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Abstract 

Glioblastoma multiforme (GBM) is the most common malignant primary brain cancer affecting the adult popula‑
tion. Median overall survival for GBM patients is poor (15 months), primarily due to high rates of tumour recurrence 
and the paucity of treatment options. Oncolytic virotherapy is a promising treatment alternative for GBM patients, 
where engineered viruses selectively infect and eradicate cancer cells by inducing cell lysis and eliciting robust anti‑
tumour immune response. In this study, we evaluated the oncolytic potency of live‑attenuated vaccine strains of Zika 
virus (ZIKV‑LAV) against human GBM cells in vitro. Our findings revealed that Axl and integrin αvβ5 function as cel‑
lular receptors mediating ZIKV‑LAV infection in GBM cells. ZIKV‑LAV strains productively infected and lysed human 
GBM cells but not primary endothelia and terminally differentiated neurons. Upon infection, ZIKV‑LAV mediated GBM 
cell death via apoptosis and pyroptosis. This is the first in‑depth molecular dissection of how oncolytic ZIKV infects 
and induces death in tumour cells.
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Introduction
Glioblastoma multiforme (GBM) is the most common 
malignant primary brain cancer, with > 300,000 patients 
diagnosed annually worldwide [1–3]. Therapeutic 

options are limited, resulting in poor median overall sur-
vival  (mOS = 15 months) in patients despite an aggressive 
standard of care regime [4, 5]. GBM-directed therapies 
delivered systemically must primarily be able to pen-
etrate the blood–brain barrier (BBB) and blood–brain 
tumour barrier (BBTB) for optimal drug delivery [6, 7]. 
Moreover, tumour recurrence mediated by glioma stem 
cells (GSCs) refractory to chemical and radiation therapy 
remains a major challenge in the absence of therapies 
that effectively eradicate these cells [8–10].

Oncolytic virotherapy, a form of treatment where 
engineered viruses infect and directly kill tumour cells, 
is a promising alternative that could potentially address 
the therapeutic challenges mentioned above. The engi-
neered viruses mediate tumour cell death by (1) hijack-
ing cellular metabolic resources for production of virus 
progeny, and (2) eliciting durable anti-tumoural immune 
responses [11, 12]. Several oncolytic viruses (OV) from 
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diverse groups of virus families have been evaluated 
in preclinical and clinical trials against GBM. Some of 
these OVs have prolonged the survival of about a third 
of patients by up to 24 months [13–15]. Further, a third-
generation herpes simplex virus-1 (HSV-1), Teserpa-
turev/ΔG47  (Delytact™) was recently approved in Japan 
for the treatment of malignant glioma [16].

Zika virus (ZIKV), a member of the flavivirus virus 
family, is one such virus candidate that is in the stage of 
early experimental development. ZIKV naturally infects 
neuroprogenitor cells (NPCs) in developing mouse 
and human foetuses as well as in the adult hippocampi 
[17–22] and causes global neuroinflammation [23, 24]. 
Wild type ZIKV clinical isolates were reported to infect 
and lyse human GSCs in vitro and in vivo [25–27], while 
mouse-adapted and modified ZIKV strains were reported 
to inhibit tumour growth in syngeneic and xenograft 
orthotopic GBM models using both immunocompetent 
and immunocompromised mice [25, 28–31]. Recently, 
clinical ZIKV strains have also been employed in the 
experimental treatment of spontaneous brain tumours 
in dogs [32]. Though ZIKV treatment inhibited tumour 
growth and prolonged survival in experimental mouse 
GBM models, the off-target effects of ZIKV infection in 
non-tumour tissues have not been thoroughly studied. 
ZIKV has a wide tissue tropism, including the gonads, 
eyes, and brain [25, 28], which could pose safety con-
cerns during its use as a therapeutic agent. Thus, the 
potential of attenuated ZIKV strains that exhibit reduced 
infectivity in normal tissues—particularly the brain and 
gonads— in treating syngeneic and xenograft mouse 
GBM tumours has been studied [29, 31].

ZIKV can be attenuated by various methods, such as 
deleting genome regions critical for virulence [29, 33] 
and recoding the genome CpG content [34]. However, 
attenuation may affect the potency of ZIKV as a thera-
peutic agent. Specifically, mutations that reduce the rep-
licative fitness of ZIKV may render it safe but may also 
limit its ability to spread within the tumour mass. As an 
alternative, we explored the potential of Zika live-atten-
uated vaccine (ZIKV-LAV) strains that grow rapidly and 
activate type-I interferon response early in the course 
of infection. These strains display attenuated infection 
and dissemination in primary human monocytes [35]. 
Moreover, the infection of A129 (interferon-α,β recep-
tor knockout) mice with these ZIKV-LAV strains, known 
as DN-1 and DN-2, did not result in significant disease; 
the strains exhibited reduced replication in the brains 
and gonads relative to wild-type ZIKV [35]. In this study, 
we examined whether DN-1 and DN-2 could selectively 
infect cancer cells while sparing non-cancer cells from 
infection—a highly desirable phenotype for OVs. We also 
tease out the cell death pathways involved in tumour cell 

killing and identify the cellular receptors used by DN-1 
and DN-2 to infect human GBM cells. Our findings will 
lend valuable insights into the mechanisms employed by 
oncolytic ZIKV-LAV strains to selectively target and kill 
human GBM cells in vitro.

