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Abstract 

Background Identifying precise biomarkers of immunotherapy response for non-small cell lung carcinoma (NSCLC) 
before treatment is challenging. This study aimed to construct and investigate the potential performance of a sub-
regional radiomics model (SRRM) as a novel tumor biomarker in predicting the response of patients with NSCLC 
treated with immune checkpoint inhibitors, and test whether its predictive performance is superior to that of conven-
tional radiomics, tumor mutational burden (TMB) score and programmed death ligand-1 (PD-L1) expression.

Methods We categorized 264 patients from retrospective databases of two centers into training (n = 159) and valida-
tion (n = 105) cohorts. Radiomic features were extracted from three sub-regions of the tumor region of interest using 
the K-means method. We extracted 1,896 features from each sub-region, resulting in 5688 features per sample. The 
least absolute shrinkage and selection operator regression method was used to select sub-regional radiomic features. 
The SRRM was constructed and validated using the support vector machine algorithm. We used next-generation 
sequencing to classify patients from the two cohorts into high TMB (≥ 10 muts/Mb) and low TMB (< 10 muts/Mb) 
groups; immunohistochemistry was performed to assess PD-L1 expression in formalin-fixed, paraffin-embedded 
tumor sections, with high expression defined as ≥ 50% of tumor cells being positive. Associations between the SRRM 
and progression-free survival (PFS) and variant genes were assessed.

Results Eleven sub-regional radiomic features were employed to develop the SRRM. The areas under the receiver 
operating characteristic curve (AUCs) of the proposed SRRM were 0.90 (95% confidence interval [CI] 0.84−0.96) 
and 0.86 (95% CI 0.76−0.95) in the training and validation cohorts, respectively. The SRRM (low vs. high; cutoff 
value = 0.936) was significantly associated with PFS in the training (hazard ratio [HR] = 0.35 [0.24−0.50], P < 0.001) 
and validation (HR = 0.42 [0.26−0.67], P = 0.001) cohorts. A significant correlation between the SRRM and three variant 
genes (H3C4, PAX5, and EGFR) was observed. In the validation cohort, the SRRM demonstrated a higher AUC (0.86, 
P < 0.001) than that for PD-L1 expression (0.66, P = 0.034) and TMB score (0.54, P = 0.552).

Conclusions The SRRM had better predictive performance and was superior to conventional radiomics, PD-L1 
expression, and TMB score. The SRRM effectively stratified the progression-free survival (PFS) risk among patients 
with NSCLC receiving immunotherapy.
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Background
Non-small cell lung carcinoma/cancer (NSCLC) accounts 
for approximately 80% of all lung cancers, most of which 
are diagnosed as advanced NSCLC [1]. Recently, immune 
checkpoint inhibitors (ICIs) have revolutionized the 
treatment of patients with advanced NSCLC. ICIs alone 
or in combination with chemotherapy are now recog-
nized as first-line therapy for the treatment of NSCLC or 
as second-line therapy for patients who do not respond 
to chemotherapy [2]. The KEYNOTE trial, a phase II/III 
study showed an overall survival benefit with pembroli-
zumab over docetaxel in patients with advanced NSCLC 
[3, 4]. Long-term survival benefit was also observed in 
patients with NSCLS having a programmed death-ligand 
1 (PD-L1)-expression of ≥ 50%. However, usually, only 
a small number of patients respond to treatment with 
ICIs, and a small subset of patients demonstrate immune 
hyperprogression [5–7]. Presently, the biomarkers for 
ICIs, such as expressions of tumor mutational burden 
(TMB) and PD-L1, do not provide sufficient predictive 
accuracy in clinical applications [8, 9]. This lack of preci-
sion can lead to challenges in the effective implementa-
tion of ICI treatment in advanced NSCLC. Therefore, it is 
essential to explore a novel biomarker that can accurately 
estimate which patients would respond to ICI therapy 
before its initiation.

