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Integrative single-cell transcriptomic 
analyses reveal the cellular ontological 
and functional heterogeneities of primary 
and metastatic liver tumors
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Abstract 

Background The global cellular landscape of the tumor microenvironment (TME) combining primary and metastatic 
liver tumors has not been comprehensively characterized.

Methods Based on the scRNA‑seq and spatial transcriptomic data of non‑tumor liver tissues (NTs), primary liver 
tumors (PTs) and metastatic liver tumors (MTs), we performed the tissue preference, trajectory reconstruction, tran‑
scription factor activity inference, cell–cell interaction and cellular deconvolution analyses to construct a comprehen‑
sive cellular landscape of liver tumors.

Results Our analyses depicted the heterogeneous cellular ecosystems in NTs, PTs and MTs. The activated memory 
B cells and effector T cells were shown to gradually shift to inhibitory B cells, regulatory or exhausted T cells in liver 
tumors, especially in MTs. Among them, we characterized a unique group of TCF7+ CD8+ memory T cells spe‑
cifically enriched in MTs that could differentiate into exhausted T cells likely driven by the p38 MAPK signaling. 
With regard to myeloid cells, the liver‑resident macrophages and inflammatory monocyte/macrophages were 
markedly replaced by tumor‑associated macrophages (TAMs), with TREM2+ and UBE2C+ TAMs enriched in PTs, 
while SPP1+ and WDR45B+ TAMs in MTs. We further showed that the newly identified WDR45B+ TAMs exhibit 
an M2‑like polarization and are associated with adverse prognosis in patients with liver metastases. Additionally, we 
addressed that endothelial cells display higher immune tolerance and angiogenesis capacity, and provided evi‑
dence for the source of the mesenchymal transformation of fibroblasts in tumors. Finally, the malignant hepatocytes 
and fibroblasts were prioritized as the pivotal cell populations in shaping the microenvironments of PTs and MTs, 
respectively. Notably, validation analyses by using spatial or bulk transcriptomic data in clinical cohorts concordantly 
emphasized the clinical significance of these findings.

Conclusions This study defines the ontological and functional heterogeneities in cellular ecosystems of primary 
and metastatic liver tumors, providing a foundation for future investigation of the underlying cellular mechanisms.
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Background
Liver cancer can be divided into two categories based 
on its source: primary liver cancer (PLC) and secondary 
liver cancer. Although the liver is the sixth most common 
site for primary cancer, liver cancer in situ is the fourth 
leading cause of cancer-related deaths worldwide [1]. 
Hepatocellular carcinoma (HCC) accounts for 80–90% 
of PLCs, and it occurs almost exclusively in the setting 
of chronic inflammation, which markedly influences 
hepatic microenvironment [2]. Furthermore, the liver is 
a common site to metastasis due to its anatomical loca-
tion and immunosuppressive environment, which make 
it a favorable site for tumor cells [3]. Patients with meta-
static liver tumors mostly originated from tumors of the 
gastrointestinal tract (e.g., colorectum, esophagus, stom-
ach, and pancreas) have reduced 5-year survival rate and 
quality of life [4]. In the microenvironment of metastatic 
tumors, tumor cells not only recruit inflammatory and 
immune cells but also rely on the involvement of stro-
mal cells, such as fibroblasts [5]. The primary tumor and 
metastatic tumor microenvironments in the liver may 
exhibit high heterogeneity, such as cellular composition, 
spatial distribution of tumor cells, blood supply and angi-
ogenesis ability. These differences can contribute to vary-
ing sensitivity and/or resistance to treatments between 
the primary and metastatic tumors. Therefore, a better 
understanding of the complex cellular and molecular 
characteristics of microenvironment that distinguish the 
primary and metastatic liver tumors will provide valuable 
insights into the regulatory mechanisms of tumor micro-
environment (TME) and will be helpful in developing 
novel immunotherapy strategies for liver cancers.

Multiple single-cell RNA sequencing (scRNA-seq) 
studies have investigated separately the cellular micro-
environment of primary or metastatic tumors in the liver 
[6, 7]. However, these studies had not provided a compre-
hensive comparation of the characteristics of them. Here, 
based on scRNA-seq data from 8 non-tumor liver tissues 
(NTs), 10 primary liver tumors (PTs) and 12 metastatic 
liver tumors (MTs), which consist of 128,118 high-qual-
ity cells, we constructed a multicellular ecosystem map 
of primary and metastatic tumors in the liver. Through 
comparing the molecular characteristics of multiple cell 
types, we identified distinct roles of several important 
myeloid and lymphoid cells in the progression of PTs 
and MTs. Additionally, inter-cellular interaction analy-
ses emphasized the pivotal roles of malignant hepato-
cytes and fibroblasts in shaping the TME of primary 

and metastatic tumors in the liver, respectively. Taken 
together, this comprehensive landscape of multicellular 
ecosystem of primary and metastatic liver tumors pro-
vides valuable insights for further discriminating the cel-
lular mechanisms and developing potentially effective 
immunotherapy strategies for this malignancy.

Materials and methods
Participants and scRNA‑seq data
This study includes a cohort consisting of 10 patients 
with primary HCC, as well as four cohorts consisting of 
8 patients with colorectal cancer (CRC) and 4 patients 
with pancreatic cancer (PC), all of whom had the meta-
static liver tumors. The patients with primary HCC were 
enrolled between July 2018 and December 2018 at the 
Chinese PLA General Hospital (Beijing, China). The 
diagnosis of HCC and the inclusion and exclusion cri-
teria for the patients were described in detail previously 
[8]. Briefly, all the HCC patients were newly diagnosed, 
pathologically confirmed, and proved not having other 
types of cancer. The scRNA-seq data of 10 primary tumor 
tissues and 8 non-tumor liver tissues were derived from 
our previous study [9]. Detailed pathological and clinical 
information of these patients were listed in Additional 
file 2: Table S1.

The scRNA-seq data of metastatic liver tumors from 
the CRC patients were derived from the GEO database 
(GSE178318 [n = 6] and GSE225857 [n = 2] [10]). The 
GSE178318 dataset was derived from a cohort consist-
ing of six colorectal liver metastases. Among the patients, 
patients CRC03, CRC05, and CRC06 have received 
preoperative chemotherapy, and the others were treat-
ment-naïve. The GSE225857 dataset was derived from a 
cohort consisting of two colorectal liver metastases. The 
scRNA-seq data of liver metastases from the pancreatic 
cancer patients were also derived from the GEO database 
(GSE162708 [n = 1] [11] and GSE154778 [n = 3] [12]). The 
patient of GSE162708 received a pancreaticoduodenec-
tomy and partial hepatectomy without any anti-cancer 
treatment prior to operation. Detailed pathological and 
clinical information of patients were listed in Additional 
file 2: Table S1. All the scRNA-seq data collected above 
were generated using the 10× Genomics Chromium 
platform.

Additionally, the spatial transcriptome dataset contains 
a colorectal liver metastases who has received preopera-
tive chemotherapy and/or radiotherapy was downloaded 
from the GEO database (GSE225857) [10] and another 
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dataset contains two colorectal liver metastases (ST-2: 
untreated; ST-4: neoadjuvant chemotherapy) [13] was 
download from The National Omics Data Encyclopedia 
(https:// www. biosi no. org/ node/ proje ct/ detail/ OEP00 
1756). Detailed pathological and clinical information of 
patients were listed in Additional file 2: Table S1.

Pre‑processing and quality control of scRNA‑seq data
Cell Ranger (version 6.0.2; 10× Genomics, USA) was 
used to work with the raw fastq data and generate gene 
count matrices with all default parameter settings (based 
on the human genome reference set GRCh38). The out-
put filtered gene expression matrices of each sample 
were analyzed by R software (v.4.2.3) with the Seurat 
(v.4.4.0) package. To filter out low-quality cells and dou-
blets (i.e., one cell expresses two different classical cells’ 
makers), for each sample, the cells with the number of 
unique molecular identifiers (UMIs) fewer than 200, or 
the number of expressed genes over 5,000 or below 200 
were removed. To filter out the dead or dying cells, the 
cells that had over 5% UMIs derived from mitochondrial 
genome were further removed. In addition, we used the 
R package DoubletFinder (v.2.0.3) to calculate a doublet 
score for each cell to remove the potential doublets, with 
an expected value of 7.6% per 1000 droplets. After qual-
ity control, a total of 128,118 high-quality cells from 30 
samples were retained for subsequent analyses. Detailed 
statistic information of patients were listed in Additional 
file 2: Table S2.

Integrative analyses of multiple datasets
For dimensionality reduction, the 2000 most vari-
able genes with the highest standardized variance were 
selected using the ‘FindVariableFeatures’ function and 
method ‘vst’ in Seurat, and then these genes were pro-
cessed by principal component analysis (PCA). Next, 
the ‘RunHarmoy’ function in Harmony package (v.1.1.0) 
[14] was used for performing sample batch correc-
tion. The FindNeighbors’ and ‘FindClusters’ were used 
for determining cell clusters. In brief, the top 30 prin-
cipal components (PCs) were selected to construct the 
shared nearest-neighbor (SNN) graph by calculating the 
neighborhood overlap between every cell and its near-
est neighbors, and a SNN modularity optimization-based 
clustering algorithm was adopted for cell-clustering. To 
visualize different cell clusters in a 2-dimension (2D) 
graph, UMAP dimensional reduction was performed 
based on the top 30 PCs using the ‘RunUMAP’ function 
according to the above steps.