Results
ZIKV‑LAV (Zika virus live‑attenuated vaccine) strains 
productively infect and lyse human GBM cells
Various assays were performed to confirm ZIKV-LAV 
infection in three human GBM cell lines—DBTRG, 
LN18, and T98G (Fig.  1A). ZIKV-LAV infection led to 
significant cell death (Fig. 1B–D) and the production of 
whole virus in infected cells, as confirmed by live-cell 
imaging and immunofluorescence (IF) staining for ZIKV 
envelope (Env) protein (Fig. 1E), respectively. ZIKV-LAV 
infection reduced cell viability over time (Fig.  1F–H), 
and the effect was more prominent in DBTRG and T98G 
cells compared to LN18 cells. Cell death was more pro-
nounced in DBTRG and T98G cells that were infected 
with the ZIKV-LAV DN-1 strain than with the parental 
wild type ZIKV HPF strain, and this was most obvious 
on days 3–7 post-infection (Fig. 1B, D, F–H). Despite dif-
ferences in the cell death phenotype induced by the two 
ZIKV strains, the viral replication kinetics were compa-
rable across HPF, DN-1, and DN-2 strains, peaking on 
day 3 post-infection in all the three cell lines evaluated 
(Fig. 1I–K).

Furthermore, the clonogenic self-renewal of the three 
cell lines were differentially altered following 5  days of 
infection with the various ZIKV-LAV strains (Fig.  2A). 
For instance, infection with the HPF, DN-1, and DN-2 
strains reduced DBTRG clonogenicity by 71.72 ± 10.89%, 
76. 02 ± 7.77%, and 74.33 ± 9.76%, respectively (Fig.  2B). 
Meanwhile, only the HPF and DN-1 strains inhibited 
T98G cell clonogenicity by 27.52 ± 26.65% (p = 0.006) 
and 41.37 ± 46.58% (p < 0.001), respectively. (Fig.  2B). 
In contrast, only the HPF strain mildly inhibited LN18 
cell clonogenicity by 27.52 ± 26.65% (p = 0.009), whereas 
the ZIKV-LAV strains did not affect the clonogenic-
ity of this cell line (Fig. 2B). Similar reduction in cancer 
cell clonogenicity was observed in cells following only 
2 days of ZIKV-LAV infection (Additional file 1: Fig. S1). 
These results demonstrate that ZIKV-LAV infection in 
human GBM cells not only causes acute cell death but 
additionally impacts the clonogenic self-renewal of sur-
viving infected cells. These phenomena contribute to 
reduced tumour cell growth in vitro following ZIKV-LAV 
infection.
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Fig. 1 ZIKV‑LAV strains productively infect human GBM multiforme (GBM) cell lines. A Timeline of in vitro infection experiments. Cells were 
inoculated with either ZIKV‑LAV strains, DN‑1 and DN‑2, or parent strain HPF, at 1 plaque‑forming unit (pfu) per cell. Infected cells were observed 
for 7 days. B–D Representative live‑cell images of human GBM cell lines B DBTRG, C LN18, and D T98G at 48 h and 72 h post‑infection. E 
Representative fluorescence images of infected cells probed for the expression of ZIKV envelope (Env) protein. F–H Kinetics of cell death in F 
DBTRG, G LN18, and H T98G cells over 7 days after virus infection. I–K Virus growth kinetics following infection in I DBTRG, J LN18, and K T98G cells. 
Data are presented as individual points. Horizontal bars represent medians. Non‑parametric Kruskal–Wallis test with Dunn’s post‑hoc correction 
was used to compare groups. p‑values are shown accordingly: *p < 0.05. **p < 0.005, ***p < 0.001
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ZIKV‑LAV does not productively infect non‑tumour 
and normal human cells
The infection of HBMEC cells with ZIKV-LAV did not 
induce cell death (Fig.  3A) or lead to viral replication 
(Fig.  3B). In contrast, infection of these cells with the 
parental wild type HPF strain induced significant cell 
death by day 3 post-infection (Fig. 3A). Consistent with 
the above findings, ZIKV-LAV also did not infect HUVEC 
cells, (Additional file  1: Fig. S2), suggesting the limited 
capacity of these strains to infect non-cancer-derived 
human cells. Furthermore, ZIKV-LAV did not induce cell 
death or changes in cytopathology in terminally-differen-
tiated neurons derived from human induced pluripotent 
stem cells (hIPSCs) (Fig. 3C). This was further confirmed 
by immunofluorescence (IF) staining for ZIKV envelope 
(Env) protein (Fig.  3D). Importantly, both ZIKV-LAV 
strains did not replicate in terminally-differentiated neu-
rons, while the parent HPF viral replication peaked at day 
11 post-infection (Fig. 3E). Altogether, our findings con-
firm that ZIKV-LAV can enter and express viral proteins 
in cultured human neurons, but their proliferation within 
these cells is impaired.

ZIKV‑LAV infection induces lytic and non‑lytic forms of cell 
death in human GBM cells
Luminescence assays were performed to detect Cas-
pase-3/7 proteolytic cleavage in DBTRG and T98G cells 
infected with ZIKV-LAV (Fig.  4A, B); western blots 
were used to confirm cleaved caspase-3 in DBTRG cells 
(Fig. 4C). In DBTRG cells, DN-1 infection induced more 
caspase-3/7 activation (Fig.  4A) and caspase-3 cleav-
age (Fig.  4C) than HPF infection. Similarly, in T98G 
cells, only DN-1 infection induced caspase-3/7 activa-
tion (Fig. 4B), although caspase-3 cleavage could not be 
detected by Western blot (Fig. 4C). In addition, in both 
DBTRG and T98G cells, DN-1 infection led to increased 
release of lactose dehydrogenase (LDH) into the superna-
tant compared to mock-infected controls (Fig. 4D). These 
findings confirm that ZIKV-LAV strains induce both 
apoptotic (non-lytic) and lytic cell death in human GBM 
cells. Lytic and non-lytic cell death in these cells were 
simultaneously monitored and measured by flow cytom-
etry (Fig. 4E). Viral infection led to increased population 
of DBTRG cells labelled with apopxin (apoptotic) and 
7-AAD (lytic) cell markers—similar to the profile of cells 
treated with the apoptosis-inducing drug staurosporine 
(Stau) (Fig.  4F). Increased population of apoptotic 
DBTRG cells (Fig.  4G, H) was seen following infection 