Radiomics are first-order or higher-order measures 
that capture quantitative information present in the 
imaging data [10]. They form an active area of compu-
tational medical imaging research because of their non-
invasiveness and ability to convey important disease 
information that would otherwise be invisible to human 
observers [11, 12]. Previous studies have investigated the 
use of radiomics in NSCLC, including the assessment 
of the immune-inflammatory status of tumors, which 
is thought to play a key role in distinguishing potential 

responders to ICIs from non-responders [13–15]. Con-
ventional radiomics primarily focuses on the charac-
teristics of the entire tumor, with a lack of quantitative 
analysis on the heterogeneity within the sub-regions 
of the tumor. In recent years, the study of tumor sub-
regional radiomics has emerged as a promising and rap-
idly advancing field. This includes research progress in 
areas such as predicting responses to targeted therapy in 
breast cancer and prognosis prediction of glioma [16, 17]. 
Meanwhile, a growing number of studies have combined 
genomics, radiology, proteomics data, and pathology 
to estimate PD-L1 expression levels, TMB, and tumor 
microenvironment (TME) or predict the response to 
immunotherapy and side effects in patients with cancer 
[18–20]. Recent studies reported that a machine learning 
analysis of circulating immune cell characteristics or CT 
images in patients with NSCLC could be used to predict 
immunotherapy benefits [21, 22]. However, the utility of 
combining sub-regional radiomics and machine learning 
for predicting responses to ICIs in advanced lung cancer 
remains unclear.

Thus, the aim of our study was to construct a sub-
regional radiomics model (SRRM) on computed 
tomography (CT) scans and test whether its predictive 
performance was superior to that of conventional radi-
omics, TMB score, and PD-L1 expression in NSCLC 
before ICI treatment. Additionally, we investigated the 
associations between the SRRM on one hand and pro-
gression-free survival (PFS) and variant genes.

Methods
Patients treated with ICIs
MIND cohort
This study used database data from 247 patients with 
lung cancer from the Memorial Sloan Kettering Cancer 
Center (MSKCC) cohort (https:// www. synap se. org/# 
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!Synap se: syn26 642505) [23]. The genomics data were 
download from cbioportal (https:// www. cbiop ortal. org/ 
study/ summa ry? id= lung_ msk_ mind_ 2020). All patients 
received anti-PD-1/PD-L1 treatment; of these, 22 with 
missing clinical data or CT images were excluded. Conse-
quently, 225 patients were included in this cohort.

TCIA cohort
A total of 46 patients, who received at least two cycles of 
anti-PD-1 treatment, were identified from a retrospective 
database available at the Cancer Imaging Archive (http:// 
www. cance rimag ingar chive. net/). Seven patients with-
out CT images or assessment of treatment response were 
excluded. Finally, 39 patients were included.

An aggregate of 264 patients, compiled from both the 
MIND and TCIA cohorts, were randomly divided into 
two new cohorts as follows: training cohort, n = 159 
patients; and validation cohort, n = 105 patients; in a 
ratio of 3:2. This study was approved by the institu-
tional review board of the Second Affiliated Hospital of 
Guizhou Medical University (2023-LUNSHEN-02) and 
was performed in accordance with the Declaration of 
Helsinki. The specific use of these open data sets did not 
involve any personal information.

Study design
An overview of the study design is presented in Fig. 1. 
The study was conducted as follows: Step 1: We 

normalized the CT images, and each slice of the tumor 
area was mask-labeled by ITK-SNAP (http:// www. itksn 
ap. org/ pmwiki/ pmwiki. php) and confirmed by two 
senior radiologists. Step 2: We applied a K-means clus-
tering algorithm (K = 3) using Python v.3.12 (https:// 
www. python. org/) to divide the tumor into three sub-
regions; we did not perform clustering on the conven-
tional radiomics tumor region of interest (K = 1). Step 
3: Each sample included three sub-regions, and we 
extracted 1896 features from each sub-region, result-
ing in a total of 5688 sub-regional radiomic features for 
each sample. A total of 1896 radiomics features were 
also extracted from the whole tumor area by the con-
ventional radiomics method for comparative purposes. 
After correlation analysis of all features, we removed 
the redundant features with strong correlation; there-
after, we applied the least absolute shrinkage and selec-
tion operator (LASSO) to reduce the dimensionality 
and preserve the best radiomic features. Step 4: We 
used the support vector machines (SVM) algorithm to 
build the model in the training cohort after adjusting 
the relevant parameters [24], and tested it in the vali-
dation cohort. Receiver operating characteristic (ROC) 
curve analysis of the SRRM was further performed 
in each of the two cohorts. Step 5: We compared the 
SRRM with conventional radiomics, TMB score, and 
PD-L1 expression, and the correlations with PFS and 
variant genes were analyzed.

