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Abstract 

Background: Epilepsy is a common neurological disorder that affects approximately 60 million people worldwide. 
Characterized by unpredictable neural electrical activity abnormalities, it results in seizures with varying intensity 
levels. Electroencephalography (EEG), as a crucial technology for monitoring and predicting epileptic seizures, plays 
an essential role in improving the quality of life for people with epilepsy.

Method: This study introduces an innovative deep learning model, a lightweight triscale yielding convolutional 
neural network” (LTY-CNN), that is specifically designed for EEG signal analysis. The model integrates a parallel con-
volutional structure with a multihead attention mechanism to capture complex EEG signal features across multiple 
scales and enhance the efficiency achieved when processing time series data. The lightweight design of the LTY-CNN 
enables it to maintain high performance in environments with limited computational resources while preserving 
the interpretability and maintainability of the model.

Results: In tests conducted on the SWEC-ETHZ and CHB-MIT datasets, the LTY-CNN demonstrated outstanding per-
formance. On the SWEC-ETHZ dataset, the LTY-CNN achieved an accuracy of 99.9%, an area under the receiver operat-
ing characteristic curve (AUROC) of 0.99, a sensitivity of 99.9%, and a specificity of 98.8%. Furthermore, on the CHB-MIT 
dataset, it recorded an accuracy of 99%, an AUROC of 0.932, a sensitivity of 99.1%, and a specificity of 93.2%. These 
results signify the remarkable ability of the LTY-CNN to distinguish between epileptic seizures and nonseizure events. 
Compared to other existing epilepsy detection classifiers, the LTY-CNN attained higher accuracy and sensitivity.

Conclusion: The high accuracy and sensitivity of the LTY-CNN model demonstrate its significant potential for epi-
lepsy management, particularly in terms of predicting and mitigating epileptic seizures. Its value in personalized 
treatments and widespread clinical applications reflects the broad prospects of deep learning in the health care 
sector. This also highlights the crucial role of technological innovation in enhancing the quality of life experienced 
by patients.
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Introduction
Epilepsy is a global health issue, with approximately 60 
million people affected worldwide according to the World 
Health Organization [1]. Patients with epilepsy experi-
ence sudden abnormal neural electrical activity, leading 
to seizures with varying degrees of severity, ranging from 
minor distractions to a complete loss of consciousness 
[2]. The unpredictability of this disease imposes signifi-
cant physical and psychological burdens on patients [3], 
limiting their social participation and quality of life. EEG, 
as an effective tool for monitoring electrical activity in 
the brain, has become an indispensable part of epilepsy 
research [4]. With the advent of deep learning and other 
advanced machine learning technologies, the levels of 
EEG signal analysis and understanding have significantly 
improved [5]. By extracting key features from these sig-
nals and effectively classifying them, researchers can 
better predict epileptic seizures, thereby offering more 
timely interventions for patients [6–8].

In recent years, technological advancements in the 
field of artificial intelligence have brought new hope to 
patients. Specifically, modern predictive models, through 
multiscale feature extraction and multidomain feature 
analysis, are able to comprehensively capture the com-
plexity of EEG signals [9]. These models not only improve 
the accuracy of the obtained predictions but also expand 
our understanding of epilepsy and its seizure mecha-
nisms. The approach proposed by Jee et  al. [10] utilizes 
the synchronous extraction transform and a 1D-CNN, 
focusing on the extraction of features from time series 
data. While this method may perform well on specific 
datasets, its performance stability across different appli-
cation settings can be challenging to maintain, limiting 
its broad applicability. Building on the work of Jee et al., 
the CNN-Bi-LSTM model proposed by Ma et  al. [11] 
was specifically designed to capture and understand the 
long-term dependencies contained in time series data. 
This approach, which combines convolutional neural 
networks and bidirectional long short-term memory 
networks, has an enhanced ability to recognize complex 
temporal patterns but also increases the computational 
burden imposed on the model. Expanding further into 
multidimensional feature extraction, Lu et al. [12] devel-
oped the CBAM -3D CNN-LSTM model, which inte-
grates spatial and temporal features by using a 3D CNN 
to capture spatial attributes and LSTM to capture tempo-
ral attributes. However, this method may encounter limi-
tations when handling multiscale features, particularly in 
terms of the complexity of EEG data. Guo et al. [13] pro-
posed the CLEP method, employing a spatiotemporal-
spectral network for epilepsy prediction; this approach is 
a highly advanced feature extraction solution. Nonethe-
less, the complexity of its model structure might impact 

the interpretability of its results, especially in scenarios 
requiring high explanatory power. As the depth and com-
plexity of technology further increased, Wang et al. [14] 
used multibranch dynamic multigraph convolution and 
channel weighting strategies to handle the multidomain 
dynamics in EEG signals. While this deep structure is 
powerful, it may lead to increased technical complexity 
and maintenance costs [15]. When considering specific 
data processing needs, Liu et al. [16] employed a power 
spectral density parametrization method for the classifi-
cation and prediction of epileptic signals; their approach 
exhibited significant effectiveness in separating periodic 
and aperiodic components [17]. However, for EEG signals 
with high noise levels, this method may face limitations. 
Shyu et al. [18] achieved notable EEG epilepsy detection 
results with their parameter-optimized Inception-based 
end-to-end CNN model, but such end-to-end models 
might encounter flexibility and adjustability challenges in 
practical applications [19].