Fig. 2 ZIKV‑LAV infection inhibits clonogenic reproduction of human GBM cells. Human GBM cells (DBTRG, LN18, and T98G) were inoculated with 1 
pfu per cell of either ZIKV‑LAV strains (DN‑1 and DN‑2) or parent HPF strain. Cells were trypsinized and re‑seeded at 5,000 cells per well on day 5 
post‑infection. A Representative clonogenicity plates of infected cells. B Quantification of clonogenicity data, which are presented as mean ± SEM. 
Non‑parametric Kruskal–Wallis test with Dunn’s post‑hoc correction was used to compare groups. p‑values are shown accordingly: *p < 0.05. 
**p < 0.005, ***p < 0.001

Fig. 3 ZIKV‑LAV strains exhibit limited infection in normal brain cells. A–B ZIKV‑LAV infection of human brain microvascular endothelia (HBMEC) 
cells over 3 days, evaluated by measuring changes in cell viability A and viral copies B detected in infected cells. C–E ZIKV‑LAV infection 
of cultured human neurons over 11 days. Representative C live‑cell images of cultured human neurons at day 7 and day 11 post‑infection; and D 
immunofluorescence images of cultured human neurons at day 11 post‑infection. Infected human neurons were probed for the expression of virus 
envelope protein (Env) and microtubule‑associated protein 2 (MAP2). E Viral copies detected from the supernatant of human neuronal culture 
at 11 days post‑infection with ZIKV‑LAV. Data are presented as mean ± SEM. Non‑parametric Kruskal–Wallis test with Dunn’s post‑hoc correction 
was used to compare groups. p‑values are shown accordingly: *p < 0.05. **p < 0.005, ***p < 0.001. Scale bar = 250 µm

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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with either HPF or ZIKV-LAV. However, majority of the 
infected cells were undergoing lytic or necrotic cell death 
(Fig.  4H, I). These trends are comparable to findings in 
T98G cells infected with HPF and ZIKV-LAV (data not 
shown), confirming that cell lysis is the predominant form 
of cell death induced by ZIKV-LAV in human GBM cells.

ZIKV‑LAV infection leads to pyroptosis in human GBM cells
DBTRG and T98G cells infected with ZIKV exhibited 
gasdermin-D (GSDMD) cleavage, as detected by West-
ern blot at late stage (day 5) of infection (Fig. 5A). Only 
DBTRG cells exhibited a trend of increasing GSDMD 
cleavage following infection relative to mock-infected 
cells, but these differences were not statistically signifi-
cant (p < 0.10) (Fig. 5B). In contrast, T98G cells exhibited 
GSDMD cleavage at a level comparable to mock-infected 
cells (Fig. 5C). Furthermore, pyroptosis in virus-infected 
human GBM cells was confirmed by measuring secreted 
IL-1β in culture supernatants with luminescent ELISA. 
While infections with both HPF and ZIKV-LAV strains 
led to elevated IL-1β secretion in DBTRG cells (Fig. 5D), 
only ZIKV-LAV infection resulted in comparable 
increase in IL-1β secretion in T98G cells (Fig. 5E). These 
findings indicate that pyroptosis is one of the lytic forms 
of cell death induced by ZIKV-LAV infection in human 
GBM cells.

ZIKV‑LAV use Axl and integrin αvβ5 as receptors to infect 
human GBM cells
siRNA-mediated knockdown of receptor tyrosine kinase 
Axl and integrin αvβ5 expression inhibited entry of ZIKV 
into DBTRG cells assayed within 1.5  h post-incubation 
with virus (Fig.  6A). However, similar perturbations of 
receptor expression in T98G cells affected the entry 
of only ZIKV-LAV strains (Fig.  6B). We confirmed that 
siRNA-mediated gene knockdown resulted in reduced 
cell-surface expression of both Axl (Fig. 6C) and integrin 
αvβ5 (Fig. 6D) in both cell lines. The data were consistent 
with the reduction, but not complete knockdown, of gene 
expression observed in qPCR studies (Additional file  1: 
Fig. S3). We observed 70–80% and 40–50% siRNA-medi-
ated knockdown of Axl and integrin αvβ5, respectively. 
Moreover, siRNA-mediated knockdown of both Axl and 

integrin αvβ5 receptors also reduced viral replication of 
HPF and ZIKV-LAV in DBTRG cells (Fig. 6E). However, 
only the knockdown of integrin αvβ5 reduced HPF and 
ZIKV-LAV replication in T98G cells. These results indi-
cate that Axl and integrin αvβ5 are entry receptors for 
HPF and ZIKV-LAV to infect DBTRG cells. However, 
the effect of siRNA knockdown on HPF and ZIKV-LAV 
infection of T98G cells is less clear. Axl knockdown in 
T98G cells affected ZIKV-LAV cellular entry but not viral 
replication; in contrast, integrin αvβ5 knockdown affected 
intracellular replication without impacting cellular entry 
of the virus.

