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Abstract 

Background Tumor mutational burden (TMB) has been demonstrated to predict the response to immune check‑
point inhibitors (ICIs) in various cancers. However, the role of TMB in head and neck squamous cell carcinoma 
(HNSCC) has not yet been specifically addressed. Since HNSCC patients exhibit a rather limited response to ICIs, there 
is an unmet need to develop predictive biomarkers to improve patient selection criteria and the clinical benefit of ICI 
treatment.

Methods We conducted a systematic review and meta‑analysis according to Preferred Reporting Items for Sys‑
tematic Reviews and Meta‑analyses (PRISMA) reporting guidelines. HNSCC cohort studies were selected when TMB 
prior to ICI treatment was evaluated, TMB cutoff value was available, and the prognostic value of TMB was evaluated 
by time‑to‑event survival analysis. A total of 11 out of 1960 articles were analyzed, including 1200 HNSCC patients.

Results The results showed that those patients harboring high TMB exhibited a significantly superior overall response 
rate (OR = 2.62; 95% CI 1.74–3.94; p < 0.0001) and a survival advantage (HR = 0.53; 95% CI 0.39–0.71; p < 0.0001) after ICI 
treatment. 

Conclusion This is the first meta‑analysis to demonstrate a higher response and clinical benefit from ICI therapy 
in HNSCC patients with high TMB.

Keywords Head and neck squamous cell carcinoma, Meta‑analysis, Tumor mutational burden, Immune checkpoint 
inhibitors

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

†Francisco Hermida‑Prado and Juana M. García‑Pedrero are joint senior 
authors.

*Correspondence:
Mario Sánchez‑Canteli
mariosanchezcanteli@gmail.com
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0343-0041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-04937-x&domain=pdf


Page 2 of 10Rodrigo et al. Journal of Translational Medicine          (2024) 22:135 

Background
Head and neck squamous cell carcinoma (HNSCC) is 
the predominant cancer in the head and neck area, and 
the sixth most frequently malignancy worldwide [1]. In 
recent decades, the survival rates for HNSCC patients 
have only modestly improved due to combined treat-
ment modalities, which are mainly surgery, radiotherapy, 
and chemotherapy. Therefore, there is an imperative 
need to enhance the prognosis prediction ability for 
HNSCC patients, to tailor effective individualized thera-
peutic strategies and to acquire insight into the underly-
ing mechanisms that contribute to treatment response/
resistance and therapeutic failure [2].

The intricate interplay between the tumor and the 
surrounding stroma, the so-called jointly tumor micro-
environment (TME), plays a central role in tumor pro-
gression and treatment response. The TME encompasses 
diverse cellular components, such as stromal fibroblasts, 
endothelial cells, blood vessels, lymph vessels, and 
immune cells, among others [3]. Immune evasion has 
been recognized as an emerging hallmark of cancer, and 
in recent years numerous mechanisms have been identi-
fied as promising targets for anti-cancer immunotherapy 
[4].

Immune checkpoint inhibitors (ICIs) have emerged as 
a novel promising class of anticancer agents and a cen-
tral pillar in the treatment of advanced cancers. There is 
substantial evidence of long-lasting response to ICIs and 
survival advantage in platinum-pretreated recurrent and 
metastatic (R/M) HNSCC [5–8]. However, the overall 
response rates (ORRs) to these agents in platinum-refrac-
tory recurrent and metastatic (R/M) HNSCC are as of yet 

rather modest, ranging from 13 to 18% [5, 9, 10]. Given 
the significant cost and potential immune-related toxici-
ties associated to ICI therapy, it poses a crucial challenge 
to identify and validate reliable predictive biomarkers of 
ICI efficacy to guide patient selection and clinical deci-
sion-making. Among the biomarkers for consideration 
are PD-L1 protein expression, intratumoral immune 
cell infiltration, immune-gene expression profiling, and 
tumor mutational burden (TMB). However, none of these 
biomarkers have been validated in the context of HNSCC 
to date [10, 11].

