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Abstract 

Background Lung adenocarcinoma (LUAD) is the predominant histological subtype of lung cancer and the leading 
cause of cancer-related mortality. Identifying effective drug targets is crucial for advancing LUAD treatment strategies.

Methods This study employed proteome-wide Mendelian randomization (MR) and colocalization analyses. We 
collected data on 1394 plasma proteins from a protein quantitative trait loci (pQTL) study involving 4907 individuals. 
Genetic associations with LUAD were derived from the Transdisciplinary Research in Cancer of the Lung (TRICL) study, 
including 11,245 cases and 54,619 controls. We integrated pQTL and LUAD genome-wide association studies (GWASs) 
data to identify candidate proteins. MR utilizes single nucleotide polymorphisms (SNPs) as genetic instruments to esti-
mate the causal effect of exposure on outcome, while Bayesian colocalization analysis determines the probability 
of shared causal genetic variants between traits. Our study applied these methods to assess causality between plasma 
proteins and LUAD. Furthermore, we employed a two-step MR to quantify the proportion of risk factors mediated 
by proteins on LUAD. Finally, protein–protein interaction (PPI) analysis elucidated potential links between proteins 
and current LUAD medications.

Results We identified nine plasma proteins significantly associated with LUAD. Increased levels of ALAD, FLT1, ICAM5, 
and VWC2 exhibited protective effects, with odds ratios of 0.79 (95% CI 0.72–0.87), 0.39 (95% CI 0.28–0.55), 0.91 (95% 
CI 0.72–0.87), and 0.85 (95% CI 0.79–0.92), respectively. Conversely, MDGA2 (OR, 1.13; 95% CI 1.08–1.19), NTM (OR, 
1.12; 95% CI 1.09–1.16), PMM2 (OR, 1.35; 95% CI 1.18–1.53), RNASET2 (OR, 1.15; 95% CI 1.08–1.21), and TFPI (OR, 4.58; 
95% CI 3.02–6.94) increased LUAD risk. Notably, none of the nine proteins showed evidence of reverse causality. 
Bayesian colocalization indicated that RNASET2, TFPI, and VWC2 shared the same variant with LUAD. Furthermore, 
NTM and FLT1 demonstrated interactions with targets of current LUAD medications. Additionally, FLT1 and TFPI are 
currently under evaluation as therapeutic targets, while NTM, RNASET2, and VWC2 are potentially druggable. These 
findings shed light on LUAD pathogenesis, highlighting the tumor-promoting effects of RNASET2, TFPI, and NTM, 
along with the protective effects of VWC2 and FLT1, providing a significant biological foundation for future LUAD 
therapeutic targets.

Conclusions Our proteome-wide MR analysis highlighted RNASET2, TFPI, VWC2, NTM, and FLT1 as potential drug 
targets for further clinical investigation in LUAD. However, the specific mechanisms by which these proteins influence 
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Introduction
Lung cancer is the leading cause of cancer-related deaths, 
and lung adenocarcinoma (LUAD) is the most common 
histological subtype, accounting for about 40% of cases 
[1, 2]. Apart from smoking, other contributors to lung 
cancer include genetic susceptibility, occupational expo-
sure, air pollution, and chronic lung diseases [3]. Genetic 
factors are estimated to contribute between 8 and 21% 
to the heritability of lung cancer [4]. Despite numerous 
studies shedding light on various aspects of lung can-
cer pathogenesis [5–7], the identification of new genetic 
variants associated with the disease remains challenging 
due to small effect size and the confounding influence 
of cigarette smoking. To date, only a limited number of 
lung cancer-specific genes have been discovered [8]. 
Understanding the genomic architecture of lung cancer is 
essential for comprehending its pathogenesis and devis-
ing personalized targeted therapies. Given that a signifi-
cant proportion of LUAD patients lack access to targeted 
therapies, and acquired resistance is common. The novel 
nanocarrier combined with targeted therapy promotes 
the development of multimodal targeting for lung cancer 
[9]. Based on organ-on-a-chip technology, the develop-
ment of high-throughput drug screening and personal-
ized precision medicine also provides more possibilities 
for lung cancer treatment [10]. However, the 5-year sur-
vival rate for LUAD patients remains at about 23% [11]. 
Therefore, it is imperative to identify new therapeutic 
targets for LUAD.

Human proteins play a key role in the development of 
human diseases and represent the primary targets for 
approved drugs. A new generation of proteomics tech-
nologies has facilitated the identification of abnormal 
protein expressions, allowing for further exploration of 
potential biomarkers and therapeutic targets for cancer. 
Identifying potential proteins associated with LUAD 
contributes to our understanding of the disease’s under-
lying mechanisms [12]. In recent years, genome-wide 
association studies (GWASs) have identified numer-
ous genetic polymorphisms for lung cancer [4, 13]. The 
goal of GWAS is to identify genetic variations associ-
ated with diseases, providing valuable insights into the 
genetic basis of diseases. GWAS of plasma proteins have 
revealed genetic variants linked to these proteins, known 
as “protein quantitative trait loci (pQTLs)” [14]. With 
the advancement of GWASs in investigating the human 
plasma proteome, an optimization framework integrating 

genomic and proteomic databases has emerged for bio-
marker discovery [15]. Although GWAS have identified 
many risk loci associated with lung cancer, the genetic 
underpinnings of the disease remain incompletely 
understood.

Due to limitations in traditional study designs, obser-
vational stuides cannot fully eliminate the potential for 
reverse causality and condounding factors, leading to 
biased associations and conclusions [16]. Mendelian 
randomization (MR) is a popular approach for causal 
inferences, utilizing genetic variants as instrumental 
variables (IVs) that mimic a randomized controlled trial 
(RCT). MR leverages the random assortment of genetic 
variants during meiosis, reducing the likelihood of bias 
from reverse causation or residual confounding [17]. In 
addition, MR analysis has to fulfill three assumptions 
(relevance, independence, and exclusion restriction), 
as detailed in Fig.  1. The exclusion restriction assump-
tion often refers to as the “no pleiotropy assumption”, 
may be violated in various ways, such as timing effects, 
interactions, reverse causation, and linkage disquilibrium 
(LD) [18]. Addressing the horizontal pleiotropy involves 
selecting IVs with high genetic correlation, employ-
ing different analytical methods for result consistency, 
and utilizing a Bayesian model averaging approach [19]. 
These strategies are crucial for validating MR findings.

Using MR to analyze GWAS summary data of pQTLs 
and LUAD provides an oppportunity to identify bio-
logical mechanisms related to LUAD and develop novel 
strategies for prevention. Therefore, our aim is to identify 
potential plasma proteins associated with LUAD.