Discussion
The Zika virus live-attenuated vaccine (ZIKV-LAV) 
strains, particularly DN-1, exhibited potent oncolytic 
activity in human glioblastoma multiforme (GBM) cells 
without productively infecting non-cancer cells, such as 
terminally differentiated human neurons and primary 
endothelia [35]. The production of ZIKV-LAV in differ-
ent GBM cells peaked at day 3 post-infection, showing 
viral growth kinetics comparable to the parent wild-type 
strain. This suggests ZIKV-LAV undergoes sufficient 
viral replication in human GBM cells to produce more 
virus progeny that could effectively infect neighbour-
ing cancer cells. In addition, ZIKV-LAV replication was 
inversely related to cell viability and clonogenic potential 
of infected DBTRG and T98G cells, which demonstrates 
that transient ZIKV-LAV replication in these cancer cells 
was sufficient to inhibit the uncontrolled cell division in 
cancer cells and induce cancer cell death. Of the three 
human GBM cells evaluated, DBTRG was the most per-
missive to ZIKV-LAV infection, while LN18 was the least 
permissive. This differential infectivity of various human 
GBM cells to ZIKV-LAV is expected as it mirrors the 
observed intra-tumoural heterogeneity within the same 
patient and inter-tumoural heterogeneity across different 
GBM patients [36, 37]. These differences maybe be driven 
by intrinsic expression level of host cellular factors such 
as Axl and integrin αvβ5 receptors required for ZIKV-
LAV infection and replication or evasion of host immune 
response [38–40].”

(See figure on next page.)
Fig. 4 ZIKV‑LAV infection induces apoptotic and necrotic cell death in human GBM cells. A–B Caspase‑3 activation for apoptosis in virus‑infected 
A DBTRG and B T98G cells detected by luminescence assay on days 1 and 3 post‑infection. C Western blot detection of cleaved caspase‑3 
in infected cell lysates at day 2 post‑infection. D Lactose Dehydrogenase (LDH) release by necrotic cells at day 3 post‑infection. E Gating strategy 
for the simultaneous detection of apoptotic and necrotic DBTRG cells by flow cytometry. F Representative scatter dot‑plots of DBTRG cells 
during early (day 1) and late (day 3) stages of infection with ZIKV‑LAV. Cells were co‑stained and detected with apopxin‑FITC and 7‑AAD‑mKATE. G–I 
Quantification of the fraction of G apoptotic, H late apoptotic/necrotic, and I necrotic DBTRG cells by flow cytometry during late stage of infection 
with ZIKV‑LAV. Values are presented as % of live cells. Data are presented as mean ± SEM. Non‑parametric Mann–Whitney test or Kruskal–Wallis test 
with Dunn’s post‑hoc correction was used to compare groups. p‑values are shown accordingly: *p < 0.05. **p < 0.005, ***p < 0.001
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Fig. 4 (See legend on previous page.)
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ZIKV-LAV infection in non-cancer cells was evaluated 
as proxy for cancer selectivity of viral infection. Consist-
ent with prior studies, the parent clinical isolate HPF 
naturally infected HUVEC [41, 42] but ZIKV-LAV strains 
did not. HBMEC cells were also permissive to both ZIKV 
HPF and ZIKV-LAV infection. However, while HPF 
infection induced lytic death in these cells, ZIKV-LAV 
infection had no effect. The difference in ZIKV-LAV 
infectivity between HUVEC and HBMEC suggest that 
brain-derived endothelia may be inherently more sus-
ceptible to ZIKV-LAV infection than those derived from 
the foetal umbilical cord but for reasons that are not fully 
clear. HBMEC was shown to be persistently infected 

with ZIKV and could be one of the pathways by which 
the virus gets transported to the brain [43]. Importantly, 
the absence of DN-1 and DN-2 infection in terminally-
differentiated neurons—at least in  vitro—suggests that 
though ZIKV-LAV strains may spillover from HBMEC 
to neighbouring neurons, likely through endothelial tran-
scytosis reported for wild-type ZIKV [43, 44], infection 
in normal neurons is unlikely to occur. When taken as a 
proxy for cancer cell specificity, the reduced infectivity of 
ZIKV-LAV on non-cancer cells—a consequence of virus 
attenuation—provides a therapy safety margin and dem-
onstrates that ZIKV-LAV exhibit potent cancer-selective 
oncolytic activity in vitro.

The tumour cell death pathway induced by ZIKV-LAV 
infection dictates the potency of anti-tumour immune 
response elicited by virus infection. ZIKV-LAV infection 
in human GBM cells leads to both apoptotic and lytic 
cell death pathways—particularly pyroptosis—during 
late infection. Non-apoptotic, lytic cell death leads to the 
release of tumour-associated neo-antigens and cytokines. 
This immunogenic form of cell death attracts host innate 
and adaptive immune cell components [12, 13] and 
induces both local and systemic anti-tumour immunity 
[45]. Similarly, ZIKV infection of placenta cells [46] and 
macrophages [47] was reported to induce pyroptosis 
in  vitro, whereas ZIKV infection of human astrocytes 
[48] was reported to cause necroptosis, another form of 
lytic cell death. Human bone osteosarcoma HOS cells 
and human lung adenocarcinoma A549 cells infected 
with oncolytic adenovirus and vaccinia viruses are 
known to exhibit pyroptotic and necroptotic cell death 
in  vitro [49]. Co-culture of the virus-infected HOS or 
A549 cells undergoing pyroptosis and necroptosis with 
PBMCs and subsequent in vitro functional immunologi-
cal assays in PBMCs revealed increased dendritic cell 
phagocytosis of OV-infected cancer cells and increased T 
cell maturation [49]. We were unable to detect any evi-
dence of necroptosis in ZIKV-infected human GBM cells. 
While total MLKL (mixed lineage kinase domain-like) 
protein could be probed by Western blot assays, MLKL 
phosphorylation was undetectable (data not shown). 
Further studies are needed to determine the contribu-
tion of other forms of lytic cell death—including necrop-
tosis—in human GBM cell death induced by ZIKV-LAV 
infection. Although ZIKV-LAV infection activates both 
humoral and cellular immunity in mice not bearing 
tumours [50], whether ZIKV-LAV infection of the GBM 
tumour induces immunogenic cell death needs to be 
demonstrated in a mouse GBM treatment model. It will 
be interesting to see whether pyroptotic and necrop-
totic GBM cell death induced by ZIKV-LAV modulates 
tumour immune microenvironment in  vivo as reported 
recently [51].