Cell clusters annotation
To identify the marker genes for each cell cluster, we 
contrasted cells from a cluster to all the other cells of 

that cluster using the ‘FindMarkers’ function of Seurat, 
which identifies the differentially expressed genes (DEGs) 
between two groups of cells using a Wilcoxon rank-sum 
test. P values were then corrected using Bonferroni cor-
rection based on the total number of genes in the data-
set. Marker genes were required to have an adjusted P 
value < 0.05, an average expression level in that cluster 
that was at least twofold higher than the average expres-
sion level in the other clusters. Then, the annotation of 
each cell cluster was confirmed by the expression of 
canonical marker genes. In detail, the T/NK cells were 
identified by expression of CD3D, CD3E and NKG7; 
memory B cells by CD79A and MS4A1; plasma cells 
by IGHG1, JCHAIN and MZB1; monocytes and mac-
rophages by CD68, CD163, CD14 and LYZ; dendritic cells 
by CD74, CLEC9A and CD1C; fibroblasts by COL1A1, 
ACTA2 and TAGLN; endothelial cells by VWF, PLVAP 
and CLDN5; and epithelial cells by EPCAM, KRT8 and 
KRT18.

Pathway enrichment analyses
To explore the functional relevance of the candidate cell 
clusters, pathway enrichment analyses of the DEGs was 
performed using the R package clusterProfiler (v.4.2.2) 
[15] based on the gene sets of Gene Ontology (GO) or 
HALLMARK derived from the MsigDB (v2022.1.Hs; 
www. broad insti tute. org/ gsea/ msigdb). The enriched 
terms with adjusted P < 0.05 were considered to be sta-
tistically significant. The online Metascape tool (https:// 
metas cape. org/) was used for functional enrichment 
analyses of DEGs in fibroblasts. The detailed results of 
pathway enrichment were listed in Additional file  2: 
Table S4.

Tissue enrichment analyses
To quantify the enrichment of cell types across different 
tissue groups, we compared the observed and expected 
cell numbers for each cluster in each tissue group accord-
ing to the following formula as we previously described 
[16]: Ro/e = (Observed/Expected), where the expected 
cell numbers of cell types in a given tissue were calcu-
lated from the Chi-square test. We assumed that one 
cluster was enriched in a specific tissue if Ro/e > 1.

Definition of cell‑type or signature scores
We used the signature scores to evaluate the degree to 
which an individual cell type expressed a certain pre-
defined expression gene set [17]. The cell signature scores 
were calculated by using the ‘AddModuleScore’ function 
in Seurat with default settings. The B cell receptor signal-
ing pathway (GO:0050853), 22 B cell immune activation 
related-genes (CD82, CD83, CLECL1, CLEC2B, CLEC2D, 
ACTB, CCR7, CORO1A, JUNB, CD74, GPR183, CD55, 

https://www.biosino.org/node/project/detail/OEP001756
https://www.biosino.org/node/project/detail/OEP001756
http://www.broadinstitute.org/gsea/msigdb
https://metascape.org/
https://metascape.org/
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EZR, HLA-DPB1, HLA-DRB1, LAPTM5, HLA-DQB1, 
MS4A1, BANK1, CD79A, FOXP1, ELF1), 18 inflam-
matory-associated genes (CCL2, CCL3, CCL4, CCL5, 
CXCL10, CXCL9, IL1B, IL6, IL7, IL15, IL18, CXCR4, 
CXCR5, CCR5, CCR6, CCR9, CCR10, CXCR3), plasma 
cell differentiation (GO:0002317), apoptotic signaling 
pathway (GO:0097190), 12 cytotoxicity-associated genes 
(PRF1, IFNG, GNLY, NKG7, GZMB, GZMA, GZMH, 
KLRK1, KLRB1, KLRD1, CTSW and CST7), 11 regu-
latory-related genes (IL2RA, FOXP3, IL2RB, IL10RA, 
IKZF2, TNFRSF1B, TNFRSF4, TNFRSF18, BATF, CTLA4 
and TIGIT), 6 well-defined exhaustion marker genes 
(LAG3, TIGIT, PDCD1, CTLA4, HAVCR2 and TOX), 
dendritic cell cytokine production (GO:0002371), den-
dritic cell chemotaxis (GO:0002407), dendritic cell anti-
gen processing and presentation (GO:0002468), and 34 
M2 polarization-related genes (CD274, CD276, CD180, 
CX3CR1, CXCL1, CXCL3, CXCL13, CCR5, CCL1, CCL7, 
CCL8, CCL13, CCL16, CCL17, CCL18, CCL22, CCL23, 
CCL24, CCR2, IL4, IL4R, IGF1, ARG1, EGF, IL13, IL34, 
VEGFA, VEGFB, VEGFC, VEGFD, CTSA, TGFB2, 
TGFB3, CD47, MMP14, MMP9, NCF2, CLEC4A, 
CLEC7A, FN1, LY86, WNT7B, TNFRSF8) were used to 
define the B cell receptor, immune activate, inflamma-
tory and plamsa cell differentiation function of B cells, 
cytotoxicity, regulatory function and exhaustion of T 
cells, cytokine production, chemotaxis and antigen pro-
cessing and presentation of DCs, M2 polarization levels 
of WDR45B+ TAMs, respectively. Pseudobulking analy-
ses, using independent samples as data points, revealed 
significant difference in both immune activation, B cell 
receptor signaling pathway, inflammatory and plasma cell 
differentiation levels within B cells among the three tissue 
groups. To compare the differences in pathway activities 
of an individual cell cluster among NTs, PTs and MTs, 
we performed gene set variation analyses based on the 
bulk RNA-seq data from the TCGA-LIHC cohort and the 
pog570_bcgsc_2020 (designated as MT2020) cohort [18] 
through the R package GSVA (v.1.46.0) [19] with default 
settings.

Single‑cell trajectory analyses
Monocle 2 (v.2.20.0) [20] was applied to construct dif-
ferentiation trajectory of B cells, T cells, macrophages, 
fibroblasts and epithelial cells, which introduces the 
strategy of ordering single cells in pseudotime along a 
trajectory corresponding to a biological process such as 
cell differentiation and transformation. Briefly, data in the 
Seurat object was extracted and loaded into the CellData-
Set object, and then the genes expressed in more than 
10 cells were used for DEG analyses. Further, the signifi-
cant DEGs were selected as ordering genes; after dimen-
sionality reduction with the ‘DDRtree’ method, the cells 

ordering and trajectory construction were performed 
with default parameters.

TF activity analyses
To identify the key regulatory transcription factors (TFs) 
in a candidate cell cluster, SCENIC analysis was per-
formed using the pySCENIC [21] package. The required 
databases for running SCENIC, including the TF data-
base (cisTarget.hg38.mc9nr.feather) and motif annotation 
database (hgnc.v9.m0.001), were downloaded from the 
pySCENIC website (https:// github. com/ aerts lab/ pySCE 
NIC). The input matrix of pySCENIC was the normal-
ized expression matrix output from Seurat, and the activ-
ity of a TF was measured as the Area Under the recovery 
Curve (AUC) of the genes that are regulated by this TF. 
To obtain the differentially activated TFs among different 
cell clusters, the R package limma (v.3.54.2) [22] was used 
to fit TF-wise linear models and implements empirical 
Bayes moderated t-statistics to determine the statisti-
cal significance (Benjamini-Hochberg-adjusted P < 0.01). 
The detailed results of TF activity analyses were listed in 
Additional file 2: Table S6.

Cell–cell interaction analyses
CellChat (v.1.6.1) [23], containing the ligand–receptor 
interaction databases for human and mouse, was used 
to construct the intercellular communication networks 
between different cell clusters. First, we used the ‘Cell-
ChatDB.human’ function in CellChat to evaluate the 
major signaling inputs and outputs among all cell clus-
ters. Then, the receptors and ligands expressed in more 
than 10 cells in a candidate cell cluster were chosen for 
subsequent analyses. The interactions between distinct 
cell clusters via putative ligand–receptor pairs were 
visualized using the ‘ggplot2’ in R package. The detailed 
results of cell–cell interaction analyses were listed in 
Additional file 2: Table S9.

Bulk RNA‑seq analyses
The Cancer Genome Atlas-liver hepatocellular carci-
noma (TCGA-LIHC) dataset (including 374 PTs and 50 
NTs) and MT2020 dataset (including 198 MTs) [18] were 
used for estimations of candidate cell cluster infiltration 
and assessments of clinical significance. The bulk RNA 
sequencing and matched clinical information from the 
TCGA-LIHC cohort were accessed through the TCGA 
data portal (https:// gdc- portal. nci. nih. gov/), and the 
RNA-seq data and matched clinical information of liver 
metastases from the MT2020 cohort were obtained from 
the cBioPortal database (https:// github. com/ cBioP ortal/ 
datah ub/ tree/ master/ public). After  log2-transformed, 
the raw count data were subjected to normalization by 
‘scale’ function and removal of batch effect by ‘Combat’ 

https://github.com/aertslab/pySCENIC
https://github.com/aertslab/pySCENIC
https://gdc-portal.nci.nih.gov/
https://github.com/cBioPortal/datahub/tree/master/public
https://github.com/cBioPortal/datahub/tree/master/public
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function in sva (v.3.46.0) [24]. Patients with overall sur-
vival time less than 30 days were excluded to remove the 
potential bias related to treatment effects.

Similarity measurement of cell clusters
To assess the similarity between TCF7+ Tpm cells and 
each of the pre-defined T cell clusters (Additional file 2: 
Table  S5), and tumor-specific memory T cells  (TTSM) 
in tumor-draining lymph nodes (TdLN), we used the 
‘AddModuleScore’ function in Seurat to calculate the cell 
signature scores of pre-defined T cell clusters and TdLN-
TTSM cells in all Tpm cells. Then, all the scores were sub-
jected to the ‘cor’ function from the stats (v.3.6.2), and 
the ‘corrplot’ R package (v.0.92) was used for visualiza-
tion. For the similarity between fibroblasts and epithelial 
cells, we extracted the average expression levels of top 50 
DEGs of each cluster and calculated their similarities by 
the ‘cor’ function from the stats. All the correlation coef-
ficients (Rho) and P values were determined by Spear-
man rank correlation analyses.