In this study, we obtained genetic instrumental vari-
ables for plasma pQTL data from Ferkingstad’s study [14] 
and GWAS data for LUAD from the Integrative Epide-
miology Unit (IEU) Open GWAS Project [20–24]. The 
study design is depicted in Fig. 2. We initially performed 
MR to estimate the causal effect of plasma proteins on 
LUAD, identifying nine LUAD-associated proteins. We 
replicated our analysis using plasma pQTL data from the 
study by Sun et al. [25] and GWAS data from the FinnGen 
cohort [26] for external validation. To ensure result 
reliability, we performed sensitivity analyses, Bayes-
ian colocalization analysis, reverse causality detection, 
and phenotype scanning. Next, we constructed a pro-
tein–protein interaction network linking the identified 
proteins with the current targets of LUAD medications. 
Finally, we assessed the causal effect of plasma proteins 

LUAD remain elusive. Targeting these proteins in drug development holds the potential for successful clinical trials, 
providing a pathway to prioritize and reduce costs in LUAD therapeutics.
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on LUAD risk factors and quantified the proportion of 
the protein’s effect on LUAD mediated by these risk fac-
tors. The identified proteins offer promising targets for 
novel interventions through their specific interactions 
and regulatory roles in key cellular pathways. Discovering 
the complex mechanisms by which these proteins influ-
ence LUAD pathogenesis could provide valuable insights 
for the development of innovative therapeutic strategies.

Materials and methods
Data sources
We obtained pQTL data from a study conducted by Fer-
kingstad et al.[14]. These pQTL should satisfy the follow-
ing criteria: (a) demonstrating genome-wide significant 
association (P < 5 ×  10–8); (b) showing independent asso-
ciation (linkage disquilibrium (LD) clumping  r2 < 0.001); 
and (c) being cis-pQTL. Based on these criteria, we iden-
tified 4144 SNPs associated with 1394 proteins. Addi-
tional file  2: Table  S1 provides details regarding these 
1394 proteins.

For the primary outcome, we found summary genetic 
association data for LUAD from the IEU Open GWAS 
Project (https:// gwas. mrcieu. ac. uk/). Relevant datasets 
from 2014 to 2023 were explored using search terms such 
as “lung cancer” and “lung adenocarcinoma”. Inclusion 
and exclusion criteria were applied to select studies align-
ing with our research objectives. Finally, we obtained a 
dataset consisting of individuals of European ancestry, 
including 11,245 LUAD cases and 54,619 controls [20–
24]. Table 1 provides details about the data sources used 
in this study.

In addition, we used plasma pQTL data from the study 
by Sun et  al. [25], which included 2923 plasma pro-
teins with 33,469 participants, and LUAD GWAS data 
obtained from the FinnGen study (ncase = 1553, ncon-
trol = 287,137, R9 release) [26] for external validation.

Statistics analysis
Mendelian randomization analysis
We employed the R package “TwoSampleMR” (ver-
sion 0.5.7) for MR analysis to estimate the associations 
between genetically predicted protein levels and LUAD. 
The Wald ratio method was applied for proteins with 
only one pQTL, while for those with two or more pQTLs, 
we used the inverse-variance-weighted (IVW), MR Egger, 
weighted median, simple mode, and weighted mode 
to estimate the causality, of which the IVW is the most 
important method [30]. Odds ratios (OR) for increased 
risk of LUAD were expressed as per standard deviation 
(SD) increase in plasma protein levels. The study frame 
chart of MR analysis is presented in Additional file  1: 
Fig. S1. To minimize the probability of false positives, 
we implemented Bonferroni correction for multiple test-
ing, setting a significant threshold at Pvalue of 0.05/1394 
(P < 3.59 ×  10–5).

Sensitivity analysis
We conducted a series of sensitivity analyses to validate 
the robustness of our findings. First, we used the Cochran 
Q test to estimate the heterogeneity of genetic variants, 
and it indicated no heterogeneity when P > 0.05[31]. Sec-
ond, MR-Egger’s intercept was utilized to evaluate hori-
zontal pleiotropy, with P > 0.05 showing no horizontal 

Fig. 1 Research overview and design of Mendelian randomization analysis. It should satisfy the following criteria: (1) the IVs are not related 
to the condounders (B1); (2) the IVs are related to the exposure factors (B2); (3) the IVs are not directly related to the outcomes (B3). IVs: 
instrumental variables; LUAD: lung adenocarcinama

https://gwas.mrcieu.ac.uk/
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pleiotropy [32]. Third, we employed MR Pleiotropy 
Residual Sum and Outlier (MR-PRESSO) to identify 
influential outlier IVs due to pleiotropy, where P > 0.05 for 
the Global test indicated the presence of horizontal pleio-
tropic outliers [33].

When genetic variants influence the exposure through 
the outcome, it can lead to incorrect inferences about 
causality, particularly in complex biological processes 
or mutually influencing factors. To enhance the robust-
ness of the causal relationship, we performed bidirec-
tional MR analysis, using LUAD as the exposure and 
pQTL as the outcome. This approach helps detect poten-
tial reverse causality, avoid confounding factors and 

ensure the integrity of our genetic association study [34]. 
Moreover, we conducted Steiger filtering to confirm the 
direction of associations between identified proteins 
and LUAD. The Steiger filtering assumes that a valid IV 
should explain more variation in the exposure than in the 
outcome. If an IV satisfies this criterion, its direction is 
“TRUE”; otherwise, it is “FALSE”. After removing SNPs 
with “FALSE” direction, we repeated all MR analyses 
using the IVW method [35]. P < 0.05 was considered sta-
tistically significant.