The TMB refers to the number of non-synonymous 
mutations per megabase detected in a tumor exome by 
next-generation sequencing (NGS). An elevated TMB 
corresponds to increased neoantigen production by 
tumor cells, which enhances potential recognition by 
the immune system. Consequently, ICI-induced anti-
tumor immune responses may facilitate the elimination 
of tumor cells [12, 13]. A comprehensive analysis inte-
grating 45 clinical studies and data from 103,078 can-
cer patients revealed that high TMB may serve as an 
unfavorable prognostic indicator for patients undergo-
ing non-immunotherapy treatment. By contrast, in the 
subset of patients who received immunotherapy, high 
TMB was globally found to associate significantly with 
improved survival and treatment efficacy irrespective of 
the cancer type [14].

The predictive and prognostic value of TMB in can-
cer immunotherapy has been validated in certain spe-
cific cancer types, such as non-small cell lung cancer, 
melanoma, and colorectal cancer [13, 15–17]. However, 
the impact of TMB in HNSCC patients has not been 
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specifically and properly addressed. Even though it has 
been reported that HNSCC patients with elevated TMB 
who received immunotherapy showed higher response 
rates and better prognoses, the studies published to date 
present several methodological limitations. Overall, the 
small sample size and lack of consensus on the optimal 
TMB cutoff value complicate a possible implementation 
in routine clinical practice [18–28]. This prompted us to 
undertake the first meta-analysis aimed at evaluating the 
prognostic and predictive significance of TMB in R/M 
HNSCC patients treated with ICIs.

Materials and methods
Search strategy
We conducted a systematic review through the exami-
nation of the current existing literature according to the 
Preferred Reporting Items for Systematic Review and 
Meta-Analyses (PRISMA) guidelines [29]. The PRISMA 
Checklist is included as Additional file  1: Table  S1. The 
overall goal of this search strategy was to identify and 
include all relevant articles specifically focused on assess-
ing the impact of TMB in HNSCC patient cohorts. This 
systematic review is registered in Open Science Frame-
work (identifier: https:// osf. io/ 7gmdc).

An updated PubMed, Embase, Web of Science and 
Scopus internet search was performed on December 26, 
2023, encompassing English language publications from 
2011 to 2023, the time period since the first ICI agent 
was approved by the FDA. The search criteria included 
the following terms in the title or abstract: "Tumor Muta-
tional Burden" combined with "Head and Neck Can-
cer" OR "Oral cancer" OR "Oropharyngeal cancer" OR 
"Laryngeal cancer" OR "Hypopharyngeal cancer" (Addi-
tional file  1: Table  S2). Two independent researchers 
(JPR and MS-C) reviewed the search results to identify 
potentially eligible studies. In those studies where the 
abstract mentioned follow-up data and outcomes related 
to TMB in HNSCC, the full-text article was retrieved 
and reviewed. Additionally, all review articles were thor-
oughly examined. The references of the retrieved full-text 
articles were cross-checked to ensure appropriate inclu-
sion in this review (Fig.  1). Any disagreements regard-
ing the eligibility of an article were resolved through 
consensus.

Selection criteria
Studies were included in the analysis if they met the fol-
lowing inclusion criteria: (1) evaluation of the predictive 
effect of TMB in the outcome of ICIs in HNSCC patients; 
(2) TMB assessment before treatment; (3) TMB cutoff 
value was provided; (4) data availability of TMB-related 
hazard ratio (HR) and its corresponding 95% confidence 
interval (95% CI) for overall survival (OS), as well as the 

odds ratio (OR) and its corresponding 95% CI for the 
objective response rate (ORR) to ICIs; and (5) original 
articles published in English between January 2011 and 
December 2023.

The following exclusion criteria were also applied to the 
selected studies: (1) insufficient or lacking information 
related to TMB prognostic accuracy, including HRs or 
ORs with 95% CI and (2) article type classified as a letter, 
case report, non-clinical study, or conference abstract.