Spatial transcriptome data analyses
Seurat was used to work with the Space Ranger output 
files. The ‘SCTransform’ function in Seurat was used to 
normalize the data. Then, the scaled matrix was sub-
jected to GSVA analyses for calculating the signature 
scores of the candidate cell clusters or gene sets in every 
spot. The reference gene sets used were listed in Addi-
tional file 2: Table S10. The ‘SpatialFeaturePlot’ function 
in Seurat was used to visualize the GSVA signature score.

Statistical analyses
All data were analyzed and visualized by R (v.4.2.3) in 
this study. For survival analyses, Kaplan–Meier survival 
curves were generated using the ‘survival’ in R package, 
and log-rank test was used to compare the difference in 
survival curves between two groups. The hazard ratio 
(HR) and the 95% confidence interval (CI) were com-
puted by using the univariate Cox proportional hazards 
regression analysis. To evaluate the correlations between 
fibroblasts and EMT-related genes, as well as the corre-
lations between the ligands, receptors, and cell clusters 
in TCGA-LIHC and MT2020 cohorts, we computed the 
signature scores using GSVA based on the EMT-related 
genes, ligands, receptors, and top 50 DEGs of each cell 
cluster. Subsequently, the correlations were determined 
using the ‘cor’ function from the stats package. Wilcox 
test was used to assess the difference between groups in 
this study. P < 0.05 were considered statistically signifi-
cant in all statistical tests. Visualization was done using 
the ‘ggplot2’ R package.

Results
scRNA‑seq profiling reveals heterogeneous cell 
composition in primary and metastatic tumors in the liver
To explore the transcriptomic states of individual cells 
in both primary and metastatic tumors in the liver, we 
previously performed scRNA-seq using the 10× Genom-
ics platform in 10 primary liver tumors (PTs) and 8 
matched non-tumor liver tissues (NTs) [9] (Additional 
file 2: Table S1). Besides, we obtained a scRNA-seq data-
set profiled by 10× Genomics platform consisting of 12 
metastatic liver tumors (MTs) from another four stud-
ies, including eight cases of colorectal cancer [7, 10] and 
four cases of pancreatic cancer [11, 12] (Additional file 2: 
Table S1). After integrating all these scRNA-seq datasets 
and quality control (Additional file 1: Fig. S1A, “Materi-
als and methods” and Additional file  2: Table  S2), we 
obtained the transcriptome data of a total of 128,118 sin-
gle cells. Through performing dimension reduction anal-
yses by uniform manifold approximation and projection 
(UMAP) (Fig. 1A), a total of 49 cell clusters were identi-
fied (Fig. 1B) and classified into 6 major cell types by the 
canonical marker genes: including 13 T and natural killer 
(NK) cell clusters, 5 B cell clusters, 13 myeloid cell clus-
ters, 14 epithelial cell clusters, 2 endothelial cell clusters 
and 2 fibroblast clusters (Fig. 1C–E, Additional file 1: Fig. 
S1B, C and Additional file 2: Table S3).

Next, to compare the composition heterogeneity 
between these three tissue groups, we elucidated the 
fraction of each major cell type (epithelial cells were 
excluded from this analysis due to their significant com-
position disparity; Additional file  1: Fig. S1D, E). We 
observed that compared to NTs, PTs show significant 
depletion of T/NK cells and endothelial cells, and signifi-
cant enrichment of myeloid cells and fibroblasts (Fig. 1F), 
in line with the previous studies on HCC [25]. Besides, 
we found that T/NK cells, myeloid cells and fibroblasts 
are increased, while endothelial cells are depleted in MTs 
(Fig.  1F). Together, our scRNA-seq analyses suggest the 
heterogeneity of TME among NTs, PTs and MTs.

Memory B cells exhibit inhibitory state in metastatic liver 
tumors
Next, we first investigated the heterogeneity of B cells 
among those three tissue groups. B cells were catego-
rized into 5 clusters: 2 memory B cell clusters (B_BANK1 
and B_CXCR4) and 3 plasma cell clusters (Plasma_CD38, 
Plasma_NEAT1 and Plasma_IGHG1) (Fig.  2A–D and 
Additional file  2: Table  S3). Of note, each cell cluster 
showed distinct tissue preference: the memory B cell 
clusters were mainly enriched in NTs and MTs, while the 
plasma cell clusters were mainly found in the PTs and 
MTs (Fig. 2E and Additional file 1: Fig. S2A).
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Fig. 1 Overview of the single‑cell landscape for primary and metastatic liver tumors and non‑tumor liver tissues. A Schematic diagram 
of scRNA‑seq analysis workflow. The scRNA‑seq data generated by 10× Genomics Chromium platform in a total of 8 non‑tumor liver tissues 
(NTs) and 10 primary HCC tumor tissues (PTs) and 12 metastatic liver tumors (MTs) (derived from 8 patients with primary colorectal cancer and 4 
patients with pancreatic cancer) were collected for integrated analyses to explore the cellular ontological and functional heterogeneity of primary 
and metastatic tumors in the liver. The figure was created with biorender.com. B Uniform manifold approximation and projection (UMAP) plot 
showing the transcriptome landscape of 128,118 high‑quality cells, which consists 49 cell clusters from 6 major cell types. Cells are colored 
by clusters. DC dendritic cell, Mac macrophage, Mono monocyte, Epi epithelial cell, Endo endothelial cell, Fib fibroblast. C UMAP plot showing the 6 
major cell types in NTs, PTs and MTs, colored by cell types. D Feature plots of selected typical canonical markers of each major cell type. E Dotplot 
showing the percentage of expressed cells and average expression levels of canonical marker genes of the 49 cell clusters. F Clustering of cellular 
components and their composition proportions in tumor microenvironment (TME) in NTs, PTs and MTs, colored by tissue types



Page 7 of 23Gui et al. Journal of Translational Medicine          (2024) 22:206  

We then examined the differences in the B cell activa-
tion. The memory B cell clusters showed an enhanced 
immune activation with the upregulation of immuno-
stimulatory molecules (e.g., CD82, CD83 and CLECL) 
and MHC molecules while the plasma cell clusters exhib-
ited higher expression of immunoglobulins (Fig.  2F and 
Additional file  2: Table  S3), consistent with the biologi-
cal processes determined by gene ontology (GO) enrich-
ment analyses (Additional file 1: Fig. S2B and Additional 
file 2: Table S4). Further, we assessed the functional shift 
of B cells in PTs and MTs compared to NTs. Surpris-
ingly, despite the fact that memory B cells demonstrated 
heightened immune activation and pro-inflammatory 
characteristics compared to plasma cells, their immune 
activation and inflammatory levels decreased within liver 
tumors. However, it was observed that the potential of 
these cells to differentiate into plasma cells significantly 
increased (Fig.  2G and Additional file  1: Fig. S2C). It is 
worth noting that there were no or minimal changes of 
B cell receptor signaling activities for each B cell cluster 
in PTs, but a markedly reduced activity of B cell receptor 
signaling was observed in plasma cells in MTs (Fig. 2G). 
Then, we found that the expression levels of immune 
inhibitory genes in memory B cells were significantly 
increased in PTs and MTs, especially in MTs, compared 
to NTs (Fig. 2H). These findings indicate that while mem-
ory B cells generally possess heightened immune activa-
tion and inflammation compared to plasma cells, within 
the context of liver tumors, a paradoxical shift occurs, 
featuring suppressed inflammation alongside enhanced 
immunosuppression. Finally, we inferred the develop-
mental trajectories of B cells, and found that memory 
B cells mainly develop towards plasma cells (Fig. 2I–K), 
consistent with previous study [26]. Then, we catego-
rized B cells into “early” and “late” stages according to 

the median pseudotime value. Comparing across tis-
sue types, we observed a decrease in early B cells and 
an increase in late B cells within liver tumors (PTs and 
MTs) compared to NTs, particularly in MTs (Fig.  2L). 
Additionally, we observed that late B cells displayed sig-
nificant upregulation of plasma cell genes (e.g., IGHG1, 
JNCAIN) and downregulation of memory B cell genes 
(e.g., GPR183, CCR7) (Fig. 2M). GO enrichment analyses 
further revealed the activation of the antigen processing 
and presentation signaling in early cells and B cell recep-
tor signaling in late B cells (Fig.  2N). Collectively, these 
findings suggest that the B cell developmental trajectory 
from early to late stages, according to the gene ordering, 
mirrors the transition from memory B cells to plasma 
cells.

Furthermore, we assessed the clinical significance of 
each B cell cluster based on the signature scores derived 
from the bulk RNA-seq data of PTs from TCGA-LIHC 
(n = 346) cohort and MTs from MT2020 (n = 198) cohort 
[18] by using GSVA. None of the B cell cluster with its 
signature score was significantly associated with the 
prognosis of patients with HCC; however, it was note-
worthy that elevated signature scores of two memory B 
cell clusters were linked to worse outcomes in patients 
with metastatic liver tumors (Additional file 1: Fig. S2D–
M). Collectively, these data demonstrated that B cells 
exhibit inhibitory state with pro-tumoral features (e.g., 
the decreased inflammation and immunosuppression) in 
liver tumors.

