks of FCGR2A and 
CD3G were visualized, and TF-mRNA-miRNA networks 
were constructed. Potential candidate compounds target-
ing these genes were predicted with the aim of improv-
ing symptoms in patients with kidney fibrosis (Additional 
file 1: Figure S2). However, it is regrettable that CORO1A 
and GZMH were not involved in the construction of the 
network.

Analysis of differences in immune microenvironment
Considering the significant role of immune-related 
pathways in kidney fibrosis observed in gene enrich-
ment analysis (Fig.  2), we analyzed the immune cell 
composition in different samples using the MCPcoun-
ter algorithm. The bar plot provides an overview of the 
distribution of immune cells (Fig.  6a), while the heat-
map demonstrates the correlation between immune cell 
types in detail (Fig. 6b). In kidney fibrosis tissues, B lin-
eage and T cells showed the strongest positive correla-
tion (r = 0.79). Results from the Wilcoxon test revealed 
higher levels of B lineage, CD8 T cells, Cytotoxic lym-
phocytes, Endothelial cells, Fibroblasts, Monocytic line-
age, Myeloid dendritic cells, Neutrophils, NK cells, and T 
cells in kidney fibrosis samples (Fig. 6c). Moreover, most 
immune pathways were significantly activated in kidney 
fibrosis tissues (Fig. 6d).

Furthermore, to identify the core immune cells that 
may alter the immune microenvironment in renal tissue, 
a random forest tree analysis was performed on immune 
cells (Fig. 7a, b), leading to the identification of two core 
immune cells that may influence the development of kid-
ney fibrosis: Cytotoxic lymphocytes and T cells.

To further explore our core genes expression in the 
core immune cells, we then performed more detailed 
single-cell data analysis, with the dataset sourced from 
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Fig. 3 Machine learning in screening candidate diagnostic biomarkers for RIF pathogenesis. A forest plot of genes with an OR greater than 4. B 
Plot of LASSO partial likelihood deviance. C Plot of LASSO coefficient profiles. Accuracy (D) and error (E) of fivefold cross-validation (CV) in SVM-RFE 
algorithms, respectively.F Venn diagram showing the characteristic genes shared by LASSO and SVM-RFE algorithms
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Fig. 4 Multiple algorithms calculate the topological rank of each gene to determine the core gene based on the maximum overlap. A Protein–
protein interaction (PPI) networks. B Multiple algorithms are used in Cytoscape to calculate the topological rank of each gene. C Various machine 
learning methods were employed, including Bayes, Decision Tree (DT), Fisher Discriminant Analysis (FDA), Gradient Boosting Machine (GBM), Neural 
Networks (NNET), Random Forest (RG), and XGBoost. D The area under curve (AUC) for all the above mentioned models
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GSE183837. Single-cell analysis using singleR annota-
tion in this dataset revealed 8 different cell types (Addi-
tional file 1: Figure S6A, B), and our core genes showed 
significantly higher expression in monocytes and NK 
cells (Additional file  1: Figure S6C). In cell commu-
nication analysis, it was found that after RIF, secre-
tion signals such as KIT and VEGF were significantly 
upregulated (Additional file  1: Figure S6D). We also 
conducted pseudo-temporal analysis on the critical cell 

subtypes in this dataset (monocytes, NK cells), and the 
results indicated that in RIF samples, monocytes may 
undergo 6 different cell developmental fates, with two 
nodes. The two genes primarily expressed in mono-
cytes, CORO1A, showed the lowest expression in fate1 
and the highest in fate6. Similarly, FCGR2A exhibited 
the lowest expression in fate6 and the highest in fate2 
(Additional file  1: Figure S6E-H). This suggests that 
these two genes may have opposing functions in mono-
cyte differentiation and development.