Data extraction
The relevant information from each selected paper was 
independently extracted by two reviewers (JPR and 
MS-C), and any disagreements were resolved through 
consensus. The predetermined data from each article 
were documented as follows: Name of first author, year 
of publication, country, study population (number of 
patients with high or low TMB), study design, median 
age, median follow-up, treatment method, clinical stage, 
sample source (tumor or blood), sequencing method 
(NGS or WES), covariant, cut-off value of TMB, method 
of cut-off value determination, median TMB value, and 
survival analysis.

Quality assessment
Two authors (JPR and MS-C) independently assessed 
the quality of the eligible studies by Newcastle–Ottawa 
Scale (NOS), using three parameters with a maximum 
of 9 points: comparability (0–4 points), selection (0–2 
points), and outcome confirmation (0–3 points) [30]. A 
score greater than 6 points indicated a high-quality arti-
cle, while a score of 6 points or lower indicated a low-
quality article.

Statistical analysis
Meta-analysis was performed using Review Manager 
(RevMan) version 5.4 and package meta from the soft-
ware environment R (www.r- proje ct. ort). Significant 
results were defined as those having a p-value below 
0.05. To assess the predictive efficacy of TMB in HNSCC 
patients treated with ICIs, the OS and ORR were com-
pared between the high and low TMB patient subgroups 
using HRs and ORs. Forest plots were used to visualize 
the overall effect. A Dersimonian-Laird random-effect 
model was employed in order to deal with potential het-
erogeneity among the included studies. Statistical het-
erogeneity was assessed through visual examination of 
the forest plots, and its magnitude was quantified using 
the I-square and Chi-Square tests. Subgroup analysis 
was performed based on the sequencing method (NGS 
or WES), cut-off value (≥ 10 or < 10), and TMB quan-
tification method (muts/Mb or muts/exome) in order 
to detect sources of heterogeneity and to analyze the 
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results of populations with different characteristics. The 
leave-one-out procedure was used to complement the 
subgroup analysis for evaluating the sensitivity of the 
obtained results. Finally, publication bias was assessed by 
visual inspection of funnel plots and Egger’s test [31].

Results
Search results
Our search strategy led to a total of 2985 studies retrieved 
from PubMed, Web of Science, EMBASE and Scopus 
databases. However, 1960 of these studies were screened 
after removal of duplicates. We excluded animal studies, 
reviews, comments, case reports, studies unrelated to 
the topic and non-English language studies through title 
and abstract screening. This resulted in 49 studies that 
were further reviewed in detail. Following a thorough 
assessment by full-text review, we removed studies that 
were not clinical trials or cohort studies, as well as those 

lacking extractable data or utilizing different analytic 
parameters. Finally, 11 studies published between 2018 
and 2023 were included in this meta-analysis (Fig.  1) 
[18–28].

Study characteristics
See Additional file 1: Table S3 presents study characteris-
tics, while Additional file 1: Table S4 provides a summary 
of the key findings. This meta-analysis included a total 
of 1200 patients, with each study ranging from 10 to 257 
patients, and two studies [25, 27] including two differ-
ent cohorts. Among the 11 included studies, seven stud-
ies were conducted in the USA, while single studies were 
performed in Japan, Italy and China, and another across 
multiple geographic areas.

This analysis consisted of four prospective studies and 
seven retrospective cohort studies. In terms of treat-
ment approaches, all studies included ICI treatment 
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Fig. 1 Flow chart depicting the study selection process for the systematic review
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(monotherapy or in combination). The survival data were 
reported as OS in four out of 11 studies, six studies pre-
sented data as ORR, and the remaining study reported 
both OS and ORR.

Quality assessment
Based on NOS assessment, three studies achieved a score 
of 7, indicating intermediate-quality, while eight stud-
ies obtained scores ranging from 8 to 9, indicating high-
quality (Additional file 1: Table S5).