Furthermore, we conducted phenotype scanning, 
reviewing prior GWAS to unveil associations between 
identified pQTLs and other characteristics [33]. An SNP 

Fig. 2 Study design. First, using MR to identify potential causal proteins for LUAD by utilizing plasma pQTL data from Ferkingstad’s study and GWAS 
data from the TRICL Consortium. Otherwise, we replicated the primary analysis in dependent cohorts, using plasma pQTL data from Sun’s study 
and LUAD GWAS data from FinnGen Cohort. Second, sensitivity analyses were used to validate our primary findings, including Cochran Q test, 
MR-Egger test, and MR-PRESSO test. Bidirectional MR analysis and Steiger filtering were used to ensure the directionality of causality. Phenotype 
scanning and Bayesian co-localization were employed to detect potential horizontal pleiotropy. Third, we conducted mediation analysis 
using a two-step MR for proteins displaying potential causality with both LUAD and risk factors. Fourth, we mapped the interaction network 
among the identified proteins and their associations with the targets of current LUAD drugs. Lastly, we searched for an updated list of druggable 
genes, the ChEMBL database and a clinical trials registry website to evaluate the druggability of the identified proteins. #LUAD Risk factors: age 
of smoking initiation, number of cigarettes smoked daily, pack years of smoking, maternal smoking around birth, any parental history of lung 
cancer, average weekly beer intake, leisure activities, and chronic obstructive pulmonary disease (COPD). LUAD: lung adenocarcinoma; GWAS: 
genome-wide association study; TRICL: Transdisciplinary Research in Cancer of the Lung; pQTLs: protein quantitative trait locus; LD: linkage 
disequilibrium; SNPs: single nucleotide polymorphisms; FDR: false discovery rate; MR: Mendelian Randomization; MR-PRESSO: MR Pleiotropy 
Residual Sum and Outlier; PP.H4: posterior probability of H4
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was considered pleiotropic if it was associated with rec-
ognized risk factors for LUAD, including but not limited 
to smoking, exposure to air pollutants, occupational car-
cinogens, alcohol consumption, leisure activities, and 
chronic pulmonary conditions.

Bayesian co‑localization analysis
We conducted colocalization analysis using the R pack-
age “coloc” to determine if the associations between 
the identified proteins and LUAD resulted from link-
age disequilibrium [36]. Bayesian co-localization assigns 
posterior probabilities to five hypotheses: PP.H0, no asso-
ciation with either plasma protein or LUAD; PP.H1, asso-
ciation with plasma protein only; PP.H2: association with 
LUAD only; PP.H3, association with both plasma pro-
tein and LUAD, but with distinct causal variants; PP.H4, 
association with both plasma protein and LUAD, with 
the same causal variant. Two signals were considered to 
have strong evidence of colocalization if the posterior 
probability for a shared causal variant (PP.H4) ≥ 0.75, and 
medium colocalization indication was defined as 0.5 < PP.
H4 < 0.75. Proteins with high support evidence of colo-
calization (PP.H4 ≥ 0.75) were classified as tier 1 targets, 
proteins with medium support evidence of colocalization 
(0.5 < PH4 < 0.75) were classified as tier 2 targets, and the 
remaining proteins were classified as tier 3 targets [37].

Mediation analysis
We identified LUAD risk factors through a compre-
hensive literature review [3, 38]. Tobacco smoking is 

recognized as the major cause of LUAD.In addition to 
smoking, other factors such as genetic susceptibility, 
chronic obstructive pulmonary disease (COPD), occu-
pational exposures, air pollution, alcohol consumption, 
and physical activity may independently or collabo-
ratively contribute to the descriptive epidemiology of 
LUAD. We excluded risk factors without GWAS data, 
like air pollution. Subsequent MR analysis revealed no 
causal relationship between certain factors, such as 
occupational exposures, leading us to focus our fur-
ther analysis on the retained factors. These included 
smoking variables (age of smoking initiation, number 
of cigarettes smoked daily, and pack years of smoking), 
maternal smoking around birth, any parental history of 
lung cancer, average weekly beer intake, leisure activi-
ties, and COPD. Detailed information regarding the 
GWAS summary data of LUAD risk factors is provided 
in Table 1.

We conducted mediation analyses to quantify the 
effect of identified proteins on LUAD via risk fac-
tors using a two-step MR method. The total effect of 
exposure on outcome can be broken down into direct 
effects and indirect effects [39]. In our study, the total 
effects of identified proteins on LUAD comprised: (1) 
the direct effects of identified proteins on LUAD, cal-
culated by primary MR; (2) the indirect effects medi-
ated through the mediator, estimated using the Product 
method. Standard error (SE) and confidence interval 
(CI) were determined using the delta method [39].

Table 1 Data sources for the Mendelian randomization analysis in the study

Samplesize shown as a total number for quantitative traits and cases/controls for binary traits

TRICL: Transdisciplinary Research in Cancer of the Lung; PLCO: Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. LUAD: lung adenocarcinoma; COPD: 
chronic obstructive pulmonary disease

Phenotype Sample size Ancestry Sources

Plasma protein

 deCODE (primary) 4907 Icelander Ferkingstad, et al. [14]

 UKB-PPP (validation) 33,469 European Sun et al. [25]

Outcomes

 LUAD (primary) 11,245/54619 European TRICL [20–24]

 LUAD (validation) 1553/287137 European FinnGen Cohort [26]

Risk factors

 Age of smoking initiation 341,427 European Liu, et al. [27]

 Number of cigarettes smoked daily 108,946 European UK Biobank

 Pack years of smoking 142,387 European UK Biobank

 Maternal smoking around birth 121,634/276098 European UK Biobank

 Any parental history of lung cancer 407,521 European Mbatchou J [28]

 Average weekly beer intake 327,634 European UK Biobank

 Leisure activities 67,877/393492 European UK Biobank

 COPD 13,530/454945 European Sakaue et al. [29]
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Evaluation of druggability
To explore interations between potential therapeutic 
targets and the underlying mechanisms of LUAD, we 
performed PPI analysis involving the identified plasma 
proteins and previously recognized drug therapeutic tar-
gets. The PPI analysis was carried out using the STRING 
database (https:// string- db. org) [40] and Cytoscape soft-
ware, with a minimum required interaction score of 0.4 
[41].

Furthermore, we evaluated the druggability of the 
candidate target proteins by referencing Finan’s study 
on 4479 druggable genes [42], the ChEMBL database 
(https:// www. ebi. ac. uk/ chembl) [43], and ClinicalTrials 
(https:// www. Clini calTr ials. gov). These 4479 druggable 
genes were categorized into three tiers, tier 1 included 
1427 efficacy targets of approved drugs and clinical-phase 
drug candidates, tier 2 encompassed 682 targets closely 
linked to approved drug targets or drug-like compounds, 
and tier 3 comprised 2370 targets with more distant simi-
larities to approved drug targets. We obtained informa-
tion about compound names, molecule types, and action 
types of the targeted proteins from ChEMBL. Addition-
ally, we searched ClinicalTrials to gather data on the clin-
ical phases of the target proteins under development.

Ethical statement
No ethical approval was required for the present study, 
for all data sources were based on publicly available sum-
mary-level data. All these studies were approved by the 
relevant institutional review committees.