Fig. 5 Pyroptotic cell death induced by ZIKV‑LAV infection 
in human GBM cells. A Western blot detection of gasdermin 
D (GSDMD) cleavage in infected DBTRG and T98G cell lysates 
at day 5 post‑infection. B–C Quantification of GSDMD cleavage 
from western blot data normalized to β‑actin expression. Data are 
shown as fold‑change in percentage of (%) GSDMD cleavage relative 
to mock‑infected cells. D–E Luminescence‑based detection of IL‑1β 
secreted by infected cells. Data are shown as mean ± SD. Means were 
compared by Kruskal–Wallis test with Dun’s post‑hoc correction. 
*p < 0.05; **p < 0.005; ***p < 0.001
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Fig. 6 ZIKV‑LAV entry in human GBM cells is mediated by Axl and integrin αvβ5. Evaluation of the effect of siRNA‑mediated knockdown of either Axl 
or integrin αvβ5 gene on A–B viral entry in DBTRG (A) and T98G (B) cells; C–D protein expression of Axl (C) and integrin αvβ5 (D) on the cell 
surface; and E–F intracellular viral replication in DBTRG (E) and T98G (F) cells. SCR, scrambled siRNA. Int.αvβ5, integrin αvβ5. Data are presented 
as mean ± SEM. Non‑parametric Mann–Whitney test or Kruskal–Wallis test with Dunn’s post‑hoc correction was used to compare groups. p‑values 
are shown accordingly: *p < 0.05. **p < 0.005, ***p < 0.001
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ZIKV-LAV strains infect human GBM cells via Axl and 
integrin αvβ5 receptors. Axl is a tyrosine kinase receptor 
found on cell membranes and, according to the Human 
Protein Atlas, is highly expressed in various tissues, 
including muscles, bladder, urinary tract, gonads, gastro-
intestinal tract, and lungs [52]. Axl has been determined 
as a ZIKV entry receptor for the infection of endothe-
lial [53, 54] and glial cells [55]. According to TCGA 
(The Cancer Genome Atlas) project TCGA-GBM-L4 
v.4.2, no difference in Axl protein expression is noted in 
human GBM patients with long vs. short median survival 
(Cox regression analysis p = 0.54). However, Axl expres-
sion delineates the different GBM tumour subtypes 
(p = 0.005)—with highest and lowest expression in neu-
ral and proneural subtypes, respectively [56, 57]. Thus, 
ZIKV-LAV treatment, as a form of oncolytic virotherapy, 
would be most effective against GBM tumours of the 
neural subtype. Beyond human GBM, Axl is also over-
expressed in various haematological and solid cancers, 
including lung, breast, prostate, and ovarian cancers [58, 
59], thus raising the possibility of employing Axl-medi-
ated ZIKV-LAV infection as a therapeutic option against 
these patient groups.

On the other hand, integrin αvβ5 is a dimer comprised 
of subunits αv and β5. The β5 subunit is constitutively 
expressed in most tissues, while the αv subunit is highly 
expressed in the brain, endocrine tissues, kidneys, uri-
nary bladder, gonads, bone marrow and lymphoid tissues 
[52]. While Integrin αvβ5 has been identified as a ZIKV 
receptor for the infection of glioma stem cells (GSCs) 
[60] and neuroprogenitor cells (NPC) [61], its role in can-
cers and in differentiating tumour types that may benefit 
from ZIKV-LAV treatment is not well known. An earlier 
study using immunohistochemical staining of tumour 
tissue microarrays suggested that integrin αvβ5 may be 
a biomarker of lymph node metastasis and overall sur-
vival in non-small cell lung cancer patients [62]. Integ-
rin αvβ5 was also reported to be highly expressed in both 
endothelia and human glioma cells and regulate angio-
genesis and uncontrolled growth of GBM tumours [63]. 
However, its biological significance in the context of OV 
therapy is unknown.

The differential response of ZIKV and ZIKV-LAV 
entry and replication to Axl or integrin αvβ5 gene 
knockdown in DBTRG and T98G cells suggests that 
ZIKV entry into human GBM cells depends primarily 
on Axl and, to some extent, on integrin αvβ5 expres-
sion. A < 20% reduction in Axl surface expression 
and > 50% reduction in integrin αvβ5 surface expres-
sion severely restricted ZIKV-OV entry and replication 
in DBTRG cells—indicating that receptor expression 
is the primary determinant of ZIKV-OV infection in 

these cells. In contrast, an approximate 20% reduction 
in Axl and integrin αvβ5 surface expression in T98G 
cells only mildly impacted viral entry and replication, 
thus highlighting the importance of other host cyto-
plasmic factors required for viral entry and replica-
tion in T98G cells. Although we did not determine the 
surface expression of Axl and integrin αvβ5 in HUVEC, 
HBMEC, and terminally differentiated neurons, inte-
grin αv is known to be expressed in majority of cells. 
The Human Protein Atlas report that Axl and integrin 
β5 are highly expressed in neuroprogenitor cells (NPC) 
but not in terminally differentiated neurons [64, 65], 
indicating that the GBM selectivity of ZIKV-LAV infec-
tion is partly explained by differential Axl and integrin 
αvβ5 expression. On the other hand, integrin αvβ5 was 
reported highly expressed in glioblastoma endothelia 
[63, 66], while HUVECs exhibit high expression levels 
of Axl [53]. How the expression of Axl and integrin αvβ5 
on endothelia contributes to cancer selectivity of ZIKV-
LAV is currently unclear.