TMB and method of obtaining the cut‑off value
TMB was determined through NGS/WES sequencing 
analyses of tumor samples in all the studies, except one 
study [20] that also assessed peripheral blood samples 
(Additional file 1: Table S3).

Different methods were used to establish the cut-off 
values for high and low TMB. The cut-off of muts/Mb 
values ranged from 2.54 to 20.0, with a mean of 8.14 and 
the muts/exome values ranged from 86.0 to 175.0, with 
a mean of 130.5. Data were reported in mutations per 
megabase (muts/Mb) in nine studies, and mutations per 
exome (mut/exome) in two studies [21, 26]. The median 
muts/Mb values ranged from 3.04 to 7.6, with a mean 
of 5.47. The muts/exome values were not available. One 

study defined a high TMB value of 175.0 muts/exome 
based on a literature review [21], and two studies used 
a cut-off of 10.0 and 15.0 muts/Mb [20, 28]. Three stud-
ies established cut-off values based on the median TMB, 
with calculated values of 5.0 [18], 6.71 [22], and 7.6 [23]. 
Another study determined the optimal value using the 
Cox proportional hazards model, setting 10 muts/Mb as 
a cut-off [25], while another one employed R language 
survival package analysis to determine a cut-off value of 
2.54 [24]. In addition, one study determined the optimal 
cut-point using the Youden Index, setting it at 86.0 muts/
exome [26], in another a threshold for TMB was chosen 
to attain the best performance in predicting progression 
free survival (PFS) in a univariable survival model, setting 
it at 3.34 muts/Mb [27], whereas in the remaining study 
the method used to obtain the cut-off value was not spec-
ified [19].

Association between TMB and objective response rate 
after ICI treatment
The pooled ORR for ICI treatment was evaluated across 
seven studies (eight cohorts) involving 623 patients, 
using a random-effects model [18–22, 26, 27]. The group 
of patients with high TMB exhibited a superior ORR 
(OR = 2.62, 95% CI 1.74–3.94, p < 0.0001; Fig. 2A). Pooled 

Fig. 2 Forest plots of the meta‑analysis in HNSCC patients treated with ICIs. Impact of TMB on ORR (A) and OS after ICI treatment (B)
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data were homogenous under a random-effects model 
(p = 0.83,  I2 = 0%).

Association between TMB and overall survival 
in ICI‑treated HNSCC patients
The impact of TMB on HNSCC survival after ICI treat-
ment was assessed in five studies (six cohorts) involving 
596 patients, using a random-effects model [18, 23–25, 
28]. Results from these studies consistently showed a bet-
ter survival in patients harboring high TMB. The group 
of patients with high TMB exhibited a survival advantage 
(HR = 0.53; 95% CI 0.39–0.71, p < 0.0001; Fig. 2B). Pooled 
data were homogenous under a random-effects model 
(p = 0.19,  I2 = 33%).

Heterogeneity and sensitivity analysis
Subgroup analysis was conducted to investigate the fac-
tors contributing to heterogeneity. No substantial alter-
ation in heterogeneity was observed when subgroup 
analyses were performed based on sequencing method 
(NGS or WES), cut-off value (≥ 10 or < 10 muts/Mb), or 
TMB quantification (muts/Mb or muts/exome). These 
data are shown in Additional file 1: Table S6.

In addition, a sensitivity analysis was performed using 
the leave-one-out method to explore potential sources 
of heterogeneity among the 11 included studies and the 
robustness of the results. This analysis revealed that the 
exclusion of any single study did not lead to a significant 
alteration in the overall prevalence or heterogeneity. 
These results are included in Additional file 1: Figure S7.