Convergent CD4+ T and divergent CD8+ T cell 
compositions and functions in primary and metastatic 
tumors in the liver
We next characterized the transcriptional properties of 
the T/NK lymphoid cells. Unsupervised clustering of T/

Fig. 2 B cell heterogeneity among the primary and metastatic tumors in the liver. A UMAP plot of scRNA‑seq profile from B cells which are 
separated into 5 cell clusters. Cells are colored according to different clusters. B UMAP plot showing 5 B cell clusters in NTs, PTs and MTs. C Feature 
plots showing the typical markers of memory B cells (top) and plasma cells (bottom). D Dotplot showing the percentage of expressed cells 
and average expression levels of marker genes of the 5 B cell clusters. E Tissue prevalence of major B cell clusters estimated by Ro/e scores. Ro/e, 
the ratios of the observed versus expected cell numbers. F Heatmap showing the normalized expression (z‑score) of B cell function‑associated 
gene sets in each cell cluster. G Violin plots showing the immune activation (top) and B cell receptor signaling (bottom) levels of 5 B cell clusters 
in NTs, PTs and MTs. Wilcox test was used to assess the difference between groups. “**”, “*” and “ns” represent “P < 0.01”, “P < 0.05” and “not significant”, 
respectively. H Violin plots showing the normalized expression (z‑score) of inhibitory‑associated genes in memory B cells clusters among three 
groups. Wilcox test was used to assess the difference between groups. “****”, “***”, “**”, “*” and “ns” represent “P < 0.0001”, “P < 0.001”, “P < 0.01”, “P < 0.05” 
and “not significant”, respectively. I–K Semi‑supervised pseudotime trajectory of B cell clusters inferred by Monocle2. I Trajectory is colored 
by the pseudotime. J Trajectory is colored by cell clusters. K Ridgeline plot showing the order of appearance of cell clusters in time, colored 
by cell clusters (top), and the Heatmap showing the fluctuation of genes along the pseudotime (bottom). L Box plots showing the proportion 
changes of early and late B cells in NTs, PTs and MTs, respectively. T‑test was used to assess the difference between groups. “****” and “**” represent 
“P < 0.0001” and “P < 0.01”, respectively. M Volcano plot showing the differential expressed genes (DEGs) between late B cells and early B cells. The 
red dots represent the statistically significant up‑regulated genes, the blue ones represent the down‑regulated genes, and the grey ones represent 
the non‑significant genes. N Bar plots showing the GO biological processes enriched by the signature genes of late B cells (red) and early B (blue) 
cells, respectively. APP antigen processing and presentation

(See figure on next page.)
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NK lymphoid cells resulted in 13 cell clusters, includ-
ing 3 CD4+ T cell clusters, 8 CD8+ T cell clusters, one 
NK cell cluster and one NK-like T cell cluster (Fig.  3A, 
B and Additional file 1: Fig. S3A). All these clusters were 
shared among NTs, PTs and MTs. Group-specific GO 
enrichment analyses showed that there are only slight 
functional changes for CD4+ T and CD8+ T cells in PTs 
compared to those in NTs; however, marked changes 
were observed in MTs compared to either NTs or PTs, 
especially represented by the cellular processes relevant 
to the activation of p38 MAPK cascade (Fig. 3C, D and 
Additional file 2: Table S4). It has been found that dele-
tion of p38 increased multiple phenotypic qualities of 
effective anti-tumor T cells, e.g., T cell expansion, mem-
ory, reactive oxygen species (ROS) and genomic stress 
(γH2AX) [27]. Pre-conditioning T cells with a p38 inhibi-
tor enhances anti-tumor efficacy of adoptive immuno-
therapy [27]. Therefore, the activation of p38 MAPK 
signaling pathway in T cells from MTs may be a pivotal 
determinant for the tumor immune escape. We then per-
formed a detailed functional definition of all T cells based 
on the function-related genes in pre-defined T cells [9], 
including inhibitory receptors, co-stimulatory molecules, 
effector molecules, memory molecules, antigen presen-
tation-associated molecules, key transcription factors, 
and chemokines and chemokines receptors. According to 
the expression levels of canonical marker genes, we clas-
sified CD4+ T cells into three categories, including cen-
tral memory (Tcm: T_CD4_CXCR4), regulatory (Treg: 
T_CD4_FOXP3) and helper type 1 CD4+ T cells (Th1: 
T_CD4_IFNG), and classified CD8+ T cells into 7 types, 
including effector (Te: T_CD8_FGFBP2 and T_CD8_
NR4A3), central memory (Tcm, T_CD8_CCL14), effector 

memory (Tem: T_CD8_LTB), tissue-resident memory 
(Trm: T_CD8_CD69), progenitor-like memory (Tpm: 
T_CD8_TCF7), exhausted (Tex: T_CD8_HAVCR2) 
and proliferative CD8+ T cells (Tpro: T_CD8_STMN1) 
(Fig. 3E, F). Interestingly, these cell clusters exhibited dif-
ferent tissue preferences: CD4+ Tcm was depleted while 
Treg and Th1 were enriched in PTs and MTs; CD8+ Tcm, 
Tem and Te showed enrichment in NTs, CD8+ Trm and 
Tpro were mainly found in PTs, while CD8+ Tex and 
Tpm were enriched in MTs (Fig. 3G).

We went on to explore the functional changes of CD4+ 
T cells in the three groups. The results demonstrated that 
all three CD4+ T cell clusters, especially the Tregs, in PTs 
and MTs exhibit higher regulatory and exhausted fea-
tures than those in NTs (Fig. 3H and Additional file 1: Fig. 
S3B). Specifically, the expression levels of the regulatory-
associated genes (e.g., IL2RA, FOXP3 and TNFRSF4) 
and exhausted-related genes (e.g., CTLA4, TIGIT and 
HAVCR2) were increased in both PTs and MTs, indi-
cating an immunosuppressive role of Tregs in tumors 
(Fig.  3I). Further, we explored the clinical significance 
of CD4+ T cell clusters in PTs from the TCGA-LIHC 
cohort and MTs from the MT2020 cohort, respectively. 
Indeed, elevated signature scores of Treg and Th1 were 
linked to worse outcomes in both patients with primary 
and metastatic liver tumors (Fig. 3J and Additional file 1: 
Fig. S3C–H), suggesting the impairment of CD4+ T cells 
and their promoting effects on immune escape of pri-
mary and metastatic tumor cells in the liver.

With regard to CD8+ T cells, continuously decreased 
cytotoxicity levels and increased exhausted levels were 
found in all cell clusters in PTs and MTs compared to 
NTs, suggesting the dysfunction of CD8+ T cells in 

(See figure on next page.)
Fig. 3 Characterization of the heterogeneous T/NK cell populations in the primary and metastatic liver tumors. A UMAP plot of scRNA‑seq profile 
from T/NK cells that are separated into 13 cell clusters. Cells are colored according to different clusters. B UMAP plot showing 13 cell clusters 
in different types of tissues. C Dotplot showing GO biological processes enriched by the highly expressed genes of CD4+ T cells in NTs, PTs and MTs, 
respectively. The dot size indicates the ratios of the enriched genes in the GO term versus all highly expressed genes; and the dot color indicates 
the P values determined by Hypergeometric distribution test. D Dotplot showing GO biological processes enriched by the highly expressed genes 
of CD8+ T cells in NTs, PTs and MTs. Dot size indicates the ratios of the enriched genes in the GO term versus all highly expressed genes; and dot 
color indicates the P values determined by Hypergeometric distribution test. E Heatmap showing the normalized expression (z‑score) of T cell 
function‑associated gene sets in each T cell cluster. F Feature plots showing the typical markers of CD4+ T cells, CD8+ T cells and NK cells. G Tissue 
prevalence of T cell clusters estimated by Ro/e scores. H Violin plots showing the regulatory and exhausted scores of FOXP3+ Treg across different 
types of tissues. Wilcox test was used to assess the difference between groups. “****” represents “P < 0.0001”. I Dotplot showing the percentage 
of expressed cells and average expression levels of regulatory and exhaustion‑related genes of Treg in three types of tissues. J Forest plot showing 
the prognostic values of each CD4+ T cell cluster infiltration in the primary HCC cohort (TCGA‑LIHC, n = 346) and the metastatic liver tumors cohort 
(MT2020, n = 198). The CD4+ T cell cluster infiltration was estimated based on the top 50 gene expression signatures of each cell cluster by GSVA. 
The median GSVA score was used to categorize patients into “high” and “low” groups. The hazard ratios (HRs) with 95% confidence intervals (CIs), 
and P values were determined by univariate Cox proportional hazards regression analyses. K Violin plots showing the cytotoxicity and exhaustion 
scores of TCF7+ progenitor‑like memory CD8+ T cells (Tpm) across different types of tissues. Wilcox test was used to assess the difference 
between groups. “****”, “***” and “**” represent “P < 0.0001”, “P < 0.001” and “P < 0.01”, respectively. L Forest plot showing the prognostic values of each 
CD8+ T cell cluster infiltration in the primary HCC cohort (TCGA‑LIHC; n = 346) and the metastatic liver tumors cohort (MT2020; n = 198). The CD8+ T 
cell cluster infiltration was estimated based on the top 50 gene expression signatures of each cell cluster by GSVA. The median GSVA score was used 
to categorize patients into “high” and “low” groups
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liver tumors, especially in MTs (Fig. 3K and Additional 
file 1: Fig. S4A, B). Among them, the four cell clusters 
(e.g., Tcm, Tem and two Te) enriched in PTs and MTs 
expressed effector and memory-related genes (Fig.  3E, 
G, Additional file  1: Fig. S3A and Additional file  2: 
Table S3). The signature scores of these cell clusters in 
PTs and MTs had no impact on the patient outcomes, 
except that CD8+ Te and Tem were associated with 
poor prognosis in patients with metastatic liver tumors 
(Fig.  3L and Additional file  1: Fig. S4C–J). Trm cells 
were enriched in PTs and almost disappeared in MTs 
(Fig.  3G). The CD8+ Trm cells enriched in the triple-
negative breast cancer (TNBC) tumor tissues offer local 
tissue protection against TNBC tumor re-challenge and 
are associated with improved treatment outcomes [28]. 
Consistent with this, we found that Trm cells are a pro-
tective factor for the prognosis of patients with primary 
liver cancer from the TCGA-LIHC cohort (Fig. 3L and 
Additional file 1: Fig. S4K, L). Compared to that in NTs, 
the proportions of Tex and Tpm were mildly increased 
in PTs and sharply elevated in MTs (Fig. 3G). Interest-
ingly, Tpm cells exhibited a resting state with relatively 
low levels of the functional genes, either inhibitory 
receptors or effector molecules (Fig. 3E). Moreover, the 
cytotoxicity levels were significantly reduced in MTs 
compared to NTs and PTs, while exhausted levels were 
significantly elevated (Fig.  3K). The result of Cox pro-
portional hazards regression analyses suggested that 
although it was not related to the survival of patients 
with primary liver tumors, it was the CD8+ T cell sub-
set most significantly associated with adverse progno-
sis of patients with metastatic liver tumors (Fig. 3L and 
Additional file 1: Fig. S4O, P).