Fig. 5 The genes have good predictive performance in the training cohort and validation cohort. A Differential expression analysis of the four 
core genes (CD3G, CORO1A, FCGR2A, GZMH) in the training cohort. B ROC analysis of the four core genes (CD3G, CORO1A, FCGR2A, GZMH) 
in the training cohort. External validation was performed on the GSE65326 dataset, and the differential expression analysis of the four core genes (C) 
and ROC analysis of the four core genes (D) were shown respectively
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Fig. 6 Analysis of differences in immune microenvironment. A Using the MCP counter, the bar plot provides an overview of the distribution 
of immune cells. B Heatmap of the correlation between immune cell types. C Violin plots of B lineage, CD8 T cells, Cytotoxic lymphocytes, 
Endothelial cells, Fibroblasts, Monocytic lineage, Myeloid dendritic cells, Neutrophils, NK cells, and T cells in normal and kidney fibrosis samples. D 
ssGSE analysis of pathways in normal and kidney fibrosis samples
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Correlation analysis of immune cells and hub biomarkers
In kidney fibrosis tissues, correlation analysis was con-
ducted between the core immune cells and the four 
core biomarkers (Fig. 7c–j). The results revealed a posi-
tive correlation between all core genes and core immune 
cells, implying that these core genes may play a role in 
promoting immune system activation in kidney fibrosis.

Experimental validation of elevated expression of hub 
biomarkers in a murine model of renal fibrosis
To further validate the increased expression of hub bio-
markers in renal fibrotic tissue, we established a mice 
model of renal fibrosis induced by unilateral ischemia–
reperfusion injury (IRI). H&E staining revealed the pres-
ence of inflammation and fibrotic phenotypes in the 
kidneys of mice in the IRI group, while Sirius red and 
Masson staining also showed that the IRI significantly 
induced renal fibrosis in the mice model (Fig. 8). Under 
Sirius red staining, collagen fibers display a distinct red 
color. In the IRI model, a complex network of collagen 
deposition can be observed in the renal tubular interstit-
ium, glomeruli, and around blood vessels. This network 
primarily consists of Type I and III collagen, indicating 
the regions where fibrosis occurs. In Masson’s trichrome 
staining, collagen-rich areas appear deep blue, provid-
ing a comprehensive visualization of the fibrotic regions 
in the IRI model. In contrast, the control group does 
not exhibit such deep blue fibrotic areas. This staining 
method effectively highlights and delineates the fibrotic 
areas induced by IRI in the kidneys, showcasing the pres-
ence of collagen deposits (Fig.  8). While Western blot 
(Fig.  9a) and qPCR (Fig.  9 b-e) of the above mentioned 
samples confirmed elevated protein and mRNA levels of 
the four hub biomarkers in the renal fibrotic tissues of 
mice compared to the control group. Moreover, immu-
nohistochemistry indicated that the positive expression 
of CD3G, CORO1A, FCGR2A, and GZMH was signifi-
cantly increased in the IRI group after 28  days (Addi-
tional file 1: Figure S7). Our experiments corroborate the 
findings from the bioinformatics analysis.

Screening for potentially effective molecules targeting 
the hub biomarkers through molecular docking 
and molecular dynamics simulations
To explore potentially effective molecules targeting the 
four biomarkers, we initiated a search for protein struc-
tures from UniProt using CD3G, CORO1A, FCGR2A, 
and GZMH as keywords. We filtered for human species 

in the database and selected CD3G_HUMAN (UniProt 
ID: P09693), COR1A_HUMAN (UniProt ID: P31146), 
FCG2A_HUMAN (UniProt ID: P12318), GRAH_
HUMAN (UniProt ID: P20718) full-length AlphaFold 
predicted structures as protein structure files. Simulta-
neously, we downloaded a total of 2115 small molecule 
structure files of FDA-approved drugs from the ZINC 
database, performing a total of 42115 virtual screenings. 
For each docking simulation, we predicted 10 binding 
conformations, and the best binding score was utilized 
for sorting and selection. Duplicates were removed, 
and the top 20 drug small molecules with strong bind-
ing effects were retained for molecular docking. A total 
of 420 molecular dockings were conducted, and the heat 
maps of the optimal binding scores for molecular dock-
ing of the four proteins and small molecules are displayed 
in Additional file 1: Figure S4.