In the realm of epilepsy prediction, although many 
of the existing models are powerful, they often struggle 
to balance the parameter scale, search capability, and 
processing speed, particularly in real-time processing 
cases and resource-constrained environments [20, 21]. 
To address these issues, this study introduces a model 
named the lightweight triscale yielding convolutional 
neural network (LTY-CNN), which is distinguished 
by its lightweight architectural design. The LTY-CNN 
employs a unique parallel convolutional structure to cap-
ture EEG signal features across multiple scales, ensur-
ing the comprehensive integration of key information. 
Through quantization techniques, the model significantly 
reduces the number of necessary parameters, thereby 
enhancing its computational efficiency and decreasing its 
memory requirements. An integrated multihead atten-
tion mechanism further boosts the ability of the model 
to process time series data, improving its prediction 
accuracy. This innovative design enables the LTY-CNN 
to maintain exceptional performance even in environ-
ments with limited computational resources and offers 
distinct advantages in terms of model interpretability and 
maintainability.

The exceptional performance of the LTY-CNN model 
was validated through test results obtained on different 
datasets. On the SWEC-ETHZ dataset, the LTY-CNN 
achieved near-perfect test accuracy and AUROC values, 
reaching 99.9% and 0.99, respectively, with a test sensitiv-
ity of 99.9% and a notably high test specificity of 98.8%. 
These results demonstrate the extraordinary ability of 
the LTY-CNN to distinguish between epileptic seizures 
and nonseizure events with very high accuracy. On the 
CHB-MIT dataset, the LTY-CNN also displayed efficient 
performance, with a test accuracy of 99%, an AUROC 
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of 0.932, test sensitivity of 99.1%, and test specificity of 
93.2%. These metrics not only prove the robustness of 
the LTY-CNN in terms of handling datasets with vary-
ing characteristics but also establish its status as a reliable 
epilepsy prediction tool in clinical settings.

Methods
This study adheres to the reporting guidelines of the 
Global Epilepsy Report. The overall workflow of the 
research is illustrated in Fig. 1.

The extraction strategy is illustrated in Algorithm 1. 
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Fig. 1 A displays a schematic of the EEG signal, detailing how waveforms vary in different states of brain activity. The figure also shows 
the differences in EEG waves between normal and abnormal states; B is a chart of time-domain and spectral analysis, with a focus on signal 
intensity in alpha and beta waves; C presents a channel correlation analysis in different patients’ epilepsy conditions, showing the correlation of EEG 
signals between different brain region channels during epileptic seizures in various patients. This is represented through color coding and line 
thickness to indicate the strength of correlation between channels, and how this correlation changes from normal to seizure states; D depicts 
the process of dimension reduction using principal component analysis (PCA), explaining how PCA is utilized for dimension reduction in EEG 
data. It shows the transformation of data from a high-dimensional space to a low-dimensional space, and the key information preserved in this 
process; E presents our model structure, illustrating the architecture used for analyzing EEG signals, including various processing layers, network 
architecture, and its outputs; Finally, F illustrates the implementation of the classification process, showing how the model classifies EEG signals, 
such as distinguishing between normal and abnormal signals
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Algorithm 1 Multiscale epilepsy feature extraction 

CHB-MIT EEG databaseSWEC-ETHZ iEEG database 

Seizure detection and characterization

24 epilepsy patients

5 males aged 3-22

19 females aged1.5-19

664 .edf files

23 cases 256 samples per second

16-bit resolution

198 seizures recorded

182 in the original set of 23 casesFrom CHB
From MIT

Available on PhysioNet

 From University 

Department of Neurology 

at the Inselspital Bern

Integrated Systems 

Laboratory of the 

ETH Zurich

844 hours

18 patients

116 seizures recorded

2656 hours

Data acquisition and processing

16-bit analog-to-digital 

conversion

Fourth order Butterworth filter

Fig. 2 In this figure, we provide a detailed overview of the SWEC-ETHZ and CHB-MIT datasets, including the structure, characteristics, and utilization 
of each dataset
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Datasets
The SWEC-ETHZ iEEG Database was created through 
a collaboration between the Sleep-Wake-Epilepsy-
Center (SWEC) at the University Hospital of Bern and 
ETH Zurich. It provides 2656  h of continuous intrac-
ranial electroencephalography data from 18 patients 
with drug-resistant epilepsy, including 116 epileptic 
seizure events. The data has been anonymized to pro-
tect patient privacy. The iEEG signals have been band-
pass filtered and sampled at either 512 Hz or 1024 Hz. 
All recordings have been visually inspected by experts 
to identify the start and end points of epileptic seizures 
and to exclude channels affected by interference. This 
dataset fills a gap in the availability of public long-
term continuous iEEG epilepsy datasets and is used 
for assessing the performance of epilepsy detection 
algorithms. Second, the CHB-MIT EEG database was 
created via a collaboration between Boston Children’s 
Hospital and the Massachusetts Institute of Technol-
ogy. It offers long-term monitored EEG recordings of 
epileptic seizures in 24 children aged between 1.5 and 
22 years (including 5 males and 19 females). These 
recordings include detailed annotations of 182 epileptic 
seizures, covering 23 cases, each of which consists of 9 
to 42 continuous.edf files. All signals were sampled at a 
rate of 256 samples per second, with a 16-bit resolution. 
These data were used to further validate the effective-
ness of the model for predicting epileptic seizures. The 
data collection processes employed for both databases 
adhered to the principles of the Helsinki Declaration 
and received approval from the respective institu-
tions’ ethics committees, ensuring the ethical compli-
ance of this research. Information about the datasets is 
depicted in Fig. 2.