Together, our findings suggest that CD4+ T cells may 
have similar functions in both primary and metastatic 
liver tumors. However, CD8+ T cells showed significant 
heterogeneity between the two groups, especially the 
TCF7+ CD8+ Tpm cells. These cells not only exhibit a 
significant increase in the proportion in metastatic liver 
tumors but also pose a dysfunction and exhaustion state, 
which may facilitate the progression of metastatic liver 
tumors.

TCF7+ memory CD8+ T cells exhibit unique pro‑tumoral 
characteristics
Next, we sought to explore the differentiation trajectories 
among these heterogeneous CD8+ T cell subpopulations 
by using Monocle2 [20]. The results showed that the 
differentiation peak of Tpm cells emerges between the 
memory T and Tex cells (Fig. 4A–C). It has been demon-
strated that exhausted T cells were derived from memory 
T cell precursors rather than terminal effector T cells in 
chronic viral infection and cancer, i.e., sustained or dis-
rupted T cell activation signals [29]. Therefore, we specu-
lated that Tpm cells may be the memory T cells which are 
induced towards exhaustion.

To this end, we initially examined the expression of 
memory T cell markers (e.g., CCR7, CD28, IL7R and 
GPR183) in the CD8+ T cell clusters. The results showed 
that Tpm exhibits relatively high levels of these mark-
ers (Fig.  4D). Furthermore, we collected the character-
ized CD8+ T cell clusters that were pre-defined by a 
previous study [30] (Additional file  2: Table  S5), and 
conducted similarity analyses between the molecular 
characteristics of the Tpm and these cell clusters. The 
results aligned with our expectations, indicating a strong 

Fig. 4 TCF7+ progenitor‑like memory CD8+ T cells exhibit immunosuppressive characteristics in metastatic liver tumors. A–C Semi‑supervised 
pseudotime trajectory of CD8+ T cell clusters inferred by Monocle2. Trajectory is colored by the pseudotime (A) or cell clusters (B). C Ridgeline 
plot showing the order of appearance of cell clusters in time colored by cell clusters (top), and the heatmap showing fluctuation of genes 
along the pseudotime (bottom). D Feature plots of the typical memory marker genes in each of CD8+ T cell clusters. The TCF7+ Tpm cells are 
circled by dashed lines. E Heatmap of pair‑wise correlation coefficients (Spearman correlation analyses) showing the similarity of signature scores 
between TCF7+ Tpm and pre‑defined CD8+ T cell clusters. F Dotplot showing the percentage of expressed cells and average expression levels 
of TdLN‑TTSM marker genes, exhaustion, and effector‑related genes among 4 CD8+ memory T cell clusters. TdLN‑TTSM, tumor‑draining lymph 
nodes (TdLN) tumor specific memory T cells  (TTSM). G Scatter plot showing the correlation of signatures scores between TCF7+ Tpm and TdLN‑TTSM 
in TCF7+ CD8+ T cells based on scRNA‑Seq data. H Heatmap showing the average activities of the top 5 significant transcription factors (TFs) 
identified by SCENIC in each CD8+ T cell cluster. I Feature plots showing the activities of TCF7+ Tpm‑specific transcription factor HOXB2 (top) 
and the expression levels of HOXB2 (bottom). J Volcano plot showing the differential expressed genes (DEGs) between TCF7+ Tpm and other 
memory CD8+ T cells. The red dots represent the statistically significant up‑regulated genes, the blue ones represent the down‑regulated genes, 
and the grey ones represent the non‑significant genes. Of note, the green boxes mark the p38 MAPK cascade‑associated genes and the orange 
boxes indicate the TGF‑beta‑SMAD‑associated genes. K Barplot showing the GO biological processes enriched by the highly and lowly expressed 
genes in TCF7+ Tpm cells compared with other memory CD8+ T cells. The red and blue bars represent the GO biological processes enriched 
by the up‑regulated genes and down‑regulated genes, respectively. L Violin plots showing the GSVA scores of TCF7+ CD8+ Tpm cells signature 
genes across NTs and PTs from the TCGA‑LIHC cohort (NTs, n = 50; PTs, n = 374) and MTs from the MT2020 cohort (n = 198). Wilcox test was used 
to assess the difference between groups. “****” and “ns” represent “P < 0.0001” and “not significant”, respectively. M Spatial distribution of the whole T/
NK cells and TCF7+ Tpm cells in a metastatic liver tumor (L1) determined by the spatial transcriptomic data (GSE225857)

(See figure on next page.)
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association between Tpm and the naïve, memory and 
Tex cells (Fig.  4E). Therefore, we suspected that Tpm 
represents a distinct group of progenitor-like memory T 
cells. Tumor-specific memory T cells  (TTSM) in tumor-
draining lymph nodes (TdLN) can continuously replenish 
exhausted CD8+ T cells in tumor tissue [31]. Interest-
ingly, Tpm cells, rather than the other memory CD8+ 
T cells, showed a similar transcriptional signature with 
TdLN-TTSM (Fig. 4F). Additionally, the cell type signature 
correlation analyses suggested that Tpm cells exhibit sim-
ilar properties with TdLN-TTSM (Fig. 4G), suggesting that 
Tpm is a novel type of tumor-specific memory T cells 
migrated from the TdLN, which may be interfered and 
induced to exhaustion, facilitating the immune escape of 
metastatic cancer cells in the liver.

Further, we tried to explore the function relevance of 
Tpm cells. First, we investigated the potential driver tran-
scription factors (TFs) underlying the differentiation tra-
jectories by using SCENIC [21]. Distinct sets of TFs were 
activated among the heterogeneous CD8+ T cell subpop-
ulations, and three TFs (HOXB2, FOS and CEBPB) were 
highly activated in Tpm cells (Fig.  4H, I and Additional 
file 2: Table S6). The high expression level of Homeobox 
B2 (HOXB2) is substantially associated with CD8+ T cell 
immune infiltration [32]; however, its role in modulation 
of T cells’ function remains unknown. We then examined 
the transcriptome differences between Tpm cells and the 
other CD8+ memory T cells. This analysis revealed sig-
nificant upregulation of T cells dysfunction-associated 
genes (RARRES3 and ALODA) [33, 34] and downregula-
tion of effector-associated genes (e.g., CST3, NKG7 and 
PRF1) in Tpm (Fig.  4J and Additional file  2: Table  S7). 
GO enrichment analyses revealed the activation of the 

immunosuppressive p38 MAPK signaling in Tpm cells 
(Fig.  4J, K and Additional file  2: Table  S4). In addition, 
bulk transcriptomic data indicated that the signature 
scores of Tpm cells are significantly increased in tumor 
tissues, especially in MTs (Fig. 4L). Spatial transcriptome 
(ST) analyses of three metastatic liver tumors (preop-
erative chemotherapy: L1, ST-P4 and treatment naïve: 
ST-P2) also confirmed that there is a large infiltration of 
Tpm cells in MTs (Fig. 4M and Additional file 1: Fig. S4Q, 
R). Taken together, these results indicate that the immu-
nosuppressive signature of Tpm cells is likely driven by 
the p38 MAPK signaling pathway, suggesting the appli-
cability of targeted therapeutic strategies in the treatment 
of liver metastases.

Tumor‑associated macrophages exert immunosuppressive 
and metastasis‑promoting effects
We identified a total of 19,043 myeloid cells which were 
sub-clustered into 13 cell clusters (Fig. 5A, B and Addi-
tional file  1: Fig. S5A). Among them, we designated 3 
clusters as dendritic cells (DCs), which displayed various 
features, including cDC1 (DC_CLEC9A), cDC2 (DC_
CD1C) and pDC (DC_LILRA4) (Fig.  5C). Interestingly, 
pDCs were rarely found in NTs and PTs, but abundant 
in MTs (Fig. 5D), which exhibited suboptimal capabilities 
of cytokine production and antigen processing and pres-
entation, but higher levels of chemotaxis than those of 
cDC1 and cDC2 (Additional file 1: Fig. S5B) as previously 
described [35]. Notably, high signature scores of pDC 
were associated with poor prognosis in both patients 
with primary and metastatic liver tumors (Fig.  5E and 
Additional file 1: Fig. S5C, D).