Among the 4*20 molecular docking results, 
four molecules—ZINC000003830276 (Tessalon), 
ZINC000003944422 (Norvir), ZINC000008214629 
(Nonoxynol-9), and ZINC000085537014 (Cobicistat)—
demonstrated the ability to bind to all four proteins. We 
selected the best-binding drug small molecule with each 
protein for interaction analysis (Fig.  10). The most sat-
isfactory binding molecule and protein (CORO1A and 
ZINC000008214629) were then chosen for dynamic sim-
ulation to further validate the reliability of the molecu-
lar docking results. The results, including RMSD (Root 
Mean Square Deviation), RMSF (Root Mean Square 
Fluctuation), Rg (Radius of Gyration), Hydrogen bond, 
and SASA (Solvent Accessible Surface Area) of the pro-
tein, indicated that after 70 ns, the protein progressively 
compacted, and the solvent-accessible area decreased 
significantly. These findings suggested that when the sys-
tem reached a steady state, the protein tightly enveloped 
the drug small molecule, with the presence of a certain 
number of hydrogen bonding interaction forces (Fig. 11).

Discussion
Two methods are utilized to assess post-kidney trans-
plant rejection reactions, including invasive renal biopsy 
and non-invasive biomarkers. Non-invasive biomarkers 
encompass markers detected in blood or urine, such as 
the enzyme-linked immunosorbent assay (ELISA) for 
collagen protein fragments [25], or the chemiluminescent 
microparticle immunoassay for serum human epididymis 
secretory protein 4 (HE4) [26]. While these biomarkers 
offer the convenience of non-invasive diagnostic, their 

Fig. 7 Correlation analysis of immune cells and hub biomarkers. A Illustration of minimal depth of a variable in the random forest tree analysis. (B) 
The different immune cell types in random forest tree analysis C–J correlation analysis between the core immune cells and the four core biomarkers

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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accuracy is limited. Leveraging invasive kidney tissue 
samples, we conducted biomarker discovery through 
RNA sequencing, which provides higher throughput and 
accuracy. Moreover, this approach is closely linked to the 
pathogenic mechanisms, facilitating the development of 
novel therapeutic targets.

Interstitial fibrosis is an independent risk factor that 
significantly influences transplant kidney outcomes and, 
consequently, clinical decisions. Assessing the degree 
of fibrosis in the transplanted kidney contributes to 

evaluating treatment efficacy. Several diagnostic bio-
markers have been identified in previous studies, throw-
ing light on the value of biomarkers in the early detection 
of potential kidney allograft failure [27, 28]. While in 
this study, drawing from transcriptome and single-cell 
sequencing data of patients with kidney fibrosis in pub-
lic databases, we identified four core genes significantly 
associated with renal fibrosis, namely CD3G, CORO1A, 
FCGR2A, and GZMH. Multiple machine learning meth-
ods were employed to verify the diagnostic effectiveness 

Fig. 8 Histological analysis of the renal tissues of murine model. On day 28 after the operation, tubular injury was measured by H&E,while renal 
fibrosis was measured by Sirius Red and Masson trichrome staining. Scale bar: 50 μm
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Fig. 9 Experimental validation of elevated expression of hub biomarkers. A The protein expression levels of CD3G, GZMH, CORO1A and FCGR2A 
in the mice kidney from sham group and IRI group were detected by western blotting. The mRNA expression of CD3G (B), CORO1A (C), FCGR2A 
(D) and GZMH (E) in from sham group and IRI group was detected by qPCR and normalized to GAPDH expression Values were expressed 
as mean ± standard deviation (mean ± SD). *p < 0.05; **p < 0.01; ***p < 0.001.