Data preprocessing
In the data preprocessing phase of our study, we carefully 
selected data from all participants in the SWEC-ETHZ 
iEEG database, except for case 9. Upon conducting a 
careful evaluation, we found that the data from case 9 did 
not align with our established processing methods and 
had quality issues; hence, we decided to exclude it from 
the subsequent analysis. For the other participants, their 
data included electrical brain activity recordings varying 
from 8 to 18 h, accumulating over 202 h of valuable elec-
troencephalographic information. These data provided 
a rich foundation for our study, offering us the opportu-
nity to delve deeper into exploring predictive models for 
epileptic seizures. When processing the CHB-MIT EEG 
database, we adopted similar selection criteria. Specifi-
cally, we excluded data from cases 12, 20, and 24 due to 
their incompatibility with our processing methods and 
their failure to meet our high data quality standards. For 
the remaining patients in the database, we focused on 
analysing the data derived from the first 18 internation-
ally recognized standard epilepsy assessment channels 
for each patient, ensuring the global applicability and 
standardization of our research findings. In a unified 
data processing workflow, all signals were meticulously 
downsampled, ultimately reducing the sampling rate of 
the original signals to 256 Hz. This step aimed to balance 
the data resolution and computational efficiency while 
maintaining sufficient information for supporting the 
accuracy of the subsequent analysis. Concurrently, we set 
a 64-s window size as the basic unit for batch process-
ing, allowing us to maintain the temporal integrity of the 
data while providing an appropriate amount of input data 
for the machine learning models. Through these metic-
ulous data preprocessing steps, we established a solid 

A B

Fig. 3 The correlation analysis and clustering results obtained for the 18 tested channels
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foundation for developing and validating algorithms to 
predict epileptic seizures, ensuring the accuracy and reli-
ability of our research.

Feature extraction
In this study, we conducted a comparative analysis of 
EEG data from male and female participants, which are 
presented in Fig. 3A (female) and Fig. 3B (male), respec-
tively. Figure 3A reveals the correlations between 18 EEG 
channels in female participants, with some notable cor-
relations, such as a high value of 0.914 between channels 
1 and 5, indicating a high degree of similarity in the brain 
activities recorded by these channels, possibly reflect-
ing the cooperative action of adjacent brain areas. In 
Fig.  3B, based on the data, we observed a different pat-
tern of correlations between EEG channels in male par-
ticipants. For example, the correlation between channels 
1 and 12 in males is 0.572, slightly lower than in females, 
which may reveal characteristics of brain network con-
nections under gender differences. On the other hand, 
the extremely high correlation (0.881) between channels 
16 and 12 is more pronounced in the male sample, sug-
gesting that certain brain regions may exhibit more sig-
nificant cooperative activities in males.

These findings reveal shared features and differ-
ences between males and females in specific EEG chan-
nel groups, which may reflect gender-specific patterns 
of neural network connections. Through this detailed 
comparative analysis, we can gain a deeper understand-
ing of how gender affects the function and structure of 
the brain. This discovery provides a new perspective for 
exploring the role of gender in the field of neuroscience.

During the preprocessing phase, we implemented 
precise filtering measures. A band-stop filter was used 
to eliminate the frequency components between 117 to 
123 Hertz and 57 to 63 Hertz, targeting noise potentially 
introduced by power lines and other electrical devices. 
The band-stop filter is represented as:

Here, H(f ) is the transfer function of the filter, and Hbs(f ) 
is the transfer function of the stop band in the band-stop 
filter, which was designed to attenuate the signal to a 
very low level within a specific frequency range. A high-
pass filter was applied to exclude all frequencies below 1 
Hertz, reducing signal interference caused by slow-wave 
activity. The high-pass filter is represented as:

Hbp(f ) = H(f ) · (1−Hbs(f ))

Hhp(f ) =
f

f + fc

where f  is the frequency of the signal, and fc is the cutoff 
frequency of the high-pass filter, which was set to 1 Hertz 
in this work.

The signal processing work involved segmenting con-
tinuous EEG recordings into 64-s windows, resulting in 
each data segment containing 16,384 sampling points. 
Utilizing these data fragments, we generated spec-
trograms with precise temporal resolutions, further 
enhancing our ability to recognize the dynamics of brain 
electrical activity. Each spectrogram included 127 tempo-
ral resolution units and 114 frequency resolution units, 
allowing us to meticulously analyse time series data and 
capture subtle frequency distribution variations.

In the in-depth analysis of the data and the model con-
struction process, we further employed PCA to achieve 
effective dimensionality reduction for the data. The funda-
mental principle of PCA is to transform the original data 
into a new coordinate system through an orthogonal trans-
formation, where the first dimension of this new system 
has the maximum data variance. The specific PCA trans-
formation process is represented as follows:

Here, X is the mean-centred original data matrix, W is a 
matrix composed of the principal components extracted 
from the original data, and Y denotes the transformed 
data, which include the main features and information. 
By applying singular value decomposition techniques, 
the original data were projected into a low-dimensional 
space composed of 64 principal axes. This process cap-
tured the core variables of the signals, ensuring precise 
information extraction and an optimized balance in the 
dimensionality reduction technique.

U and V are orthogonal matrices, while D is a diagonal 
matrix, the diagonal elements of which are singular val-
ues, representing the variance of the data in the direc-
tion of each principal component. Through a systematic 
cross-validation, we confirmed that these selected prin-
cipal components sufficiently captured the primary vari-
ability of the signals, thereby verifying that a delicate 
balance between information loss and data simplification 
had been achieved. We adopted an innovative heuristic 
overlapping sampling technique.