Results
Screening the proteome for lung adenocarcinoma causal 
proteins
MR analysis identified nine plasma proteins associated 
with LUAD (Figs. 3, 4 and Additional file 1: Fig. S2). These 
proteins include aminolevulinate dehydratase (ALAD), 
Fms-related receptor tyrosine kinase 1 (FLT1), intercel-
lular adhesion molecule 5 (ICAM5), MAM domain-con-
taining glycosylphosphatidylinositol anchor 2 (MDGA2), 
neurotrimin (NTM), phosphomannomutase 2 (PMM2), 
ribonuclease T2 (RNASET2), tissue factor pathway 
inhibitor (TFPI), and von Willebrand factor C domain- 
containing 2 (VWC2). Specifically, ALAD (OR = 0.79; 
95% CI 0.72–0.87; P = 4.92 ×  10–7), FLT1 (OR = 0.39; 95% 
CI 0.28–0.55; P = 8.58 ×  10−8), ICAM5 (OR = 0.91; 95% 
CI 0.88–0.95; P = 2.94 ×  10−5), and VWC2 (OR = 0.85; 
95% CI 0.79–0.92; P = 1.64 ×  10−5) were associated with a 
decreased risk of LUAD, while MDGA2 (OR = 1.13; 95% 
CI 1.08–1.19; P = 1.40 ×  10–7), NTM (OR = 1.12; 95% CI 
1.09–1.16; P = 3.57 ×  10−11), PMM2 (OR = 1.35; 95% CI 
1.18–1.53; P = 9.21 ×  10−6), RNASET2 (OR = 1.15; 95% 

CI 1.08–1.21; P = 1.57 ×  10−6), and TFPI (OR = 4.58; 95% 
CI 3.02–6.94; P = 8.44 ×  10−13) were associated with an 
increased risk of LUAD (Additional file 2: Table S2, S3).

We validated our primary findings in other datasets, 
RNASET2 was also identified as being associated with 
LUAD in the FinnGen cohort. Using a genome-wide sig-
nificant variant reported by Sun et al. as a genetic instru-
ment, RNASET2 increased the risk of LUAD (OR = 1.20; 
95% CI 1.03–1.39; P = 0.02), while other proteins showed 
no association with LUAD. ALAD, MDGA2, and NTM 
were not found in the UKB-PPP dataset (Additional 
file 1: Fig. S3).

Sensitivity analysis for lung adenocarcinoma causal 
proteins
The results of sensitivity analyses confirmed the robust-
ness of our primary MR analyses. No evidence of hetero-
geneity was found in the association of the nine proteins 
in Additional file  2: Table  S3, as measured by Cochran 
Q statistics (PQ-stat > 0.05). And there was no horizontal 
pleiotropy in the IVs, as assessed by MR-Egger intercept 
(PEgger-Intercept > 0.05) or MR-PRESSO global pleiotropy 
test (PGlobalTest > 0.05). Bidirectional MR analysis revealed 

Fig. 3 Volcano plot of the MR results for 1394 plasma proteins 
on LUAD. OR for increased risk of LUAD were expressed as per SD 
increase in plasma protein levels. Dashed horizontal black line 
corresponded to P = 3.59 ×  10−5 (0.05/1394). ln = natural logarithm; 
PVE = proportion of variance explained. OR: odds ratio; LUAD: lung 
adenocarcinoma; SD: standard deviation

https://string-db.org
https://www.ebi.ac.uk/chembl
https://www.ClinicalTrials.gov
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no evidence of reverse causations (Additional file 1: Fig. 
S4) and Steiger filtering ensured directionality (Addi-
tional file 2: Table S4). The high support of colocalization 
evidence was observed between 3 proteins (RNASET2, 
TFPI, and VWC2) and LUAD, which were identified as 
tier 1. ALAD was identified as tier 2 due to its medium 
support of colocalization evidence. The remaining pro-
teins with limited evidence of colocalization were ascer-
tained as tier 3 targets (Additional file  2: Table  S5 and 
Additional file 1: Fig. S5). Finally, after phenotype scan-
ning, RNASET2 (rs71573407) was linked to complica-
tions of the puerperium, while RNASET2 (rs162298) 
was associated with Crohn’s disease, hypothyroidism or 
myxoedema, and treatment with levothyroxine sodium. 
VWC2 (rs10282410) was associated with sitting height 
(Additional file  2: Table  S6). Of which, the relationship 
between Crohn’s disease and LUAD has sparked great 
interest. Bobby et  al. [44] reported that Crohn’s disease 
was associated with a higher risk of LUAD (OR = 1.53, 
95% CI 1.23–1.91, P < 0.05). After removing rs162298, 
the causality between RNASET2 and LUAD remained 
significant (IVW OR = 1.12, 95% CI 1.04–1.20, P = 0.003). 
Regarding other traits, none of the associations could 

fully elucidate the connection between identified pro-
teins and LUAD. The findings suggested that the causality 
between identified proteins and LUAD was not violated 
by potential risk factors.

Identification of likely causal LUAD risk factors
To understand potential mechanisms between proteins 
and LUAD, we performed a two-step mediation MR 
involving conventional LUAD risk factors. Firstly, we 
evaluated the causal relationship between these risk fac-
tors and LUAD. Subsequently, we examined the causal 
effects of the identified proteins on the risk factors.

As anticipated, smoking, maternal smoking around 
birth, any parental history of lung cancer, alcohol con-
sumption, and COPD increased the risk of LUAD, 
while the age of smoking initiation and engagement in 
lesisure activities were linked to a reduced risk of LUAD 
(Fig.  5). In particular, the number of cigarettes smoked 
daily (OR = 4.89; 95% CI 3.98–6.00; P = 1.60 ×  10−50) and 
pack years of smoking (OR = 1.34; 95% CI 1.25–1.44; 
P = 5.30 ×  10−15) were associated with an increased risk of 
LUAD. Maternal smoking around birth (OR = 3.61; 95% 
CI 2.40–5.42; P = 9.80 ×  10−10) was also linked to a higher 

Fig. 4 MR analyses for nine potential causal proteins on LUAD. The squares were the causal estimates on the OR scale, and the whiskers 
represented the 95% CI for these ORs. nSNPs: number of SNPs used for the estimation of the causal effects in this plot. OR for increased risk of LUAD 
were expressed as per SD increase in plasma protein levels. P values were determined from the IVW MR method. OR: odds ratio; CI: confidence 
interval; LUAD: lung adenocarcinoma; SD: standard deviation; IVW: inverse-variance-weighted; MR: Mendelian randomization
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LUAD risk. Notably, the average weekly beer intake 
(OR = 1.70; 95% CI 1.39–2.08; P = 2.80 ×  10−07) exhib-
ited a strong association with LUAD. Genetically deter-
mined higher COPD risk (OR = 1.34; 95% CI 1.25–1.44; 
P = 5.30 ×  10−15) was also correlated with an increased 
LUAD risk. On the other hand, an increasing age of 
smoking initiation was associated with a reduced risk of 
LUAD (OR = 0.59; 95% CI 0.47–0.72; P = 5.90 ×  10−07), 
and engagement in leisure activities (OR = 0.60; 95% CI 
0.38–0.94; P = 2.50 ×  10−02) decreased the risk of LUAD 
(Additional file 2: Table S7).