Published status bias analysis
Publication bias in literature was assessed by funnel plot 
(Fig. 3) and Egger’s test. There was no evidence of pub-
lication bias for ORR after ICI-treated patients (Egger’s 
test: p = 0.9782). In the OS in ICI-treated patients we 
detect some publication bias (Egger´s test: p = 0.0461). 
This bias was mostly caused by Xu et  al. [24], a small 
study with the largest effect. It is noteworthy that when 
this study was removed, the effect changed from 0.53 
to 0.56 (Additional file  1: Figure S7). In addition, if we 
symmetrize the data (i.e. by including an artificial study 
with the same weight that Xu et al. [24] mirrored respect 
the average effect size), the obtained random-effect HR 
would be 0.55 [0.38–0.80] (Additional file 1: Figure S8).

Discussion
This is the first meta-analysis specifically evaluating the 
prognostic and predictive significance of TMB in R/M 
HNSCC after ICI treatment. It includes a substantial 
number of patients (n = 1200) across 11 studies to con-
sistently demonstrate that patients with a high TMB had 
a significant survival advantage, both in terms of OS and 

ORR. In addition, an elevated TMB was associated with 
a better response to ICI therapy. Thus, the risk of death 
was reduced by 47% in patients harboring high TMB, 
and the ORR was 2.62 times higher compared to the low 
TMB subgroup.

In the last few decades, TMB has been gradually gain-
ing prominence as a prospective biomarker for immuno-
therapy response. Earlier research indicated a positive 
correlation between elevated TMB and increased tumor 
neoantigens displayed by major histocompatibility com-
plex class (MHC) molecules. This, in turn, plays a role 
in promoting immune detection and enhancing the 
response to anti-tumor immunotherapies [32]. Numer-
ous studies have demonstrated that TMB has the capacity 
to predict ICI efficacy across different tumor types [12–
17, 33, 42] and also some meta-analyses that included few 
(< 3) HNSCC studies [34, 35]. A portion of TMB has the 
potential to induce the formation of neoantigens during 
tumor progression. As the tumor’s TMB increases, the 
likelihood of neoantigen formation also rises, thus trig-
gering the recognition and activation of T cells [32, 36]. 
This is exemplified by the direct correlation between the 
mean TMB and the objective response rate observed 
across 27 tumor types [37]. By contrast, the presence of 
numerous tumor subclones may lead to neoantigen het-
erogeneity and cause host immune invalidation despite 

Fig. 3 Funnel plots for the impact of TMB on ORR (A) and on OS 
after ICI treatment (B)
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harboring a high mutational load [38]. This could explain 
why some patients with high TMB do not respond to ICI 
therapy.

Based on our meta-analysis it seems that the detec-
tion of TMB could be helpful to improve the selection 
of HNSCC patients who may benefit from ICI therapy. 
However, there are still several challenges related to the 
clinical interpretation of TMB testing results, as high-
lighted by Ma et  al. [39]. At present, there are no clear 
consensus methods for optimal cut-off determination 
of high TMB. This is evident in this meta-analysis since 
each of the included studies employed a different method 
to calculate the cut-off values for TMB. In addition, the 
number of mutations obtained in each study was vari-
able and the cut-off of muts/Mb values ranged from 
2.54 to 20.0, with a mean of 8.14, and the muts/exome 
values ranged from 86.0 to 175.0, with a mean of 130.5. 
The TMB values are heterogeneous among different can-
cer types, and an appropriate high TMB value has not 
been established for all solid tumors nor for each specific 
tumor subtype. Finally, the TMB testing method var-
ied; most studies used NGS, but four studies used WES. 
Even though initial investigations into TMB relied on the 
WES approach, its practical use in clinical settings is lim-
ited by its high cost, long detection time, complex data 
interpretation, and the need for fresh samples. The rapid 
advancement of NGS technologies has enabled the accel-
eration of whole genome sequencing, due to its ultrahigh 
throughput, scalability, and speed. Several studies have 
also highlighted a significant correlation between TMB 
measured through WES and targeted panel sequencing 
[13, 40, 41]. However, differences in the targeted exome 
panels, sequencing depth, and bioinformatics algorithms 
could lead to heterogeneous results. Uniform industry 
standards for TMB testing by NGS are needed for clinical 
use [39].