Parallelized architectural framework for EEG analysis
The distinct feature of this architecture is its parallel use 
of wide, medium, and narrow convolution kernels to pro-
cess different features within the same EEG signal input, 

Y = XW

X = UDV
T
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thereby capturing varying signal characteristics. These 
three convolution kernels with different sizes worked in 
parallel, complementing each other to form a comprehen-
sive feature extraction strategy. The outputs of the parallel 
convolution layers were integrated to form a composite fea-
ture representation:

Here, Act is the activation function, which was used to 
introduce nonlinearity and assist in capturing more com-
plex features.

The parallel architecture optimized the computational 
process of the convolution layers, reducing the time com-
plexity of the model. In traditional serial convolution net-
works, the time complexity of feature extraction Oserial is 
the sum of the time complexities of different layers:

Ftotal = Concat[Act(Fwide), Act(Fmedium), Act(Fnarrow)]

Oserial =

N
∑

i=1

Oi

However, in the parallelized design, the simultaneous 
execution of multiple convolution operations signifi-
cantly reduces the temporal complexity Oparallel:

Here, Omax is the maximum time complexity of any sin-
gle convolution operation. With the support of multicore 
hardware, the theoretically achievable processing time 
approaches the following:

This specific strategy is depicted in Fig.  4A. Through 
such a parallel convolution design, we could significantly 
enhance the processing speed while maintaining the 
comprehensive feature extraction ability of the model for 
EEG signals, making the model more suitable for real-
time analysis scenarios.

Oparallel = Omax

Tefficient ≈ Omax
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Fig. 4 A Shows the complete feature extraction process utilized in this paper. During this process, B illustrates how the burden imposed 
on the model is effectively alleviated through the quantization network strategy. In C, we employ the multihead attention mechanism to precisely 
extract and analyse data information
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Enhanced feature extraction with quantized convolution 
and dilation
Quantized convolution is a technique for optimizing neu-
ral networks to fit resource-constrained environments. It 
is achieved by reducing the precision levels of weights W  
and activations A from 32-bit floating-point numbers to n
-bit fixed-point numbers. This process can be described 
by the quantization function Q , which maps continuous 
input values to discrete quantization levels. The quanti-
zation function can be defined as:

Here, � is the quantization step, which determines the 
granularity of quantization, is typically related to the 
quantization bit width n and can be determined by the 
following formula:

max(|x|) represents the maximum absolute value of the 
input x , ensuring that the quantized values can cover 
the dynamic range of the input values. The error E in the 
quantization process can be quantified by the expected 
value of the quantization error:

To reduce the error introduced by quantization, quanti-
zation-aware training is often employed. This simulates 
the effects of quantization during the training process, 
adjusting the network parameters to adapt to the quan-
tized representation. This can be achieved by introducing 
the gradient of the quantization error, thereby consider-
ing the impact of quantization during backpropagation:

Furthermore, the output O of the quantized convolu-
tional layer can be represented as the convolution of the 
quantized weights Wq and activations Aq:

Here, ∗ denotes the convolution operation. In this way, 
quantized convolutional layers can significantly reduce 
the storage requirements and computational complexity 
of the model while maintaining the performance of the 
network.

In our quantized convolutions, we introduce dilated 
convolution, a special type of convolutional operation 
that expands the receptive field by introducing spaces 
between adjacent elements in the convolutional kernel, 

Q(x) = � ·

⌊

x

�
+

1

2

⌋

� =
2 ·max(|x|)

2n

E = E[|x − Q(x)|]

∂E

∂x
=

∂

∂x
E[|x − Q(x)|]

O = Q(A) ∗ Q(W )

without increasing the imposed computational burden. 
This strategy allows the network to capture a broader 
range of contextual information at deeper levels with-
out significantly increasing the number of required 
parameters. Dilated convolution introduces a dilation 
rate d , which defines the spacing between the elements 
in the convolutional kernel. Thus, the output Od of a 
dilated convolution can be calculated using the follow-
ing formula:

Here, d is the dilation rate, and m and n are the indices 
of the convolutional kernel W  . When d = 1 , the dilated 
convolution degenerates to a standard convolution. As d 
increases, the receptive field R also expands, and this is 
calculated as:

where k is the size of the convolutional kernel. Dilated 
convolution increases the receptive field in this manner 
rather than by increasing the size of the convolutional 
kernel or the depth of the network, thereby enhancing 
the network’s understanding of the input data without 
significantly increasing its computational complexity.

Combined with quantized convolution, dilated con-
volution can achieve more effective feature extraction 
effects in quantized networks. The output Oq of the quan-
tized convolutional layer can be modified through dilated 
convolution as follows:

This specific strategy is depicted in Fig. 4B. Through the 
combination of dilated and quantized convolutions, the 
ability of the network to process large-scale input data 
can be enhanced while maintaining accuracy.

Od(i, j) =
∑

m

∑

n

A(i + d ·m, j + d · n) ·W (m, n)

R = k + (k − 1) · (d − 1)

Oq(i, j) =
∑

m

∑

n

Q(A(i + d ·m, j + d · n)) ·Q(W (m, n))

Table 1 Experimental hardware and software environment

Environments Attributes

Processor Intel(R) Core(TM) 
i9-10920X CPU@3.50GHz

Disc 1T SSD

RAM 256 GB

Operation system Windows 11

Development Languages Python 3.9

Deep learning frameworks Pytorch 1.10

GPU NVIDIA GeForce RTX3090
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Capturing time series with multihead attention
In this section, we explore the application of a multihead 
attention mechanism for improving epilepsy prediction 
models. The introduction of the multihead attention 
mechanism aims to enhance the ability of the constructed 
model to capture time series data. The multihead atten-
tion layer in the model is configured with four attention 
heads, each of which is capable of independently focus-
ing on different features of the input data. The embed-
ding dimensionality of each head is set to 64, which is a 
dimensional choice that helps capture sufficient feature 
information while maintaining model complexity.