Identification of LUAD risk factors associated proteins 
and mediation analysis
We performed MR on three plasma proteins (RNA-
SET2, TFPI and VWC2) in relation to LUAD risk factors 
(Additional file  2: Table  S8). Our results revealed that 
genetically elevated TFPI levels were associated with an 
increased daily number of cigarettes smoked (OR = 1.017; 
95% CI 1.003–1.030; P = 0.015) and pack years of smok-
ing (OR = 1.020; 95% CI 1.000–1.030; P = 0.025). Further-
more, higher genetically determined VWC2 levels were 

associated with greater engagement in leisure activities 
(OR = 1.004; 95% CI 1.002–1.006; P = 0.000).

To explore the proteins’ indirect impact on LUAD 
through risk factors, we performed a mediation analysis 
using effect estimates from a two-step MR and the total 
effect from the primary MR. The proportion of media-
tion effect of TFPI via number of cigarettes smoked 
daily and pack years of smoking was 2.70% and 1.30%, 
respectively. The indirect effect of VWC2 on LUAD risk 
through leisure activities accounted for 1.20% (Additional 
file 2: Table S9).

Association of potential drug targets with current LUAD 
medications.
The PPI network revealed interactions between two 
identified proteins (FLT1 and NTM) and the targets of 
five current LUAD medications (Figs.  6, 7). Specifically, 
FLT1 was associated with epidermal growth factor recep-
tor (EGFR), the target of Erlotinib, Gefitinib, Afatinib, 
and Osimertinib. FLT1 was also linked to Kirsten Rat 
Sarcoma Viral Oncogene Homolog (KRAS), Erb-B2 
Receptor Tyrosine Kinase 2 (ERBB2), and cluster of dif-
ferentiation 274 (CD274), also known as programmed 

Fig. 5 Causal effects of risk factors on LUAD through MR analyses. The squares are the causal estimates on the OR scale, and the whiskers represent 
the 95% CI for these ORs. nSNPs: number of SNPs used for the estimation of the causal effects in this plot. OR per SD increase in plasma protein 
levels as LUAD risk increased. P values were determined from the IVW MR method. OR: odds ratio; CI: confidence interval; COPD: chronic obstructive 
pulmonary disease; LUAD: lung adenocarcinoma; MR: Mendelian randomization; SD: standard deviation; IVW: inverse-variance-weighted
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death-ligand 1 (PD-L1). KRAS is the target of AMG 510 
for G12C. ERBB2 is the target of Trastuzumab, derux-
tecan, Poziotinib, and Pyrotinib. CD274 (PD-L1) is the 
target of Pembrolizumab, Nivolumab, Atezolizumab and 
Durvalumab. NTM was associated with neurotrophic 
tyrosine kinase receptor type 2 (NTRK2), the target of 
Larotrectinib and Entrectinib (Additional file 1: Fig. S6).

Druggability and clinical‑phase drug for candidate protein 
targets
We conducted a comprehensive investigation, utilizing a 
list of druggable genes [42], the ChEMBL database [43], 
and the ClinicalTrials website, to assess the druggabil-
ity and drug development of the nine plasma proteins. 
We categorized the potential targets into three groups: 

Fig. 6 Protein–Protein interaction network among the causal proteins and current medication targets for LUAD. Red circles represented plasma 
proteins (FLT1 and NTM). Orange solid circles depicted current LUAD medication targets associated with potential proteins, while yellow solid circles 
represented current LUAD medication targets without such associations. The size of the circle indicated the number of interacting proteins. LUAD: 
lung adenocarcinoma

Fig. 7 Interaction between identified plasma proteins and current medication targets for LUAD. LUAD: lung adenocarcinoma
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(1) in development (currently in clinical trials); (2) drug-
gable (listed as druggable targets); and (3) not currently 
recognized as druggable. Notably, the FLT1-targeted 
drug FAMITINIB was entering phase I/II trials for vari-
ous cancers, including NSCLC, breast cancer, colorectal 
cancer, renal cell cancer, and others. Additionally, the 
FLT1-targeted drug ICRUCUMAB was in phase II tri-
als for bladder, urethra, ureter, or renal pelvis carcinoma. 
TFPI-targeted drugs CONCIZUMAB, MARSTACIMAB, 
ANDEXANET ALFA, and BAY-1093884 were undergo-
ing phase I/II/III trials for hemophilia (Additional file 2: 
Table S10). Although there are currently no ongoing trials 
for NTM, RNASET2, and VWC2, they remain potential 
druggable targets. While ALAD, ICAM5, MDGA2, and 
PMM2 are not currently listed as potential drug targets.

Discussion
We used plasma pQTL data to identify potential thera-
peutic targets for LUAD, revealing nine proteins. A “cau-
sality” identified by MR might be influenced by reverse 
causality, horizontal pleiotropy or confounding factors 
[45]. Strong evidence of an association between geneti-
cally predicted levels of RNASET2, TFPI, and VWC2 
and LUAD emerged from colocalization analysis. Conse-
quently, bidirectional MR was conducted and no proteins 
revealed reverse causality, which was further supported 
by Steiger filtering. Moreover, we listed two protein-tar-
geted drugs in development (FLT1 and TFPI) and three 
druggable proteins (NTM, RNASET2, and VWC2).

Our findings indicate that smoking, maternal smok-
ing around birth, parental history of lung cancer, alcohol 
consumption, leisure activities, and COPD are causally 
associated with LUAD, highlighting their roles in LUAD 
pathogenesis and aligning with classical epidemiologi-
cal studies [3]. A positive family history of lung cancer 
has been identified as a risk factor in studies reporting a 
high familial risk for early-onset lung cancer. Exposure 
to tobacco smoke during pregnancy may significantly 
increase the incidence and mortality of lung cancer in 
adulthood [46]. Consuming 30g or more of alcohol per 
day is linked to an increased risk of lung cancer compared 
to non-alcohol consumption, with the risk being particu-
larly pronounced in male never smokers [47]. Some stud-
ies have also proposed an inverse relationship between 
physical activity and lung cancer risk [38]. However, the 
evidence has been limited to current and former smok-
ers in most stuides. Traditional observational stuides 
are susceptible to confounding and reverse causation. 
Baumeister et al. [48] found that physical activity had no 
effect on lung cancer through MR in a large cohort.