These difficulties in defining the cut-off values and 
inconsistent detection platforms for TMB prompted the 
study by Oiu et al. [42] to search for an alternative bio-
marker. These authors found that comutation of the 
Spliceosome (Sp) pathway and Hedgehog (He) signaling 
pathway (defined as SpHe-comut +) was associated with 
increased TMB and neoantigen load, as well as increased 
levels of immune-related signatures. Furthermore, this 
study also revealed SpHe-comut + as an effective predic-
tor of immunotherapeutic benefit, with an OR of 1.74 
[1.74–2.15] for ORR and a HR of 0.76 [0.64–0.91] for 
OS after ICI treatment, which is similar to our reported 
results in ORR and OS. Therefore, SpHe-comut + has 
emerged as an optional and cost-effective approach to 
identify potential immunotherapy responders, and hence 
to improve patient stratification and treatment decision-
making [42].

Another relevant issue that influences TMB detec-
tion is the origin of samples. Tissue-based TMB (tTMB) 
assessment is predominant in clinical settings. However, 
when tissue samples are insufficient, inadequate and/or 
clinically unfeasible for TMB measurement, blood-based 
TMB (bTMB) could be instead used to evaluate immu-
notherapy efficacy [13]. All but one study included in 
this meta-analysis used tissue-based TMB assessment, 
whereas the study performed by Noji et al. [20] included 
both tTMB and bTMB. Another important issue to con-
sider for prediction of ICI effectiveness is the source of 
the tumor sample analyzed, due to the inconsistent sta-
tus of various biomarkers in primary tumors and paired 
metastasis [43]. Notably, TMB and microsatellite insta-
bility status were less prone to change between primary 
tumors and their corresponding metastases. In marked 
contrast, PD-L1, PD-1, PD-L2, and tumor-infiltrating 
lymphocyte (TIL) density led to a higher frequency of 
discordance [43].

Our meta-analysis demonstrates the impact of TMB 
on the effectiveness of ICI treatment in R/M HNSCC 
patients. Nevertheless, there are still several limita-
tions, such as the potential existence of publication bias 
suggested by our funnel plots, or unreported data, that 
cannot be ruled out. Moreover, some selected studies 
adopted a retrospective, non-randomized approach that 
could potentially amplify the impact of confounding fac-
tors. Furthermore, the potential application of TMB as a 
biomarker in clinical settings continues to be a subject 
of debate. Challenges persist in standardizing uniform 
TMB assessment procedures. Further prospective inves-
tigations are warranted to validate the optimal selection 
of TMB assessment platforms and targeted sequencing 
panels. The existing research on TMB as a predictive 
biomarker in HNSCC immunotherapy remains insuf-
ficient. Possible correlations between TMB and other 
predictive biomarkers require validation through large 
scale randomized trials, and establishment of the most 
effective predictive combination. Recent advancements 
in machine learning techniques, particularly artificial 
intelligence-based predictive analysis, offer a tremendous 
potential for the identification of TME-related biomark-
ers in HNSCC patients. This progress enables the analy-
sis of extensive multi-omics datasets into transformative 
solutions to improve clinical decision-making and imple-
ment fundamental changes in the tumor treatment para-
digm of patients with locally advanced or R/M HNSCC 
[44].

Conclusion
The results of this unprecedented meta-analysis 
serve to demonstrate that HNSCC patients with high 
TMB exhibit a higher benefit from ICI-based therapy 
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compared to the low TMB subgroup, hence suggesting 
that tumor mutation load could be a useful biomarker 
to predict ICI response and treatment efficacy in 
these patients. Together these findings should encour-
age further investigation of TMB assessment prior to 
immunotherapy in R/M HNSCC as a standardized and 
validated biomarker in prospective clinical trials.
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