The operation process of the multihead attention layer 
can be represented as:

where the computation of each head is:

The attention function is defined as:

MultiHead(Q,K ,V ) = Concat(head1, . . . , headN )W
O

headi = Attention(QW
Q
i ,KWK

i ,VWV
i )

Attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

V

Here, Q , K  , and V  represent the query, key, and value 
matrices, respectively, and WQ

i  , WK
i  , WV

i  , and WO are 
learnable parameter matrices.

The specific strategy is depicted in Fig. 4C. Through 
this design, the model is expected to capture the tem-
poral dynamics within EEG signals in a finer manner, 
especially at critical moments when predicting epi-
leptic seizures. The parallel processing ability of the 
multihead attention mechanism enables the model 
to potentially capture richer temporal information 
from different representation spaces, which is crucial 
for understanding the complexity of EEG signals. The 
inclusion of the multihead attention mechanism pro-
vides prediction accuracy advantages, particularly in 
terms of capturing subtle signal changes that may indi-
cate impending epileptic seizures.

Results and discussion
Experimental environment
The hardware and software environment utilized in this 
experiment is shown in Table 1.

Table 2 Epilepsy detection performance achieved using 
multiscale feature extraction methods on the SWEC-ETHZ 
dataset

Patient id Acc (%) Sen (%) Spe (%) AUC 

Pt 01 100.0 100.0 100.0 1.000

Pt 02 100.0 100.0 100.0 1.000

Pt 03 100.0 100.0 100.0 1.000

Pt 04 100.0 100.0 100.0 1.000

Pt 05 100.0 100.0 100.0 1.000

Pt 06 100.0 100.0 100.0 1.000

Pt 07 100.0 100.0 100.0 1.000

Pt 08 100.0 100.0 100.0 1.000

Pt 10 99.5 99.7 80.0 0.899

Pt 11 100.0 100.0 100.0 1.000

Pt 12 100.0 100.0 100.0 1.000

Pt 13 100.0 100.0 100.0 1.000

Pt 14 100.0 100.0 100.0 1.000

Pt 15 99.2 99.2 100.0 0.925

Pt 16 100.0 100.0 100.0 1.000

Pt 17 100.0 100.0 100.0 1.000

Pt 18 100.0 100.0 100.0 1.000

Average 99.9 99.9 98.8 0.990

Table 3 Epilepsy detection performance achieved using 
multiscale feature extraction methods on the CHB-MIT dataset

Patient id Acc (%) Sen (%) Spe (%) AUC 

Pt 01 98.6 98.9 91.8 0.929

Pt 02 99.5 99.6 97.2 0.943

Pt 03 99.3 99.3 98.2 0.945

Pt 04 99.9 99.9 100.0 0.950

Pt 05 99.1 99.2 80.0 0.900

Pt 06 98.4 99.0 90.0 0.937

Pt 07 99.5 99.5 86.7 0.906

Pt 08 97.8 98.0 92.7 0.924

Pt 09 99.7 99.8 94.6 0.953

Pt 10 98.1 98.4 90.5 0.923

Pt 11 99.7 99.7 100.0 0.900

Pt 13 99.0 99.1 96.7 0.943

Pt 14 97.5 97.5 99.5 0.914

Pt 15 99.9 99.9 100.0 0.950

Pt 16 97.9 98.3 95.6 0.958

Pt 17 98.7 98.7 100.0 0.918

Pt 18 99.1 99.4 89.1 0.932

Pt 19 99.6 99.7 95.6 0.963

Pt 21 98.8 98.9 80.0 0.887

Pt 22 99.0 99.3 83.3 0.907

Pt 23 99.1 99.5 96.6 0.980

Average 99.0 99.1 93.2 0.932
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Evaluation criteria
In this study, to comprehensively evaluate the perfor-
mance of the LTY-CNN model, we employed a series of 
evaluation metrics. These metrics included the accuracy 
(Acc), AUROC (AUC), sensitivity (Sen), and specificity 
(Spe) of the model.

The mathematical formulas corresponding to each 
metric are presented below:

In these metrics, TP, TN, FP, and FN represent the num-
bers of true-positive, true-negative, false-positive, and 
false-negative predictions made by the model, respec-
tively. The AUC range is from 0 to 1. The closer the 
AUC is to 1, the better the classification performance of 
the model. The calculation of AUC is typically achieved 
through numerical integration methods.

Prediction performance evaluation
Here, we delve into an application of the deep learn-
ing-based LTY-CNN model involving the prediction 
of epileptic seizures, specifically targeting two differ-
ent datasets: SWEC-ETHZ and CHB-MIT. Utilizing the 
fivefold cross-validation method, this model not only 
reduced the randomness of the results but also sig-
nificantly lowers the risk of overfitting, thereby greatly 
enhancing the generalization ability of the model. The 
test results obtained on the SWEC-ETHZ dataset, as 
shown in Table 2, reveal the remarkable accuracy of the 
LTY-CNN model, with an average accuracy rate reach-
ing 99.9%. This near-perfect outcome implies that the 
model could identify epileptic seizures with extreme pre-
cision. Particularly, for the vast majority of patients, both 
the sensitivity and specificity of the model’s predictions 
reached 100%, indicating that in these cases, the model 

Acc =
TP + TN

TP + TN + FP + FN

Sen =
TP

TP + FN

Spe =
TN

TN + FP

TPR =
TP

TP + FN

FPR =
FP

FP + TN

could flawlessly distinguish between seizure and nonsei-
zure states.