TFPI functions as a serine protease inhibitor, affect-
ing prothrombin clearence via the Tissue Factor (TF) 
pathway [49]. TF, known for its role in promoting tumor 

angiogenesis and metastasis, can drive cancer progres-
sion [50]. The role of TFPI in cancer remains contentious. 
TFPI was deemed a tumor suppressor initially. TFPI was 
observed to induce invasive tumor growth upon silencing 
in breast cancer cells, while its overexpression triggered 
apoptosis [51]. Mice lacking TFPI exhibited increased 
metastatic potential [52]. Our findings align with emerg-
ing evidence suggesting TFPI might actively contribute 
to tumor progression. Elevated TFPI expression has been 
noted in various invasive tumors [51]. Arnason et  al. 
[52] found that TFPI facilitated multiple drug resistance 
(MDR) in cancer cells. Phenoscanner revealed associa-
tions between TFPI SNP(rs116350534) and LUAD [24]. 
Our study further identified higher TFPI levels among 
individuals with a smoking history. TFPI has exhib-
ited potential in differentiating LUAD among high-risk 
smokers [53], with research indicating increased TFPI 
activity in smokers [54]. Such elevated TFPI activity in 
smokers could arise from endothelial damage or chronic 
inflammation in vessel walls, leading to increased TFPI 
synthesis, release, or binding to the endothelium [55]. 
Nevertheless, establishing a direct link between TFPI and 
LUAD warrants further investigation. TFPI may influ-
ence LUAD through TF pathway, involvement in tumor 
progression, potential roles in drug resistance, and links 
to smoking-induced changes. Future research should 
focus on elucidating the mechanisms through which 
TFPI is involved in LUAD development, especially in 
the context of smoking-induced changes. These insights 
could pave the way for targeted therapeutic strategies. 
Exploring the specific role of TFPI in LUAD and its inter-
actions with smoking-induced factors will necessitate 
comprehensive experimental and clinical studies. Moreo-
ver, it’s worth noting that TFPI is currently under clinical 
trial for hematological malignancies like hemophilia.

RNASET2, a member of the T2 family of extracellu-
lar ribonucleases, has been associated with anti-tumor 
activities. Its overexpression inhibits the clonogenicity of 
ovarian cancer cells in  vitro and suppresses tumorigen-
esis and metastasis in  vivo [56]. However, our findings 
suggest that RNASET2 plays a role in promoting LUAD 
carcinogenesis. A meta-analysis revealed a correlation 
between RNASET2 and an elevated risk of lung cancer 
[24]. Its pro-cancer effects may involve promoting can-
cer cell migration, angiogenesis, and remodeling of the 
immune microenvironment [57]. Bioinformatics analy-
sis of The Cancer Genome Atlas (TCGA) database indi-
cates that the role of RNASET2 in tumor cells may be 
cancer-type-dependent and location-specific. For exam-
ple, RNASET2 acts as a tumor suppressor in colorectal 
cancer, melanoma, non-Hodgkin’s B-cell lymphoma, and 
acute lymphoblastic leukemia. However, it functions as 
an oncogene in renal cell carcinima and lung cancer [58]. 
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In our research, we validated RNASET2 using a co-local-
ization method. Although we did not find evidence of 
RNASET2 interacting with the targets of current LUAD 
drugs, it was the only biomarker validated in the FinnGen 
cohort, suggesting a higher likelihood of RANSET2 
being a causal protein for LUAD. Future research could 
focus on elucidating the specific molecular pathways and 
genetic backgrounds associated with RNASET2 in differ-
ent cancers.

VWC2 (Brorin) is a glycoprotein belonging to the 
Chordin family of secreted BMP regulators. Its expres-
sion is diminished in colorectal cancer and exhibits a 
negative correlation with tumor stage. VWC2 inhibits 
tumor cell growth both in vitro and in vivo [59]. Colonic 
adenocarcinoma displays the highest degree of DNA 
methylation in VWC2. Small ubiquitin-like modifier 1 
(SUMO1)-mediated SUMOylation of DNA methyltrans-
ferase 1 (DNMT1) enhances its protein stability, promot-
ing DNA methylation and subsequently downregulating 
VWC2. Currently, no studies have explored the asso-
ciation between VWC2 and LUAD. In our research, we 
established a link between VWC2 and reduced LUAD 
risk, confirming a causal effect through co-localization 
analysis. Additionally, we observed that higher levels of 
VWC2 were associated with leisure activities, suggest-
ing that the protective effect of VWC2 on LUAD can be 
strengthened through such activities. Its potential role 
in LUAD involves a confirmed link to reduced risk and 
a proposed enhancement of protective effects through 
leisure activities. The mechanisms involve DNA methyla-
tion regulation, impacting VWC2 expression levels.

Tumor angiogenesis is a significant hallmark of can-
cer, and vascular endothelial growth factors (VEGFs) and 
their receptors play key roles in pathological angiogenesis 
in various tumors [60]. FLT1(VEGFR-1) is expressed on 
both endothelial and epithelial cells, binding with VEGF-
A, VEGF-B, and placental growth factor (PGF) [61]. 
The mechanism of FLT1 in tumor cells remains unclear. 
Upregulated in colorectal cancer, FLT1 promotes epithe-
lial-mesenchymal transition (EMT), enhancing invasive-
ness [62]. It also promotes proliferation, invasion, and 
metastasis of LUAD cells, with expression negatively 
correlated with survival time and recurrence-free sur-
vival rate in LUAD [63]. However, Dylan found that the 
variant allele (C) of the FLT1 SNP rs9582036 is associated 
with reduced FLT1 expression, consequently accelerating 
the recurrence of non-small cell lung cancer (NSCLC) 
through angiogenesis. One mechanism is that soluble 
FLT1 dominantly inhibits VEGFA by forming heter-
odimers with VEGFR-2, the primary receptor responsi-
ble for most proangiogenic effects of VEGFA [64]. Our 
results align with this, as the FLT1 protein variant offers 
protection against LUAD. Furthermore, PPI analysis 

revealed FLT1 interaction with EGFR, KRAS, ERBB2, 
and CD274 (PD-L1), all targeted by medications involv-
ing tyrosine kinase inhibitors and monoclonal antibod-
ies. Consequently, FLT1 may represent a promising novel 
target for these anti-tumor drugs. Therapeutic agents tar-
geting FLT1 have been well-developed and evaluated in 
phase II clinical trials.