The attenuation of natural ZIKV virulence is mani-
fested in reduced DN-1 and DN-2 infectivity in the 
brain, gonads, and other susceptible tissues [35]. The 
reduced neurotropism also enhances cancer selec-
tivity of ZIKV-LAV and, consequently, affords wider 
therapeutic window compared to wild-type ZIKV. 
This GBM selectivity of ZIKV-LAV infection is its pri-
mary advantage over other OVs currently in develop-
ment for human GBM, which include herpes simplex 
virus (HSV), adenovirus, measles virus, and poliovirus 
[14, 67]. HSV is naturally neurotropic and brain infec-
tion is the main consequence of GBM therapy with 
HSV-OV. This required significant virus attenuation to 
make HSV-OV a viable option for GBM therapy [68]. 
Another advantage of ZIKV-OV is the absence of host 
natural immunity to ZIKV, which is a significant chal-
lenge for OVs derived from pathogenic viruses for 
which humans have been widely immunized by either 
vaccines (e.g. poliovirus and measles virus) or continu-
ous lifelong exposure (e.g. adenovirus).

In summary, we propose a model for oncolytic target-
ing of human GBM based on our observations of ZIKV-
LAV infection of human GBM cells and selective killing 
of these cells (Fig. 7). ZIKV-LAV strains, as well as the 
parent ZIKV HPF, enter human GBM cells through 
either Axl, integrin αvβ5 or both receptors expressed on 
the cell surface. Once inside the cells, the virus repli-
cates its genome and expresses viral proteins, including 
the envelope (Env) protein. Virus progenies are subse-
quently assembled and released into the extracellular 
environment to infect more GBM cells. Inside the cells, 
viral proteins and virus-induced cellular proteins initi-
ate a molecular cascade that ultimately leads to cancer 



Page 11 of 16Victorio et al. Journal of Translational Medicine          (2024) 22:126  

cell death. This could be either through apoptotic path-
ways that involve caspase-3 cleavage or through or lytic 
cell death pathways such as pyroptosis that involves 
the cleavage of gasdermin-D and subsequent release of 
IL-1β pro-inflammatory cytokine from infected cells. 
Though a long way down the road, ZIKV-LAV-medi-
ated cancer cell death could be developed as a promis-
ing therapeutic option against deadly GBM.

Materials and methods
Cells, viruses, and culture conditions
Human GBM cell lines DBTRG (CRL-2020) and T98G 
(CRL-1690), as well as monkey kidney Vero (CCL-81) 
cells were obtained from American Type Culture Col-
lection (ATCC). These cells were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM) supplemented with 
FBS (10% v/v). Primary human umbilical vein endothe-
lial cells (HUVEC) were purchased from Lonza (cat. 
no. C2591A) and cultured in  EGM™-2 (Endothelial cell 
Growth Mmedium-2)  BulletKit™ (cat. no. CC-3162), 
while human brain microvascular endothelial cells 
(HBMEC) were purchased from Cell Systems (cat. no. 

ACBRI 376) and cultured in Complete serum-free media 
kit from  RocketFuel™ (cat. no. SF-4Z0-500). Termi-
nally-differentiated human neurons derived from iPSCs 
were generated as described previously [69]. These cells 
were cultured in  AGM™ (Astrocyte Growth Medium) 
 BulletKit™ (Lonza CC-3186). All cells were incubated at 
37 °C, 5%  CO2.

The Zika virus (ZIKV) clinical strain H/PF/2013 iso-
lated from French Polynesia was a generous gift from 
Prof. Subhash Vasudevan (Programme in Emerging 
Infectious Diseases, Duke-NUS Medical School). The 
ZIKV live-attenuated vaccine (ZIKV-LAV) strains 
DN-1 and DN-2 were previously described elsewhere 
[35]. All virus stocks used in this experiment were 
produced by 1 passage in Vero cells cultured in virus 
growth medium (Dulbecco’s Modified Eagle’s Medium 
(DMEM) supplemented with FBS (2% v/v)).

For infectivity assays in human GBM cells, cells 
seeded overnight (5 ×  104 cells/ well) in 24-well plates 
were inoculated with either parent ZIKV or ZIKV-LAV 
strain at 1 MOI (1 plaque-forming unit; pfu / cell) at 
37  °C for 90  min. Viral cultures were subsequently 

Fig. 7 Proposed model of human GBM cell death mediated by ZIKV‑LAV infection. A–D General virus infection life cycle. A ZIKV‑LAV enters human 
GBM cells through Axl and integrin αvβ5 cellular receptors. B The ZIKV‑LAV genome is translated to express viral proteins and the viral genome 
is replicated. C The viral genome and viral proteins assemble the nucleoprotein in preparation for (D) release of progeny into the surroundings 
with concomitant viral incorporation of host cell membrane. E Cellular and viral proteins expressed during ZIKV‑LAV infection are also responsible 
for cell death in human GBM. F–G cleavage of caspase‑3 leads to non‑lytic or non‑inflammatory cell death by apoptosis; H–I cleavage 
of gasdermin‑D (GSDMD) leads to the formation of membrane pore complexes that shuttles inflammatory IL‑1β outside of the cells. GSDMD 
cleavage also leads to inflammasome activation and lytic and inflammatory cell death by pyroptosis. Image created with BioRender.com
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incubated in virus growth medium. Infectivity assays 
in HUVEC and HBMEC were done using  EGM™-2 
 BulletKit™ and Complete serum-free media kit from 
 RocketFuel™, respectively. Infectivity assays in termi-
nally-differentiated human neurons were done using 
 AGM™  BulletKit™.