As shown in Table 3, a subsequent validation conducted 
on the CHB-MIT dataset revealed that despite a decrease 
in the specificity achieved for individual patients (e.g., 
the specificity for Pt 05 and Pt 21 was 80.0%), the overall 
performance remained robust. The average accuracy was 
99.0%, the average sensitivity was 99.1%, and the aver-
age specificity slightly decreased to 93.2%. Although the 
specificity was somewhat lower than before, this did not 
significantly diminish the overall superior performance of 
the proposed model. The reduced specificity might point 
to individual variability in the data, suggesting a need for 
further personalizing the model parameters or adjusting 
the model structure to accommodate the characteristics 
of different patients.

When analysing the relationships between patients, we 
observed that even within the same dataset, variations 
were observed among the accuracy and area under the 
receiver operating characteristic curve metrics of differ-
ent patients. This may reflect the diversity of the epileptic 
seizure biomarkers across individuals. For example, in the 
CHB-MIT dataset, Pt 04 and Pt 15 demonstrated that the 
model could achieve near-perfect predictive accuracy in 
individual cases, while Pt 05 and Pt 21 indicated the need 
for further adjusting the model when processing data 
from certain individuals. This variability underscores the 
importance of personalized medicine, highlighting that 
even highly efficient models must account for the biologi-
cal and clinical heterogeneity among patients.

On the SWEC-ETHZ dataset, the model demonstrated 
astonishing accuracy, achieving an average accuracy of 

Table 4 Analysis on gender differences in the CHB-MIT 
experiment

Gender Acc (%) Sen (%) Spe (%) AUC 

Female 98.95 99.15 93.30 0.933

Male 98.98 99.08 93.14 0.929

Table 5 Performance results of different age groups in the CHB-
MIT dataset

Age group Acc (%) Sen (%) Spe (%) AUC 

Children (0–12 years) 98.78 98.95 93.03 0.928

Teenagers ( 13–18 years) 99.10 99.28 94.37 0.937

Adults (19 years and over) 99.43 99.50 91.87 0.933

Table 6 K-fold cross-validation model performance for patient 4 
in the CHB-MIT dataset

K folds Acc (%) Sen (%) Spe (%) AUC 

K=3 98.3 86.2 98.2 0.976

K=6 98.6 96.1 99.3 0.800

K=9 99.2 94.2 99.0 0.875

K=12 98.6 90.3 98.3 1.000

K=15 98.7 99.4 100.0 0.769
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99.9%. This result is nearly perfect, indicating that the 
model can identify epileptic seizures with extreme pre-
cision. Notably, for the majority of patients, both sensi-
tivity and specificity of the model’s predictions reached 
100%, suggesting flawless differentiation between sei-
zure and non-seizure states in these cases. In validation 
on the CHB-MIT dataset, despite a decrease in specific-
ity for some individual patients, the overall performance 
remained strong with an average accuracy of 99.0%, an 
average sensitivity of 99.1%, and a slightly lower average 
specificity of 93.2%. These outcomes reveal the model’s 
consistency and adaptability across different datasets, 
even when faced with data of varying origins and quali-
ties. This capability is crucial for clinical applications, as 
it implies the model’s adaptability to diverse patient pop-
ulations and various collection conditions.

Future work will focus on improving the model’s per-
formance for patients with lower specificity in datasets 
similar to CHB-MIT. We plan to further analyze the 
unique characteristics in these patients’ data, such as sei-
zure frequency, the complexity of background electrical 
activity, and their relationship with other clinical param-
eters. Additionally, we will explore more advanced data 
preprocessing and augmentation techniques, as well as 
the use of strategies like transfer learning and meta-learn-
ing to enhance the model’s adaptability and robustness.

In the analysis of Table  4, the model demonstrates 
remarkable consistency and efficacy across genders. The 
performance in terms of accuracy, sensitivity, and speci-
ficity shows negligible differences between females and 
males, achieving accuracy rates of 98.95% and 98.98%, 
sensitivity rates of 99.15% and 99.08%, and specific-
ity rates of 93.30% and 93.14%, respectively. Such mini-
mal discrepancies are virtually insignificant, indicating 
the model’s exceptional generalization capability in epi-
lepsy detection across different genders. The AUC values 

further reflect nearly identical performance between the 
genders, reinforcing the LTY-CNN’s effectiveness and 
precision in handling gender-based analysis.

The data in Table 5 reveal the model’s significant stabil-
ity and efficiency across various age groups. Whether it 
be children, teenagers, or adults, the model shows high 
accuracy and sensitivity across all age brackets, with 
accuracy rates of 98.78%, 99.10%, and 99.43%, and sen-
sitivity rates of 98.95%, 99.28%, and 99.50%, respectively. 
Notably, in the adult group, the model attains the highest 
levels of accuracy and sensitivity. Despite a slightly lower 
specificity in adults compared to other age groups, the 
AUC values for all age segments collectively indicate that 
the model possesses outstanding overall performance 
across all age categories, proving its effectiveness and 
consistency in epilepsy detection among patients of vary-
ing ages.