In addition to the proteins mentioned above, our 
findings suggest that NTM has potential for both phar-
macological and clinical applications. NTM is a glyco-
protein belonging to the immunoglobulin superfamily 
and the IgLON family. Lower NTM gene expression was 
observed in LUAD compared to controls [65], a discov-
ery confirmed by Oncomine and TCGA. However, our 
results indicate that NTM is associated with an increased 
risk of LUAD. PPI analysis has shown that NTM interacts 
with NTRK2, the targets of Larotrectinib and Entrec-
tinib. This implies that NTM may influence LUAD by 
exerting its effects on NTRK.

There are four proteins not currently listed as drug-
gable. The ALAD genetic polymorphism (rs1800435) is 
associated with reduced cancer mortality [66]. ALAD is 
significantly decreased in breast and hepatocellular car-
cinoma, and its reduced expression is correlated with an 
unfavorable prognosis in patients [67, 68]. Yh Yang et al. 
also found a significant association between ICAM5 and 
LUAD risk, suggesting its potential as a target for lung 
cancer [69, 70]. MDGA2 is a tumor suppressor in gas-
tric carcinogenesis, and its hypermethylation is an inde-
pendent prognostic factor in gastric cancer patients [71]. 
However, advanced-stage nasopharyngeal carcinoma 
patients exhibited higher MDGA2 expression levels 
compared to those in the early stage, aligning with our 
results [72]. Consistent with our findings, knockdown of 
PMM2 in renal cell carcinoma cells inhibited cancer cell 
migration and invasion, indicating that overexpression of 
PMM2 could promote malignancy [73]. However, there 
is currently no relevant research on ALAD, MDGA2, 
and PMM2 in relation to LUAD. Future research should 
focus on unraveling the specific molecular mechanisms 
of these proteins in lung cancer, exploring their potential 
as therapeutic targets, and developing drugs.

Our study utilized a two-sample MR and Bayesian 
co-localization analysis, identifying nine plasma pro-
teins causally linked to LUAD. This underscores the 
efficacy of our approach in elucidating the fundamen-
tal mechanisms involved in the pathogenesis of LUAD. 
Our research has the potential to improve genetic-based 
screening methods for early-stage LUAD, providing valu-
able evidence for the development of screening and pre-
vention strategies, particularly for individuals at high 
risk due to confirmed genetic factors. According to our 
study, personalized medical interventions targeting these 
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proteins hold potential value in formulating prevention 
strategies, customizing screening plans, and intervening 
in genetic risks.

To further validate the functional role of the identi-
fied proteins, in future research, we will conduct in vitro 
experiments to investigate the effects of manipulating 
the identified proteins on LUAD cell lines. This involves 
accessing changes in cell proliferation, migration, or apo-
tosis. Additionally, in  vivo studies using animal models 
can be consisdered to evaluate the therapeutic efficacy of 
targeting these proteins.

To facilitate the transition to personalized medicine, we 
will take the following steps: First, we will investigate if 
the identified proteins can serve as reliable biomarkers 
for LUAD. This may involve analyzing patient samples to 
assess the correlation between protein levels and disease 
progression, treatment response, or patient outcomes. 
Second, we will explore the development of targeted 
therapies that specifically inhibit or modulate the activ-
ity of the identified proteins. This might include design-
ing experiments to test the effectiveness of inhibitors, 
monoclonal antibodies, or gene therapies in suppressing 
LUAD cell growth or improving the sensitivity of cancer 
cells to existing treatments. Thrid, we will consider pro-
posing clinical trials to evaluate the efficacy and safety 
of personalized treatments incorporating the targeted 
therapies based on the identified proteins. These trials 
could involve stratifying patients based on biomarker 
expression levels or genetic profiles to evaluate treatment 
responses in specific subgroups.

Our research findings have the potential to influence 
clinical guidelines and policies in several aspects. First, 
we identified potential biomarkers for LUAD, suggest-
ing updates to screening guidelines based on correlations 
between specific proteins and the disease. Second, our 
work provides a basis for personalized prevention strate-
gies for genetically at-risk populations, including custom-
ized screenings and interventions. Moreover, the study 
supports genetic counseling and patient education.

This study has several limitations. First, the LUAD 
GWAS data lack stratification based on specific subtypes, 
hindering stratified analyses. This limitation suggest 
potential for future research collaborations or consor-
tia to collect more nuanced, stratified datasets. Second, 
caution is needed when interpreting the posterior prob-
ability of hypothesis 4 (PPH4) in colocalization, as a low 
PPH4 may not indicate the absence of evidence support-
ing colocalization, especially when PPH3 is also low due 
to limited statistical power [74]. Enhancing the power of 
existing colocalization methods through improved ana-
lytical estimation, fine-mapping methods, and explicit 
modeling of varying LD patterns across datasets could 
address this issue [74]. Third, a key assumption of MR is 

the “no horizontal pleiotropy” assumption. This assumes 
that the IV used for MR exclusively influences the out-
come through the exposure. Horizontal pleiotropy occurs 
when the variant affects traits beyond the exposure path-
way or directly impacts the outcome [33]. Despite exclud-
ing trans-associated loci, conducting Steiger filtering, and 
sensitivity analyses in our MR study, fully eliminating 
horizontal pleiotropy and confounding bias remains chal-
lenging. Acknowledge these limitations is crucial due to 
their potential impact on the study’s conclusions. Fourth, 
weak instrument bias in MR remains a challenge, which 
can lead to inaccurate estimates and reduced statistical 
power. To mitigate this, we selected genetic instruments 
with established associations with the exposure variable 
and employed various statistical methods and sensitiv-
ity analyses. However, some level of bias may still exist. 
Fifth, caution is needed when generalizing our findings, 
as both the pQTLs and GWAS data primarily originated 
from individuals of European ancestry. Extending these 
findings to other ethnicities requires further validation. 
Finally, our study revealed limited genetic prediction of 
TFPI and VWC2 mediated by smoking and leisure activi-
ties, indicating a need for additional research to explore 
other potential mediators.