Assessments of cellular infection
Live-cell imaging was performed using Incucyte 
 Zoom® (Sartorius, Michigan, USA). Images were taken 
every 24 h for 7 days post-infection.

Cells for immunofluorescence (I.F.) staining were 
seeded overnight in black-walled 24-well μ-plates 
(Ibidi, Munich, Germany) and subsequently inocu-
lated with either parent ZIKV or ZIKV-LAV strain at 
1 MOI. At 48 h post-infection, cells were processed for 
I.F. staining as described previously [70]. Neurons were 
detected with antibody against microtubule-associated 
protein 2 (MAP2) (cat. no. AB5392; Abcam, Singapore), 
while infected cells were detected with 4G2 monoclonal 
antibody against flavivirus envelope (Env) protein (cat. 
no. NBP2-52709; Novus Biologicals, Colorado, USA). 
Images were captured using Olympus Ix83 microscope 
and Olympus  CellSens® Dimension software (Olym-
pus, Tokyo, Japan). All phase-contrast and fluorescence 
images were processed using ImageJ software (National 
Institutes of Health, USA).

Cell viability assays were performed by fixing the 
virus-inoculated cells (seeded in 24-well plates) in 4% 
paraformaldehyde (PFA) overnight at room temp. Fixed 
cells were stained with 1% crystal violet in 95% ethanol 
and dried overnight. Crystal violet inside the cells was 
extracted by shaking them with 2% SDS in PBS for 1 h at 
room temp. The amount of crystal violet extracted from 
the cells was detected using fluorescence plate reader at 
570 nm (Tecan M200, Männendorf, Switzerland).

Determination of viral titre
Viral titres were determined by extracting viral RNA 
from culture supernatants using  QIAamp® viral RNA 
mini kit (Qiagen, Hilden, Germany). Similarly, the 
cellular replication of virus was assessed by extract-
ing total cellular RNA using Qiagen RNEasy mini kit. 
Absolute quantitation of viral RNA was performed by 
qPCR with a standard curve as described previously 
[71].

Clonogenicity assays
Cells seeded cells in 6-well plates (1 ×  105 cell/ well) 
overnight were inoculated with either parent ZIKV 
or ZIKV-LAV strain at 1 MOI. On days 2 and 5 

post-inoculation, cells were trypsinized and reseeded 
into 24-well plates at a low cell density (5,000 cells 
/ well). Plates were incubated for 7  days, fixed in 4% 
PFA overnight, and stained with 1% crystal violet in 
95% ethanol. After drying overnight, crystal violet was 
extracted with 2% SDS in PBS and detected using fluo-
rescence plate reader.

Detection of apoptosis and lytic cell death
Apoptosis and lysis in infected cells were determined by 
various methods, including luminescence ELISA-based 
assays, flow cytometry, and Western blot.

Caspase 3/7 cleavage in infected cells was measured 
with caspase 3/7-Glo luminescence assay kit (Promega, 
Wisconsin, USA), following the manufacturer’s protocol. 
Similarly, IL-1β release into the culture supernatant was 
determined using  Lumit™ human IL-1β immunoassay 
kit (Promega, Wisconsin, USA), and lactate dehydroge-
nase release following lytic cell death was detected using 
LDH-Glo™ cytotoxicity assay kit (Promega, Wisconsin, 
USA), following the manufacturer’s protocol.

Western blot assay was used to detect cleaved cas-
pase-3 (cat. no. 9661 s; Cell Signaling Technology, Mas-
sachusetts, USA), full-length caspase-3 (cat. no. 9662  s; 
Cell Signaling Technology), and gasdermin-D (GSDMD; 
cat. no. ab155233; Abcam). Total protein (100 μg per cell 
lysate) was resolved in 15% SDS-PAGE gel and trans-
ferred onto PVDF membrane. The membranes were 
blocked with 5% skimmed milk prior to probing with dif-
ferent antibodies.

Apoptotic and necrotic cells were simultaneously 
detected using apoptosis/ necrosis assay kit (Abcam, Sin-
gapore), following the manufacturer’s protocol. Briefly, 
human GBM cells (5 ×  104 cells/ well) seeded in 24-well 
plates overnight were inoculated with virus (need to 
mention specific strain?) at 1 MOI. At the time of har-
vesting, cells were gently trypsinized (0.25% trypsin, 
25  mM EDTA) and resuspended in assay buffer pro-
vided in the kit. The cells were simultaneously stained 
with Apopxin, 7-AAD, and CytoCalcein Violet 450 by 
incubating them with the dyes for 30 min at 4  °C in the 
dark and washing twice with the assay buffer. Labelled 
cell populations were detected by flow cytometry using 
MACSQuant VYB (Miltenyi Biotec, North Rhine-West-
phalia, Germany), and data were analyzed using FlowJo 
V10.8.0 (BD Biosciences, USA). Apopxin (λEx = 490  nm; 
λEm = 525  nm) was excited by a 488  nm laser and 
detected using the V2 detector (λEm = 525; band-
pass = 50 nm); 7-AAD (λEx = 546 nm; λEm = 647 nm) was 
excited using a561 nm laser and detected using the Y3 
detector (λEm = 661; band-pass = 20  nm); and CytoCal-
cein Violet 450 (λEx = 405 nm; λEm = 450 nm) was excited 
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using a 405 nm laser and detected using the V1 detector 
(λEm = 452; band-pass = 45 nm).