The K-fold cross-validation results obtained for the 
LTY-CNN model, as shown in Table  6, indicated an 
exceptionally high overall accuracy, averaging 98.68% 
with minimal variability (a standard deviation of 0.33%). 
This demonstrated the high consistency of the model in 
terms of predicting epileptic seizures. The average sen-
sitivity was 93.24% with a standard deviation of 5.13%, 
indicating that the detection rate of the model for actual 
seizures was relatively stable across different validation 
folds, despite some variability. The average specificity was 
98.96% with a standard deviation of 0.74%, showing the 
high accuracy of the model in terms of excluding nonsei-
zure states. The average AUROC was 0.884 with a stand-
ard deviation of 0.10, reflecting the model’s good ability 
to differentiate between seizure and nonseizure states. 
The analysis results emphasize the importance of accu-
racy metrics in the model training and validation process, 
with different K-fold validation outcomes proving the 

BA

Fig. 5 The left graph shows the growth trend curves for the accuracy, sensitivity, and specificity metrics, while the right graph depicts 
the decreasing trend of the loss value



Page 12 of 16Yang et al. Journal of Translational Medicine          (2024) 22:162 

robust and stable performance of the model with respect 
to processing EEG signals acquired from various patients.

Taking the growth curve in Fig.  5A as an example, 
from the initial training cycle to the final cycle, the test 
performance metrics of the model exhibited signifi-
cant growth. Specifically, the test accuracy increased 
from an initial approximate value of 62.94% to 100%, 
with a growth rate of approximately 58.89%. The test 

sensitivity improved from approximately 62.21% to 
100%, with a growth rate of 60.75%. The test specificity 
rose from a high initial value of 81.37% to 100%, with 
a growth rate of 22.89%, which was a smaller change. 
This may indicate that the model already had a good 
ability to recognize nonseizure states at the start of 
the training process. The test AUROC value increased 
from 0.533 to 1.0, with a high growth rate of 87.49%, 

CBA

FED

Fig. 6 A–C Show the confusion matrix classification process executed by the model on the test set in detail. D–F On the other hand, depict 
a similar confusion matrix classification process undertaken by the model on the training set, demonstrating the performance and classification 
effectiveness observed during the learning and adaptation process of the model

Table 7 Comprehensive comparative model parameter analysis

The symbol ‘–’ represents undisclosed model performance metrics data for which no related information has been released at present

Model Acc (%) Sen (%) Spe (%)

PCA+LDA [22] 94.7 94.8 89.1

Fractal intercept and relative fluctuation indices [23] 94.9 91.7 94.9

Kernel collaborative representation [24] 96.8 97.5 96.8

LDA [25] 91.8 100.0 83.6

Seven-layer CNN [26] 97 98.5 98.5

DLWH [26] 95.1 94.3 95.4

MB-dMGC-CWTFFNet [27] 98.4 100.0 -

Wavelet packet transform and weighted extreme learning machine [28] 96.9 95.8 92.2

CBAM-3DCNN-BiLSTM [29] 98.0 98.4 –

SOC-CNN [30] 96.8 82.4 100.0

LTY-CNN 99.5 99.5 96.0
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showing a significant enhancement in the ability of the 
model to differentiate between seizure and nonseizure 
states during the training process. Figure 5B shows the 
fluctuating loss curve declines observed for different 
patients. From the declining fluctuation trend, we can 
see that the model has good convergence. The curve 
shows a steady downwards trend without significant 
fluctuations or oscillations, indicating that the model 
gradually approached the optimal solution during the 
training process. The 20% error margin of the stand-
ard deviation of the loss function is a result derived 
from experiments conducted by different researchers. 
This value was determined through data analysis after 
the model was repeatedly trained and tested by vari-
ous research teams. We found that using 20% of the 
standard deviation as a threshold offers an accurate and 
practical measure, effectively capturing the variability 
in the model’s performance across different research 
groups. This approach ensures that our error margin 
is statistically significant and meaningfully reflects the 
consistency and stability of the model as evidenced by 
multiple independent experiments.

Our model exhibited outstanding performance on 
both the test and training sets. Figure  6 presents the 

changing process of the training confusion matrix 
produced for our model. Graphs C and F represent 
the final classification results obtained on the test and 
training sets, respectively. Our model achieved per-
fect accuracy and recall rates on both sets, indicating 
its excellent ability to identify positive and negative 
samples and demonstrating its superior performance 
in classification tasks. These results suggest that our 
model performs well in epilepsy detection tasks, pro-
viding reliable support for future clinical applications.

Comparison among different classifiers
In this study, we compared the performance of the LTY-
CNN model with that of several other classifiers in the 
epileptic seizure detection task. To ensure fairness dur-
ing the comparison, we referred to various methods from 
recent studies, including approaches based on PCA and 
LDA [8], methods utilizing fractal intercept and relative 
fluctuation indices [9], kernel collaborative representa-
tion [10], LDA [11], a seven-layer CNN [12], DLWH [12], 
MB-dMGC-CWTFFNet [13], the wavelet packet trans-
form- and weighted extreme learning machine-based 
method [14], CBAM-3DCNN-BiLSTM [15] and SOC-
CNN [16]. The specific parameters used for these com-
parisons are shown in Table 7.

In terms of accuracy, our LTY-CNN model surpassed 
all other methods with an accuracy rate of 99.5%. This 
was 4.81% higher than that of the PCA+LDA method 
reported in the literature [8], 4.6% higher than that of the 
fractal intercept method in [9], and 2.67% higher than 
that of the kernel collaborative representation method 
in [10]. Compared to the LDA method in [11], the LTY-
CNN model even exceeded its accuracy by 7.7%.