Fig. 10 Molecular docking of the four hub biomarkers and drug small molecules. A Site1 of protein CD3G can dock to drug ZINC000085537014 
(Cobicistat). There are hydrogen bonding interactions between the drug molecule and amino acid residues LYS-32, VAL-33, ASN-77, TYR-101, 
MET-103, CYS-107, GLU-109 of protein CD3G. Docking score: − 8.91646957. B Site1 of protein CORO1A can dock to drug ZINC000008214629 
(Nonoxynol-9) with hydrogen bonding interactions between the drug molecule and amino acid residues ASP-36, ARG-225 of protein CORO1A. 
Docking score: − 12.3709917. C Site3 of protein FCGR2A can dock to drug ZINC000085537014 (Cobicistat) with hydrogen bonding interactions 
between the drug molecule and amino acid residues LEU-45, ASP-113, LEU-131, GLU-132, GLU-137 of protein FCGR2A. Docking score: − 9.60169411. 
D Site1 of protein GZMH can dock to drug ZINC000008214629 (Nonoxynol-9) with hydrogen bonding interaction between drug molecule 
and amino acid residue ARG-48 of protein GZMH. Docking score: − 10.4395981
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of these four core genes in combination, demonstrating 
their strong predictive performance in the validation 
dataset. This research provides novel insights for the 
future biological diagnosis and future treatment of post-
kidney transplant fibrosis.

The four hub biomarkers, namely CD3G, CORO1A, 
FCGR2A, and GZMH, are intricately linked to post-
transplant rejection. CD3G encodes the CD3-gamma 
peptide, a vital component of the T-cell receptor-CD3 
complex, which cooperates with CD3-epsilon, -delta, and 
-zeta, as well as T-cell receptors α/β and γ/δ. This com-
plex plays a pivotal role in linking antigen recognition to 
various intracellular signal transduction pathways. Muta-
tions in this gene are associated with T-cell immunodefi-
ciency [29]. CD3G closely correlates with post-transplant 
acute rejection [30], a significant risk factor for kidney 
fibrosis [31, 32]. CORO1A, encoded by the CORO1A 
gene, is a member of the WD repeat protein family. WD 
repeat sequences, typically flanked by glycine-histidine 
and tryptophan-aspartate (GH-WD) motifs, are about 40 
amino acids in length and may facilitate the formation of 
heterotrimeric or multiprotein complexes. Members of 
this family partake in various cellular processes, includ-
ing cell cycle progression and signal transduction [33]. 
CORO1A serves as a critical biological marker for renal 
interstitial fibrosis (RIF) and is associated with the degree 

of immune infiltration in RIF [34]. FCGR2A, another hub 
biomarker, belongs to the immunoglobulin Fc receptor 
gene family and is expressed on the surface of various 
immune response cells. It is primarily found on phago-
cytic cells like macrophages and neutrophils, playing a 
pivotal role in the phagocytosis and clearance of immune 
complexes [35]. Polymorphisms within this gene are 
linked to susceptibility to conditions such as chronic per-
iaortitis, characterized by fibrosis [36]. The GZMH gene 
encodes a member of the serine proteinase peptidase 
S1 family. This protein is constitutively expressed in NK 
(natural killer) cells of the immune system and may par-
ticipate in cytotoxicity during innate immune responses, 
inducing target cell death and directly cleaving substrates 
within pathogen-infected cells [37]. NK cells have also 
been reported to have functional relevance in fibrotic dis-
eases [38].