(See figure on next page.)
Fig. 5 Characterization of the heterogeneity of myeloid cells in primary and metastatic tumors in the liver. A UMAP plot of scRNA‑seq profile 
from myeloid cells separated into 13 cell clusters. Cells are colored according to different clusters. B UMAP plot showing 13 cell clusters 
in different types of tissues. C Heatmap showing the normalized expression (z‑score) of myeloid cell function‑associated gene sets in each cell 
cluster. D Tissue prevalence of myeloid cell clusters estimated by Ro/e scores. E Forest plot showing the prognostic values of each myeloid cell 
cluster infiltration in the primary HCC cohort (TCGA‑LIHC; n = 346) and the metastatic liver tumors cohort (MT2020; n = 198). The HRs with 95% 
CIs and P values were determined by univariate Cox proportional hazards regression analyses. F–H Semi‑supervised pseudotime trajectory 
of tumor‑associated macrophages clusters inferred by Monocle 2. Trajectory is colored by the pseudotime (F) or cell clusters (G). H Ridgeline 
plot showing the order of appearance of cell clusters in time colored by clusters (top) and the heatmap showing the fluctuation of genes 
along the pseudotime (bottom). I Heatmap showing the average activities of the top 5 significant TFs identified by SCENIC in each macrophage 
cluster. J Feature plots showing the activities of WDR45B+ TAM‑specific TF CEBPD (top) and expression levels of CEBPD (bottom). K Volcano plot 
showing the DEGs between WDR45B+ TAMs and the other TAMs. The red dots represent the significantly up‑regulated genes, the blue ones 
represent the down‑regulated genes, and the grey ones represent the non‑significant genes. L Violin plots showing the M2 scores of WDR45B+ 
TAMs across different types of tissues. Wilcox test was used to assess the statistic difference between groups. “****” and “***” represent “P < 0.0001” 
and “P < 0.001”, respectively. M Violin plot showing the GSVA scores of WDR45B+ TAMs signature genes across NTs and PTs from the TCGA‑LIHC 
cohort (NTs, n = 50; PTs, n = 374) and metastatic liver tumors from the M2020 cohort (n = 198). Wilcox test was used to assess the difference 
between groups. “****” and “*” represent “P < 0.0001” and “P < 0.05”, respectively. N Spatial distribution of the whole myeloid cells and WDR45B+ 
TAMs in a metastatic liver tumor (L1) determined by the spatial transcriptomic data (GSE225857). O Heatmap showing the scaled expression 
levels of a series of immune checkpoint genes in myeloid cell clusters. Genes are grouped as receptor or ligand, inhibitory or stimulatory status 
and expected major lineage cell types known to express the gene (lymphocyte and myeloid)
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Due to the diversity and plasticity of macrophages, 
their heterogeneity and effect on tumor progression 
remain largely unknown [36]. Here, we classified the 
macrophages into four major types: liver-resident Kupffer 
cells, MHC+ macrophages, monocyte-derived inflamma-
tory macrophages (MoMFs) and tumor-associated mac-
rophages (TAMs) (Fig.  5C). Except for TAMs enriched 
in PTs and MTs, the other types of macrophages were 
enriched in NTs, especially the Kupffer-derived mac-
rophages (Mac_MARCO) and MHC+ macrophages 
(Mac_VSIR), and their signature scores had no impact on 
tumor patient outcomes (Fig. 5C, E and Additional file 1: 
Fig. S6A, B). Cells in clusters 29, 30 and 31 were MoMFs, 
which were characterized by high levels of monocyte 
markers (e.g., FCN1, LYZ and VCAN) and inflamma-
tory genes (e.g., IL1B, IL6, S100A9, S100A8 and CXCL3) 
(Fig.  5C and Additional file  1: Fig. S5A and Additional 
file 2: Table S3). The survival analyses showed that high 
signature scores of most of these cell clusters are asso-
ciated with poor prognosis in patients with primary or 
metastatic liver tumors (Fig. 5E and Additional file 1: Fig. 
S6C, D).

Besides the three types of macrophages mentioned 
above, four other TAM clusters (e.g., Mac_TREM2, Mac_
UBE2C, Mac_SPP1 and Mac_WDR45B) were enriched in 
tumor tissues, which displayed high heterogeneity among 
the three groups (Fig. 5C, D). Concordant with their roles 
in tumor progression [37], the TREM2+ and UBE2C+ 
TAMs were abundant in PTs compared to NTs and MTs, 
which was concordant with their prognostic values for 
predicting poor survival of patients with primary liver 
tumors rather than metastatic liver tumors (Fig.  5D, 
E and Additional file  1: Fig. S6E, F). The SPP1+ and 
WDR45B+ TAMs were abundant in PTs and MTs, espe-
cially in MTs, compared to NTs (Fig. 5C, D). Besides the 
pro-tumoral role of SPP1+ TAMs in primary tumor pro-
gression [38], we here found that it also exhibits a prog-
nostic value for patients with MTs, suggesting its pivotal 
role in metastatic liver tumors (Fig.  5E and Additional 
file 1: Fig. S6E, F). The MTs-enriched WDR45B+ TAMs 
were considered as a new group of macrophages, which 
have not been clearly characterized before. Of note, the 
signature score of this cluster was not correlated with 
the prognosis of patients with PTs, but was a risk factor 
for patients with MTs (Fig. 5E and Additional file 1: Fig. 
S6E, F), suggesting its specific role in the metastatic liver 
tumors.

We further explored the functional relevance of 
WDR45B+ TAMs. By performing trajectory inference on 
the four TAM clusters, we found that it emerges at the 
terminal end of differentiation, marked by inflammatory 
factors (e.g., IL1B, REL, CEBPD and JAML) (Fig. 5F–H). 
The results of TF enrichment analyses suggested that 

WDR45B+ TAMs are specifically re-programmed by 
CEBPD (Fig. 5I, J and Additional file 2: Table S6), which 
can potentiate cytokine production and modulates mac-
rophage function [39]. Next, we explored the unique 
function of WDR45B+ TAMs compared to the other 
TAMs, and found upregulation of several known tumor-
promoting genes (Fig. 5K and Additional file 2: Table S8), 
such as LGALS2 and GPR183 (Ref [40]). Additionally, 
we found that the M2 polarization levels of WDR45B+ 
TAMs are significantly increased in PTs and MTs, espe-
cially in MTs, compared to NTs (Fig. 5L). Bulk transcrip-
tomic data from the TCGA-LIHC and MT2020 cohorts 
showed that the WDR45B+ TAM signature scores 
slightly increase in PTs, but markedly elevate in MTs, 
compared to that in NTs (Fig. 5M). In addition, the result 
of ST analyses of three metastatic liver tumors (preop-
erative chemotherapy: L1, ST-P4 and treatment naïve: 
ST-P2) also confirmed that there is a large infiltration of 
WDR45B+ TAMs in MTs (Fig. 5N and Additional file 1: 
Fig. S6G, H). Together, these findings indicate that this 
group of cells may facilitate M2-like polarization of mac-
rophages to induce immunosuppressive effect in the met-
astatic liver tumors.

Myeloid cells have been reported to be an important 
source of tumor immune checkpoints [41]. Therefore, we 
further analyzed the expression of immune checkpoints 
in the myeloid compartment. In general, the expres-
sion of immune checkpoints and their ligands exhibit 
unique patterns in myeloid cell clusters. Interestingly, 
we observed marked upregulation of a series of immune 
checkpoints (e.g., CD86, CD80, HAVCR2 and LGALS9) 
in most tumor infiltrating myeloid cells, and a unique 
pattern in TAMs (e.g., NECTIN2, TNFRSF14, CD276 and 
TNFRSF9) (Fig. 5O). Collectively, we found that there is a 
large number of infiltrated immunosuppressive myeloid 
cells in PTs and MTs, and the SPP1+ and WDR45B+ 
TAMs may potentiate progression of primary and meta-
static tumors in the liver.

Abundance and function diversity of stromal cells 
in primary and metastatic liver tumors
We identified two clusters of endothelial cells and two 
clusters of fibroblasts (Fig.  6A–C). Due to the signifi-
cant decreases in endothelial cells in both PTs and MTs 
compared to NTs (Fig.  6D), we explored their func-
tional changes in tumors. First, we performed lineage 
identification of endothelial cells, and found that almost 
all endothelial cells express FLT1 (vascular endothelial 
cell marker), but not PDPN (lymphoid endothelial cell 
marker) (Fig.  6E). Hallmark pathway enrichment analy-
ses highlighted that metabolic pathways were the most 
abundant features of tumor-driving endothelial cells, 
including peroxisomes, xenobiotic metabolism, fatty acid 
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metabolism and glycolysis (Fig.  6F), which are instru-
mental for angiogenesis [42]. Surprisingly, the most 
significantly downregulated pathway was involved in 
inflammatory responses (Fig. 6F). A more detailed analy-
sis revealed downregulation of genes involved in anti-
gen presentation (MHC-I/II), chemotaxis (CCL2, CCL8 
and IL6) and immune cell homing (e.g., ICAM1) in PTs 
and MTs, compared to NTs (Fig. 6G). Finally, we applied 
SCENIC to assess which transcription factors underlie 
the expression differences in endothelial cells between 
tumors and NTs. The results showed that endothelial 
cells in tumors are specifically dominated by HMGA1 and 
HEYL (Fig. 6H, I and Additional file 2: Table S6), both of 
which have been found as promoters of neoangiogenesis 
in breast cancers [43, 44]. Together, these results indicate 
that tumor endothelial cells are remodeled to downregu-
late their antigen presentation and immune cell homing 
activities while upregulate their neoangiogenesis capabil-
ities, thus contributing to tumor immunotolerance.