In conclusion, our genetic association studies suggest 
a causality between genetically determined plasma pro-
teins and LUAD. The identified proteins, particularly 
RNASET2, TFPI, VWC2, FLT1, and NTM, show prom-
ise as potential therapeutic targets for LUAD. Further 
research is needed to elucidate the mechanisms of these 
candidate proteins in LUAD.
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Additional file 1: Figure S1. Study flame chart of the Mendelian ran-
domization study. We identified SNPs associated with plasma proteins. 
Various Mendelian Randomization (MR) approaches were used to 
access the causality of plasma proteins for LUAD. When only one pQTL 
was available for a protein, we applied the Wald ratio method. If two 
or more pQTLs were available, we used the inverse-variance-weighted 
(IVW), MR Egger, weighted median, weighted mode, and simple mode. 
If only two SNPs were found, only the IVW method was employed. Then, 
sensitivity analyses were conducted to detect underlying pleiotropy and 
heterogeneity. The Cochran Q test (P < 0.05) from the IVW approach was 
used to identify potential horizontal pleiotropy. The intercept obtained 
from the MR-Egger regression indicated directional pleiotropy (P < 0.05). 
Additionally, MR-PRESSO was used to assess horizontal pleiotropy. 
pQTLs: protein quantitative trait locus; SNPs: single nucleotide polymor-
phisms; LUAD: lung adenocarcinoma; GWAS: genome-wide association 
study; MR-PRESSO: MR Pleiotropy Residual Sum and Outlier. Figure S2. 
Standard MR plots for proteins and risk of LUAD. MR analysis identified 
plasma proteins associated with LUAD risk. The different regression lines 
indicated the effect sizes as calculated by different MR tests (meth-
ods). MR analysis of plasma proteins for ALAD (a), FLT1 (b), ICAM5 (c), 
MDGA2 (d), NTM (e), PMM2 (f), RNASET2 (g), and VWC2 (h), respectively. 
ALAD: aminolevulinate dehydratase; FLT1: Fms related receptor tyrosine 
kinase 1; ICAM5: intercellular adhesion molecule 5; MDGA2: MAM domain 
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containing glycosylphosphatidylinositol anchor 2; NTM: neurotrimin; 
PMM2: phosphomannomutase 2; RNASET2: ribonuclease T2; VWC2: von 
willebrand factor C domain containing 2. MR: Mendelian randomization; 
LUAD: lung adenocarcinoma. Figure S3. External validation of the causal 
relationship between six potential causal proteins and LUAD through MR 
analysis. The squares were the causal estimates on the OR scale, and the 
whiskers represented the 95% CI for these ORs. nSNPs: number of SNPs 
used for the estimation of the causal effects in this plot. OR for increased 
risk of LUAD were expressed as per SD increase in plasma protein levels. 
P values were determined from the inverse-variance-weighted (IVW) MR 
method. OR: odds ratio; CI: confidence interval; MR: LUAD: lung adeno-
carcinoma; SD: standard deviation. Figure S4. Bidirectional MR analysis 
for LUAD on levels of nine potential causal proteins. OR for increased risk 
of LUAD were expressed as per SD increase in plasma protein levels. OR: 
odds ratio; CI: confidence interval; MR: Mendelian randomization; LUAD: 
lung adenocarcinoma; SD: standard deviation. Figure S5. Colocalization 
plots of pQTLs and genetic associations of LUAD. Colocalization analysis 
of plasma proteins for ALAD (a), FLT1 (b), ICAM5 (c), MDGA2 (d), NTM (e), 
PMM2 (f), PTGFRN (g), TFPI (i), and VWC2 (j), respectively. Diamond purple 
points represented the SNP that with the minimal sum of P value in cor-
responded protein GWAS and LUAD GWAS. pQTL: protein quantitative trait 
loci; LUAD: lung adenocarcinoma; SNP: single nucleotide polymorphism; 
GWAS: genome-wide association studies. Figure S6. Protein-protein inter-
action network among the causal proteins and current lung adenocarci-
noma medications targets.

Additional file 2. Table S1. Genetic instruments of plasma proteins for 
MR analysis. MR: Mendelian randomization; SNP: single nucleotide poly-
morphism; chr: chromosome; pos: position; eaf: effect allele frequency; 
se: standard error. Table S2. MR results for plasma proteins significantly 
associated with LUAD after Bonferroni correction. MR: Mendelian randomi-
zation; LUAD: lung adenocarcinoma; SNP: single nucleotide polymor-
phism; OR: odds ratio; CI: confidence interval; PVE: proportion of variance 
explained. Table S3. MR results of proteome and LUAD. MR: Mendelian 
randomization; LUAD: lung adenocarcinoma; SNP: single nucleotide 
polymorphism; nSNPs: number of SNPs; se: standard error; OR: odds ratio; 
CI: confidence interval; IVW:inverse-variance-weighted. Table S4. Steiger 
filtering and reverse MR results of LUAD as exposure and proteome as 
outcome. MR: Mendelian randomization; LUAD: lung adenocarcinoma; 
SNP: single nucleotide polymorphism; nSNPs: number of SNPs; OR: odds 
ratio; CI: confidence interval; IVW:inversevariance-weighted. Table S5. 
Bayesian co-localization analysis on nine potential causal proteins. Drug-
gable genes were divided into three tiers, including targets of approved 
drugs and drugs in clinical development (tier 1), proteins closely related to 
drug targets or with associated drug-like compounds (tier 2), and extracel-
lular proteins and members of key drug-target families (tier 3). SNP: single 
nucleotide polymorphism. Table S6. Previously-reported genome-wide 
significant association of SNPs as genetic instruments of three potential 
causal proteins. SNP: single nucleotide polymorphism; chr: chromosome; 
se: standard error; N_samples: number of samples; N_cases: number of 
cases; N_controls: number of controls. Table S7. MR results of risk factors 
versus LUAD (GWAS from European population). MR: Mendelian randomi-
zation; LUAD: lung adenocarcinoma; GWAS: genome-wide association 
study; SNP: single nucleotide polymorphism; nSNPs: number of SNPs; se: 
standard error; OR: odds ratio; CI: confidence interval; IVW:inverse-vari-
ance-weighted. Table S8. MR results of proteome and LUAD risk factors. 
MR: Mendelian randomization; LUAD: lung adenocarcinoma; SNP: single 
nucleotide polymorphism; nSNPs: number of SNPs; se: standard error; OR: 
odds ratio; CI: confidence interval; IVW:inverse-variance-weighted; COPD: 
chronic obstructive pulmonary disease. Table S9. LUAD mediation results 
for protein targets on LUAD via risk factors. LUAD: lung adenocarcinoma. 
Table S10. Summary of druggability and drug development for LUAD 
associated with plasma proteins through MR analysis. Druggable genes 
were divided into three tiers, including targets of approved drugs and 
drugs in clinical development (tier 1), proteins closely related to drug 
targets or with associated drug-like compounds (tier 2), and extracellular 
proteins and members of key drug-target families (tier 3). LUAD: lung 
adenocarcinoma; NSCLC: non-small cell lung cancer.
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