Sequencing analyses of past samples from post-kidney 
transplant fibrosis have indicated that complex inter-
actions between immune and renal cells contribute to 
transplant renal fibrosis [39], and there is heterogeneity 
in immune responses among patients [40]. Our research 
findings support these discoveries, revealing elevated 
levels of B cell lineage, CD8 T cells, cytotoxic lympho-
cytes, endothelial cells, fibroblasts, monocyte lineage, 
myeloid dendritic cells, neutrophils, NK cells, and T 

Fig. 11 Molecular dynamics simulations of CORO1A and ZINC000008214629. A Between 70 ns-100 ns, the mean RMSD of the proteins 
in the complex was 0.845, with a variance of 0.000278 and a standard deviation of 0.016668. B Between 70 ns and100 ns, the mean RMSD 
of the ligand in the complex was 0.452, with a variance of 0.000775 and a standard deviation of 0.027835. And as can be seen by RMSF (C), Rg (D), 
SASA (E) and Hbond (F), after 70 ns the system enters a steady state, in which the protein wraps ligand tightly and a certain number of hydrogen 
bonding interactions are present
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cells in kidney fibrosis samples. This reflects the com-
plexity of cell types involved in the immune response 
post-kidney transplant. Most immune pathways were 
significantly activated in kidney fibrosis tissues, and a 
random forest tree analysis on immune cells led to the 
identification of two core immune cells that may influ-
ence the development of kidney fibrosis: Cytotoxic lym-
phocytes and T cells. These findings align with previous 
research conclusions, as Cytotoxic lymphocytes and T 
cells are essential for allograft rejection following kidney 
transplantation, with acute rejection being a major risk 
factor for post-transplant kidney fibrosis [32]. Simultane-
ously, the expression of the four hub biomarkers, includ-
ing CD3G, CORO1A, FCGR2A, and GZMH, correlates 
positively with the extent of infiltration by core immune 
cells in kidney fibrosis. These results suggest that the high 
expression of these hub biomarkers not only serves a 
diagnostic role but may also be involved in regulating the 
immune response that promotes fibrosis.

While previous studies have identified biomarkers 
through RNA sequencing of kidney fibrosis tissue sam-
ples and blood samples or protein detection [41, 42], 
our work holds significance and innovation. Firstly, 
the biomarkers obtained through the analysis of RNA 
sequencing samples from multiple sources were not only 
validated in the validation set but also confirmed in the 
expression trends observed in single-cell sequencing 
samples. More importantly, based on molecular docking 
analysis of biomarker proteins, we identified four poten-
tial drugs for the treatment of kidney fibrosis, providing 
crucial clues for future clinical interventions.

However, our study has certain limitations. Firstly, like 
many other studies we chose the murine IRI induced 
renal fibrosis model for the validation of the hub bio-
markers [24, 43]. However, this might not be the best 
model to accurately reflect the pathophysiologic pro-
cess of post-transplant renal fibrosis. In future stud-
ies, the inclusion of human post-transplant renal biopsy 
samples or the application of murine kidney transplant 
models could help to reach more solid conclusions. Fur-
thermore, the diagnostic model composed of the four 
hub biomarkers requires validation through large-scale 
clinical trials involving more patients. Moreover, further 
research is needed to elucidate the specific mechanisms 
through which these four hub biomarkers participate in 
the immune response and immune cell activation, which 
could open doors to new therapeutic targets for kidney 
fibrosis.

In conclusion, employing logistic analysis, tenfold 
cross-validation with LASSO, and gene topological 
analysis in Cytoscape, we identified CD3G, CORO1A, 
FCGR2A, and GZMH as significantly associated with 

kidney fibrosis. Machine learning methods further vali-
dated the robust predictive performance of these four 
genes in the validation dataset. Experimental verifica-
tion through Western blotting (WB) and quantitative 
PCR (qPCR) confirmed the elevated expression of these 
core genes in a mouse model of kidney fibrosis. The 
positive correlation observed between all core genes 
and core immune cells suggests that these genes may 
play a role in amplifying the activity of the immune sys-
tem in kidney fibrosis.

Additionally, through molecular docking and molec-
ular dynamics simulations, we comprehensively pin-
pointed four potentially effective small molecules: 
ZINC000003830276 (Tessalon), ZINC000003944422 
(Norvir), ZINC000008214629 (Nonoxynol-9), and 
ZINC000085537014 (Cobicistat). These findings offer 
valuable insights for the future clinical biological diag-
nosis and treatment of kidney fibrosis.
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