In contrast to endothelial cells, we found that two clus-
ters of fibroblasts significantly increase in PTs and MTs, 
especially the SERPINF1+ fibroblasts in MTs (Fig.  6D). 
Pathway enrichment analyses revealed distinct functions 
of these two clusters: MYH11+ fibroblasts expressed 
activated fibroblast markers (e.g., ACTA2) and smooth 
muscle cell markers (e.g., MYH11 and TAGLN), which 
were related to myogenesis and smooth muscle contrac-
tion; while SERPINF1+ fibroblasts expressed unique col-
lagens and other extracellular matrix molecules involved 
in epithelial–mesenchymal transition (EMT) and extra-
cellular matrix (ECM) organization (Fig. 6J, K and Addi-
tional file  2: Table  S4). Therefore, we hypothesized that 
SERPINF1+ fibroblasts may derive from the mesen-
chymal transition of epithelial cells. Signature correla-
tion analyses of fibroblasts and epithelial cells showed 

that SERPINF1+ fibroblasts display a strong similarity 
to ALDOB + , HDGF+ and PLA2G2A+ epithelial cells 
(Fig.  6L). Consistently, we observed that SERPINF1+ 
fibroblasts show higher expression levels of EMT mark-
ers, compared to the MYH11+ fibroblasts (Fig.  6M). 
Additionally, bulk transcriptomic data from the TCGA-
LIHC cohort and MT2020 cohort revealed a consist-
ent strong correlation of characteristic signature scores 
between SERPINF1+ fibroblasts and EMT (Fig.  6N, O). 
We further performed trajectory inference of these epi-
thelial cells and fibroblasts. As expected, fibroblasts were 
found to be terminally differentiated, and the differentia-
tion state of SERPINF1+ fibroblasts were observed to be 
slightly earlier than that of MYH11+ fibroblasts (Fig. 6P–
R), indicating that SERPINF+ fibroblasts might originate 
from EMT. Taken together, these data indicate remarka-
ble divergences in the abundance and function of stromal 
cells in primary and metastatic tumors in the liver.

Malignant hepatocytes and tumor‑associated fibroblasts 
shape the TMEs in PTs and MTs, respectively
Next, we sought to investigate which type of cells in 
PTs and MTs shape the tumor microenvironments. We 
first conducted cell–cell interaction analyses by using 
CellChat to explore the ligand–receptor (L–R)-medi-
ated intercellular communications for each group. We 
observed that the weight of cell–cell interactions in 
PTs and MTs is globally much higher than that in NTs 
(Fig. 7A and Additional file 2: Table S9). In PTs, fibro-
blasts dominated the interactions with immune cells. 
Strikingly, In MTs, fibroblasts dominated the interac-
tion with immune cells and epithelial cells (Fig.  7A). 
Then, we performed pair-wise comparisons between 
the three groups based on the intensities of cell–cell 
interactions. In particular, we found the weight of 

Fig. 6 Distinct functions of stromal cells in liver tumors. A UMAP plot of scRNA‑seq profiles from stroma cells separated into 4 cell clusters. Cells 
are colored according to different clusters. B UMAP plot showing 4 cell clusters in different types of tissues. C Dotplot showing the percentage 
of expressed cells and average expression levels of marker genes of 4 stroma cell clusters. D Tissue prevalence of major stroma cell clusters 
estimated by Ro/e scores. E Feature plots showing the expression levels of marker genes for vascular endothelial cells and lymphoid endothelial 
cells. F Differences in hallmark pathway activities scored by GSVA between endothelial cells in tumors (PTs + MTs) and non‑tumor liver tissues (NTs). 
Shown are t values from a linear model, corrected for endothelial of origin. G Dotplot showing the percentage of expressed cells and average 
expression levels of angiogenesis‑ and immune activation‑related genes in endothelial cells among three types of tissues. H Heatmap showing 
the activities of enriched transcription factors (TFs) in endothelial cells across three types of tissues. I Feature plot showing the activities 
(top) and the expression levels (bottom) of TFs HMGA1 and HEYL specifically activated in endothelial cells from MTs. J Metascape results 
of the significantly enriched signaling pathways by the genes highly expressed in MYH11+ fibroblasts. K Metascape results of the significantly 
enriched signaling pathways by the genes highly expressed in SERPINF1+ fibroblasts. L Heatmap of correlation analyses showing the similarity 
of signature genes between fibroblast cell clusters and epithelial cell clusters in fibroblasts and epithelial cells of scRNA‑seq data. M Dotplot 
showing the percentage of expressed cells and average expression levels of epithelial‑to‑mesenchymal transition (EMT) effector genes in the two 
fibroblast clusters. N, O Scatter plot showing the correlation of signature scores between SERPINF1+ fibroblasts and EMT in PTs from the TCGA‑LIHC 
cohort and MTs from the MT2020 cohort. P–R Semi‑supervised pseudotime trajectory of fibroblasts and high‑related epithelial clusters inferred 
by Monocle 2. P and Q Trajectory is colored by the pseudotime (P) or clusters (Q). R Ridgeline plot showing the order of appearance of cell clusters 
in time colored by clusters

(See figure on next page.)
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malignant hepatocytes related L–R interactions dra-
matically increases in PTs compared to NTs; and fibro-
blasts related L–R interactions dramatically increases 
in MTs compared to NTs and PTs (Fig. 7B), suggesting 
that epithelial cells in PTs and fibroblasts in MTs might 

play major roles in shaping the microenvironments, 
respectively.

We next explored the intensity of the outgoing interac-
tions of epithelial cells (e.g., hepatocytes) with other cell 
types in NTs and PTs, respectively. Of note, compared 
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with NTs, the intensity of immune cells (especially the 
CD4+ T cells) connected with hepatocytes increased 
most significantly in PTs (Fig.  7B, C). Malignant hepat-
ocytes in PTs could regulate immune cells, but not 
stromal cells, through the MIF-(CD74+CD44) and 
MIF-(CD74+CXCR4) L–Rs (Fig.  7D). When MIF binds 
to its receptor CD74, it recruits the hyaluronate recep-
tor CD44/CXCR4, forming a complex (CD74/CD44 or 
CD74/CXCR4) that has been implicated in tumorigenic 
MIF signaling processes [45]. In addition to the L–Rs 
involved in the MIF pathway, there were many other L–
Rs in the PT microenvironment to promote tumor pro-
gression, such as SPP1-CD44 of SPP1 pathway (Fig. 7D). 
It has been found that SPP1-CD44 and SPP1-PTGER4 
interactions mediate the crosstalk between HCC cells 
and macrophages, which can trigger the polarization of 
M2 macrophages [46]. We then verified these findings 
in the PTs from the TCGA-LIHC cohort. The signature 
scores of the involved ligands were positively correlated 
with that of the malignant hepatocytes, and a similar 
positive correlation was observed between the involved 
receptors and the CD4+ T cells (Fig.  7E). Importantly, 
positive correlations were also found between the signa-
ture scores of CD4+ T cells and malignant hepatocytes 
or the involved ligands (Fig.  7E). Together, in primary 
liver tumors, malignant hepatocytes are likely the major 
drivers, which shape the TME by communicating with 
immune cells and restraining their anti-tumoral effects.

We then compared the intensity of the outgoing inter-
actions of fibroblasts with other cell types in PTs and MTs 
(Fig. 7F). Interestingly, we found that compared with PTs, 
the interaction intensity of fibroblasts connected with 
malignant epithelial cells increases most significantly in 
MTs. Indeed, many L–Rs, including collagen/fibronec-
tin/laminin-syndecan/integrin and others, exhibited 
strong potential interactions between fibroblasts and epi-
thelial cells (Fig.  7G). The activation of these L–Rs was 
closely related to tumor metastasis [47–49]. Together, 

fibroblasts can enhance the malignancy of metastatic 
tumor cells in the liver through a variety of secreted 
matrix components or THBS1. In addition to malignant 
epithelial cells, the interaction intensity of fibroblasts 
with immune cells in MTs markedly increased compared 
to NTs, but slightly increased compared to PTs (Fig. 7A, 
G). The L–Rs including the MIF-(CD74+CXCR4) and 
collagen/fibronectin/laminin-CD44 interactions in MTs 
may create a tumor immunosuppressive microenviron-
ment. The CD36+ CAFs recruit CD33+ myeloid-derived 
suppressor cells (MDSCs) via MIF-(CD74+CXCR4) axis 
[50]. Of note, we also verified these findings in MTs from 
the MT2020 cohort. The signature scores of the involved 
ligands were positively correlated with that of the fibro-
blasts, and a similar positive correlation was observed 
between the involved receptors and the malignant epithe-
lial cells (Fig. 7H). Importantly, positive correlations were 
also found between the signature scores of malignant 
epithelial cells and fibroblasts or the involved ligands 
(Fig. 7H). In addition, the ST analyses of three metastatic 
liver tumors (preoperative chemotherapy: L1, ST-P4 and 
treatment naïve: ST-P2) confirmed the concordant spa-
tial distribution of fibroblasts and the involved ligands, 
which are close to the edges of malignant epithelial cells, 
the main source of receptors (Fig. 7I and Additional file 1: 
Fig. S7A, B). Taken together, fibroblasts could shape the 
microenvironment of liver metastases by enhancing the 
malignant epithelial cells of tumor cells and recruiting 
immunosuppressive cells infiltration.