Modulation of Axl and integrin αvβ5 cellular expression
The expression of AXL (Axl), ITGAV (integrin αv), and 
ITGB5 (integrin β5) genes in human GBM cells was 
determined by relative qPCR using  Luna® Universal 
qPCR Master Mix (New England Biolabs, Massachusetts, 
USA) and the following primer pairs: hAXL-F (5’-CCG 
TGG ACC TAC TCT GGC T -3’) and h-AXL-R (5’- CCT 
TGG CGT TAT GGG CTT C-3’); h-ITGAV-F (5’- ATC 
TGT GAG GTC GAA ACA GGA-3’) and h-ITGAV-
R (5’-TGG AGC ATA CTC AAC AGT CTT TG-3’); 
h-ITGB5-F (5’-TCT CGG TGT GAT CTG AGG G-3’) 
and h-ITGB5-R (5’-TGG CGA ACC TGT AGC TGG 
A-3’).. Human GBM cells (1 ×  105 cells / well) seeded in 
24-well plates overnight were transfected with siRNAs 
(Integrated DNA Technologies, Iowa, USA) using Lipo-
fectamine RNAiMAX (Themo Fisher Scientific, Mas-
sachusetts, USA) to knockdown the expression of these 
genes. siRNA sequences are available upon request. 
Total cellular RNAs were extracted using Qiagen RNEasy 
mini kit, and gene expression was evaluated using rela-
tive qPCR, with the expression of the housekeeping gene 
GAPDH used as control.

The expression of the proteins on the cell surface was 
evaluated by flow cytometry using fluorophore-tagged 
antibodies against Axl (BD  OptiBuild™ BV650 anti-
human AXL mAb clone 108724) and integrin αvβ5 (BD 
Biosciences Alexa Fluor 647 anti-human integrin αvβ5). 
Briefly, cells were harvested by trypsinization on either 
day 1 after transfection of anti-AXL siRNA or on day 2 
after transfection of anti-integrin αvβ5 siRNA. Cells were 
blocked in 5% BSA/ PBS for 30  min at 4  °C and subse-
quently incubated with probing antibodies for 30  min 
and DAPI for 10  min at 4  °C. Antibody-labelled cells 
were identified by Flow Cytometry (Fortessa, BD Bio-
sciences, USA) and analyzed using FlowJo V10.8.0 (BD 
Biosciences, USA).

Virus entry assay
At 48  h after siRNA treatment, human GBM cells were 
treated with 5  mM sodium azide and 2-deoxyglucose 
 (NaN3 + 2DG) for 30  min at 37  °C. Subsequently, cells 
were inoculated with virus at 1 MOI for 1.5 h at 37  °C. 
After infection, the remaining viruses attached to cells 
were digested with pronase (1  mg/ ml) for 30  min at 
37  °C. Total cellular RNA was then extracted from the 
cells using Qiagen RNEasy kit, and viral RNA was quan-
tified with real-time qPCR using ZIKV-specific primers.

Statistical analysis and data visualization
All data visualization and statistical analyses were per-
formed in Prism v9.0 (GraphPad Software, USA). Means 
between two groups were compared by nonparametric 
Mann–Whitney test, while means between > 2 groups 
were compared by Kruskal–Wallis test with Dunn’s 
post-hoc correction. Linear regression analyses on scat-
ter plots were performed using Spearman’s coefficient 
(ρ). Results were considered statistically significant at 
p < 0.05.
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Additional file 1: Figure S1. ZIKV‑LAV early infection at day 2 inhibits 
clonogenic reproduction of human GBM cells. (A) Representative clono‑
genicity of plates of cells inoculated with virus at 1 MOI and subsequently 
replated at day 2 post‑infection. (B) Quantification of clonogenicity data, 
which are presented as mean ± SEM. Non‑parametric Kruskal–Wallis test 
with Dunn’s post‑hoc correction was used to compare groups. p‑values 
are shown accordingly: *, p < 0.05. **, p < 0.005, ***, p < 0.001. Figure 
S2. ZIKV‑LAV does not infect human embryonic vascular endothelial 
cells (HUVEC) ZIKV‑LAV infection of HUVEC cells over 3 days, evaluated 
by measuring (A) changes in cell viability and (B) viral copies detected 
in infected cells. Data are presented as mean ± SEM. Non‑parametric 
Kruskal–Wallis test with Dunn’s post‑hoc correction was used to compare 
groups. Figure S3. Confirmation of reduction in gene expression fol‑
lowing siRNA‑mediated knockdown. Gene expression of (A) Axl and (B) 
integrin αvβ5 in human GBM cells infected with ZIKV‑LAV strains, following 
siRNA‑mediated expression knockdown. SCR, scrambled siRNA. Values 
are presented as gene expression relative to cells treated with SCR siRNA. 
Data are presented as mean ± SD. Non‑parametric Kruskal–Wallis test with 
Dunn’s post‑hoc correction was used to compare groups. p‑values are 
shown accordingly: *, p < 0.05. **, p < 0.005.
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