In terms of sensitivity, the LTY-CNN model tied for 
first place with the LDA method in [11] and the MB-
dMGC-CWTFFNet approach in [13], achieving 100% 
sensitivity. This means that these methods could detect 
all true cases of epileptic seizures. However, it should be 

Table 8 Comparative analysis of the magnitudes and 
performance indices of the tested models

The symbol ‘–’ represents undisclosed model performance metrics data for 
which no related information has been released at present

Method Parameters Acc (%) Sen (%) Spe (%)

2D-CNN [30] 49,560 98.2 82.7 88.2

TSKCNN [31] 28,459,615 98.0 96.0 99.0

LRCN [32] 9,695,012 99.0 84.0 99.0

SOD-CNN [33] 105,538 99.6 89.1 99.7

2D-CNN [34] 10,304,467 100.0 – –

2D-CNN [34] 106,388 98.0 – –

LTY-CNN 24,506 99.5 99.5 96.0

Fig. 7 The left graph visually compares the impacts of adding the multihead attention mechanism on the accuracy, sensitivity, and specificity 
attained for all patients in the CHB-MIT dataset, clearly presenting performance improvements. The right graph conducts a similar analysis 
on the SWEC-ETHZ dataset, displaying the comparative effects of the multihead attention mechanism across different datasets
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noted that MB-dMGC-CWTFFNet did not provide spec-
ificity data.

In terms of specificity, the LTY-CNN model per-
formed excellently with a specificity of 96%; however, 
this value was slightly lower than that of the kernel col-
laborative representation method in [10] and that of 
the seven-layer CNN in [12], which had specificities of 
96.81% and 98.5%, respectively. Compared to the SOC-
CNN method in [16], although SOC-CNN achieved 
100% specificity, its sensitivity was only 82.35%, which 
was significantly lower than that of the LTY-CNN 
model. The LTY-CNN model demonstrated superior 
performance in terms of accuracy and sensitivity, as 
well as competitive specificity results. These compara-
tive results highlight the potential and superiority of 
the LTY-CNN model in the field of epilepsy seizure 
detection.

Model efficiency and parameter complexity
In this study, we conducted a detailed comparison 
between the performance of the LTY-CNN model and 
that of the existing models in terms of epilepsy predic-
tion with specific parameters, as shown in Table  8. The 
LTY-CNN model demonstrated exceptional perfor-
mance, especially in terms of accuracy; its value of 99.5% 
was only slightly lower than that of the best-performing 
2D-CNN model (by 0.5%). Compared to the TSKCNN 
and another 2D-CNN model, LTY-CNN surpassed them 
in accuracy by 1.5%, highlighting the LTY-CNN’s signifi-
cant advantage in prediction precision.

In terms of sensitivity, a key metric, the performance 
of the LTY-CNN was particularly notable at 99.5%, which 
was significantly higher than those of SOD-CNN and 
LRCN, exceeding them by 10.4% and 15.5%, respectively. 
This achievement not only reflects the strong ability of 
the LTY-CNN to accurately identify epileptic seizures but 
also highlights its potential value in clinical applications. 
Although the specificity performance of the LTY-CNN 
was slightly lower than that of SOD-CNN and LRCN, 
given its excellent performance in other key metrics, 
this difference does not diminish its overall outstanding 
performance.

The LTY-CNN, while maintaining high performance, 
significantly reduced the complexity of the model. It has 
only 24,506 parameters, which is approximately 99.91% 
less than that required the TSKCNN with the high-
est number of parameters and approximately 76.8% and 
50.6% less than those of the SOD-CNN and the smallest 
2D-CNN, respectively. This significant advantage sug-
gests that the LTY-CNN has a considerable advantage in 
terms of computational efficiency and deployment, mak-
ing it especially suitable for resource-constrained clinical 
settings.

In our model, although the introduction of the multi-
head attention mechanism led to an increase in the num-
ber of model parameters, which seems to contradict our 
original intention of pursuing a lightweight design, it 
indeed improved the overall performance of the model 
to a certain extent (by approximately 1% to 2%). The per-
formance improvement achieved on the utilized dataset 
is illustrated in Fig. 7. Given this performance enhance-
ment, these additional parameters are acceptable to us.

Conclusion
This study successfully developed a novel deep learning 
model, the LTY-CNN, which was specifically designed 
to enhance the accuracy of epilepsy detection. The core 
innovation of the LTY-CNN lies in its lightweight archi-
tecture and multiscale feature extraction ability; it inte-
grates parallel convolutional structures with a multihead 
attention mechanism, effectively capturing the complex 
and dynamic changes exhibited by EEG signals. This 
design not only improves the operational efficiency of 
the model but also maintains its good interpretability 
and maintainability, making it an ideal choice in environ-
ments with limited computational resources.

In experimental tests, the LTY-CNN demonstrated high 
accuracy and AUROC metrics on the SWEC-ETHZ and 
CHB-MIT datasets, signifying its significant advantage 
in distinguishing between epileptic seizures and nonsei-
zure events. Compared to the existing epilepsy detec-
tion methods, the LTY-CNN not only yielded accuracy 
improvements but also performed exceptionally in terms 
of sensitivity and specificity, which are particularly crucial 
for enhancing the effectiveness of epilepsy management.

The outcomes of this study hold significant clinical 
value for the diagnosis and treatment of epilepsy, and 
they offer a new perspective for handling complex bio-
logical signals using deep learning technology. The suc-
cessful implementation and validation of the LTY-CNN 
model suggest that deep learning techniques will play 
an increasingly vital role in the medical and health care 
fields, particularly in EEG analysis and neurological disor-
der diagnosis. In the future, through further optimization 
and customization, this type of model will play a signifi-
cant role in personalized medicine and broader clinical 
applications, bringing more precise and efficient diagnos-
tic and treatment options to patients with epilepsy.
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