Discussion
Numerous studies have recently examined the cellular 
transcriptomic characteristics of primary liver tumors or 
metastatic liver tumors [9, 10, 41], respectively. However, 
there has been no comparative analysis that combines 
the cellular and molecular characteristics of primary and 
metastatic tumors in the liver. Hepatocellular carcinoma 
(HCC), the most prevalent form of primary liver cancer 

(See figure on next page.)
Fig. 7 Cell–cell interaction networks in primary liver tumors and metastatic liver tumors. A Heatmap illustrating the cell–cell interaction patterns 
in NTs, PTs, and MTs. B Heatmap showing the pair‑wise comparison changes of interaction intensities between NTs, PTs, or MTs. C Circle plot 
showing the interaction intensities of the outgoing interactions of malignant hepatocytes with other cell types in NTs (top) and PTs (bottom), 
respectively. D Heatmap showing the enriched outgoing ligand–receptor interaction intensities of hepatocytes with other cell types in NTs 
and PTs, and their fold changes in PTs compared to NTs. E Scatter plots showing the correlations of signature scores between the malignant 
hepatocytes and the involved ligands, the CD4+ T cells and the involved receptors, the malignant hepatocytes and CD4+ T cells, and the involved 
ligands and CD4+ T cells in PTs from the TCGA‑LIHC cohort (n = 374). F Circle plot showing the interaction intensities of the outgoing interactions 
of fibroblasts with other cell types in PTs (top) and MTs (bottom), respectively. G Heatmap showing the enriched outgoing ligand–receptor 
interaction intensities of fibroblasts with other cell types in PTs and MTs, and their fold changes in MTs compared to PTs. H Scatter plots showing 
the correlations of signature scores between the fibroblasts and the involved ligands, the malignant epithelial cells and the involved receptors, 
the fibroblasts and malignant epithelial cells, and the involved ligands and malignant epithelial cells in MTs from the MT2020 cohort (n = 198). I 
Spatial distributions of the fibroblasts, the involved ligands, the malignant epithelial cells and the involved receptors in a metastatic liver tumor (L1) 
determined by the spatial transcriptomic data (GSE225857)
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(PLC), representing 80–90% of cases, makes it a suit-
able choice for studying primary liver tumors, allowing 
for valuable comparisons with metastatic liver tumors. 
We here integrated the large-scale scRNA-seq data of 
non-tumor liver tissues, primary HCC tumors and liver 
metastatic tumors, providing a high-resolution landscape 
of cellular heterogeneity in immune and stroma cells, and 
highlighting the inter-cellular crosstalks.

Our study revealed that the memory B cells primarily 
exist in non-tumor liver tissues and metastatic tumors, 
while plasma cells are mainly found in both primary and 
metastatic liver tumors. The upregulation of IgG and 
IgA in plasma cells suggests their involvement in class 
switch recombination. However, this transformation did 
not affect tumorigenesis and solely represents a matura-
tion process for B cells. Notably, our findings indicated a 
potential association between inhibitory memory B cells 
in tumors and the occurrence of metastatic liver tumors. 
Indeed, tumor-adapted B cells were capable of secret-
ing pathological antibodies targeting the tumor antigen 
HSPA4, thereby promoting breast cancer lymph node 
metastasis [51]. Altogether, these findings highlight the 
potential of inhibitory memory B cells as a target for 
treatment of liver tumors.

Consistent with previous studies, our findings demon-
strated a significant increase in regulatory and exhausted 
T cells in PTs and MTs, while a depletion in effector T 
cells. The infiltration of exhausted T cells or regulatory T 
cells in HCCs is associated with adverse effects and sig-
nificantly impacts prognosis [52, 53]. Notably, we here 
discovered a previously unexplored cluster of progeni-
tor-like memory CD8+ T cells (e.g., TCF7+ Tpm cells), 
which exhibits a differentiation state that lies between 
memory T cells and exhausted T cells. Previous reports 
have highlighted the presence of unique memory T cells 
in TME, which may transform into exhausted T cells 
upon antigen stimulation [31]. Surprisingly, this new 
cluster of cells showed minimal expression of effec-
tor molecules and was specifically correlated with poor 
prognosis in patients with metastatic liver tumors, rather 
than those with primary liver tumors. In ovarian cancer 
ascites, the memory T cells serve as an important supple-
mentary pool of terminal T cells in primary tumors and 
metastases [54], suggesting the involvement of TCF7+ 
Tpm cells in metastatic liver tumors. In this study, we 
found that the transcription factor CEBPB and the p38 
MAPK cascade pathway are activated in TCF7+ Tpm 
cells. CEBPB, which acts as a transcriptional repressor 
of T cell related genes, is phosphorylated by p38 MAPK 
[55]. CD36 on CD8+ tumor infiltrating lymphocytes 
(TILs) contributes to T cell dysfunction by facilitating 
the uptake of oxidized low-density lipoproteins (OxLDL) 
into T cells. This uptake leads to lipid peroxidation and 

subsequent activation of p38 MAPK kinase. Interest-
ingly, inhibiting p38 MAPK kinase partially restored the 
secretion of TNF and IFNγ in the presence of OxLDL 
[56]. Another study also confirms that p38 inhibition can 
enhances the secretion of IFNγ and Granzyme-B by T 
cells in response to TCR stimulation, thereby improving 
T cell functionality [57]. Therefore, these findings sug-
gest that in metastatic liver tumors microenvironment, 
memory CD8+ T cells are interfered (e.g., excessive lipid 
accumulation) and induced exhaustion driven by the p38 
MAPK-CEBPB axis. Certainly, it is necessary to further 
investigate the mechanism by which TCF7+ Tpm exerts 
immunosuppressive effects in metastatic liver tumors.

In this study, the predominance of myeloid cells in 
tumor tissues prompted us to elaborate the function of 
myeloid cells in the tumor microenvironment. Interest-
ingly, pDCs infiltrate massively in MTs. Previous stud-
ies have demonstrated that pDCs significantly infiltrate 
liver cancer tissues, thereby facilitating vascular invasion 
and lymph node metastases [58]. Therefore, these find-
ings suggest that pDCs provide a prerequisite for tumor 
metastasis to the liver by creating an immunosuppressive 
microenvironment. Additionally, among the TAM clus-
ters identified in this study, TREM2+ and SPP1+ TAMs 
have been previously reported in various tumors [59, 60]. 
In addition, we here identified a distinct cluster of mac-
rophages (e.g., WDR45B + TAMs) that express high levels 
of WDR45B, which has been shown to play a critical role 
in autophagosome maturation [61]. Autophagy has been 
shown to influence the metabolic state within cells and 
subsequently regulates macrophage M2 polarization [62]. 
Additionally, compared to the other TAMs, WDR45B+ 
TAMs exhibited relatively high level of LGLAS2, which 
facilitates M2-like polarization of macrophages through 
CSF1 [40]. Based on these findings, we speculate that 
the increased autophagy levels in WDR45B+ TAMs may 
direct it towards M2 polarization, thereby facilitating the 
adaption and progression of metastatic tumors in the 
liver, which also needs to be confirmed in future study.

We here revealed that the malignant hepatocytes 
and fibroblasts are the major divers in shaping the cel-
lular microenvironments of primary and metastatic 
liver tumors, respectively. The intensity of interactions 
between malignant hepatocytes and immune cells sig-
nificantly increased in PTs compared with NTs via L–Rs, 
e.g., MIF-(CD74+CD44), SPP1-CD44, which have been 
known to be immunosuppressive and pro-angiogenic 
as previously reported [45, 46]. Numerous studies have 
shown that CAFs do not exist as separate cells around 
tumors, but interact with tumor cells to promote tumor 
growth and survival and maintain their malignant ten-
dencies [63, 64]. Consistently, we here found that fibro-
blasts have the strongest interactions with malignant 
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epithelial cells via the abundant collagen/fibronec-
tin/laminin-syndecan/integrin interactions in MTs. 
In addition, we would like to explore in depth how the 
liver microenvironment recruits various tumor cells to 
metastasize to it. In this regard, chronic alterations of 
the hepatic immune microenvironment accompanied 
by progressive changes of the metabolic profile have 
been shown to promote and trigger the development 
of primary liver tumors [65]. Additionally, the appar-
ently tumor-hostile environment of the healthy liver 
can also be modified acutely and transiently for homing 
and hosting of metastatic cells originating from extrahe-
patic malignancies [66]. It is well-known that the liver is 
a common site for metastasis, particularly after lymph 
nodes [4], with nearly 50% of CRC patients developing 
liver metastases, due to the bidirectional gut-liver rela-
tionship and the immunosuppressive nature of the liver. 
The formation of a pre-metastatic niche in the target 
organ seems to be an essential prerequisite for invasion 
and dissemination of cancer cells (the ‘seed and soil’ the-
ory [67]). Recent studies have shown that lung fibroblasts 
facilitate pre-metastatic niche formation by remodeling 
the local immune microenvironment, thereby promoting 
breast cancer metastasis [68]. Therefore, these findings 
indicate that intrahepatic fibroblasts may play a pivotal 
role in remodeling the liver microenvironment, thereby 
facilitating the tumor metastasis. Even after the establish-
ment of metastases, fibroblasts persistently contribute 
to tumor progression and invasion, thereby impacting 
the features of the microenvironment for the adaptation 
of metastatic cells. However, the underlying mechanism 
requires further investigation and exploration.

This study has several limitations that should be 
acknowledged. Firstly, this study is based on our and mul-
tiple published datasets, which may have different stand-
ards for diagnosing and treating, leading to variations in 
the causes of the included patients. Future studies should 
be conducted enrolled patients according consistent 
diagnostic and treatment standards. Secondly, the types 
of metastatic tumors included in this study are limited, 
and the findings here need to be validated in a wide range 
of metastatic liver tumors.

Conclusion
Taken together, the single cell transcriptome atlas pro-
vides a comprehensive TME characterization of primary 
and metastatic tumors in the liver. The systematic study 
of transcription changes may provide valuable insights 
for further investigating the biological functions and 
molecular mechanisms, which will be helpful in develop-
ing or improving therapeutic strategies for liver cancers.
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