Fig. 1 Overview of the workflow in our study.  PD-L1 programmed death-ligand 1, PFS progression-free survival, SVM support vector machine, ROI 
region of interest, TMB tumor mutational burden
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Evaluation of TMB score and PD‑L1 expression
All tumor samples from the MIND cohort were analyzed 
by next-generation sequencing (NGS) before ICI treat-
ment [23]. The test method was performed on the U.S. 
Food and Drug Administration-licensed Memorial Sloan 
Kettering Cancer Center’s Integrated Mutation Profiling 
of Actionable Cancer Targets platform, which includes 
somatic mutations, copy number alterations, and fusions 
of 341–468 genes most commonly associated with can-
cer. Based on NGS profiling in patients from the MIND 
cohort, we defined a TMB of ≥ 10 mutations (muts)/Mb 
as “high TMB” and TMB < 10 muts/Mb as “low TMB.” 
PD-L1 immunohistochemistry was performed on forma-
lin-fixed and paraffin-embedded tumor tissue sections 
using standard PD-L1 antibody (E1L3N; Cell Signaling 
Technology, Danvers, Massachusetts, USA). The tumor 
cells were considered to have a high PD-L1 expression 
level when ≥ 50% of the cells stained positively.

Extraction of sub‑regional radiomic features
To compensate for differences in radiological charac-
teristics resulting from different reconstruction slice 
thicknesses and pixel sizes [25], the voxel size of all CT 
images in this study was reconstructed to 1 × 1 × 5  mm3. 
The volume of interest was normalized to 64 Gy levels to 
compensate for CT scanner variations. A Gaussian mix-
ture model was used to cluster intratumoral sub-regions 
with radiomics features. The optimal number of clusters 
representing the diversity of the tumor ecosystem was 
identified using the Bayesian information criterion in an 
unbiased manner, resulting in a cluster of three (K = 3). 
For each sub-region, region volume, shape, strength, and 
texture were quantified to 1896 radiomics features using 
texture analysis and wavelet decomposition methods 
[26]. For comparative purposes, 1896 radiomic features 
were also extracted from the whole tumor area and intra-
tumoral sub-regions of each patient. Tumor sub-regional 
clusters and all radiomics feature extraction were per-
formed in PyRadiomics (version 3.1; https:// pyrad iomics. 
readt hedocs. io) [27]. All radiomics contain seven feature 
classes: first order, shape, gray level co-occurrence matrix 
(GLCM), gray level size zone matrix (GLSZM), gray level 
run length matrix (GLRLM), neighboring gray tone dif-
ference matrix (NGTDM), and gray level dependence 
matrix (GLDM) features.

Optimal feature selection, SRRM construction, 
and validation
To reduce redundant radiomic features, sub-regional 
radiomic features with high correlations (CC > 0.75) were 
excluded. The LASSO, utilizing fivefold cross-validation, 
was applied to select features that highly correlated with 
treatment response [28]. The LASSO algorithm controls 

the number of selected variables by adjusting the param-
eter λ [29, 30]. To ensure selection of optimal radiomics, 
the SVM algorithm was used to calculate the radiomics 
score according to the selected parameters in the training 
cohort [24]. The parameters of the SVM method based 
on conventional radiomics were as follows: SVM-Type: 
eps-regression; SVM-Kernel: radial; Cost: 1; Gamma: 
0.125; Epsilon: 0.1; Number of Support Vectors: 158. The 
parameters of the SVM method based on sub-regional 
radiomics were as follows: SVM-Type: eps-regression; 
SVM-Kernel: radial; Cost: 1; Gamma: 0.090; Epsilon: 0.1; 
Number of Support Vectors: 149. Therefore, the conven-
tional radiomics model and SRRM were constructed and 
tested in the validation cohort.

Statistical analysis
The performance of the SRRM was estimated in the 
training and validation cohorts. The optimal cutoff value 
for predicting response was defined using the Youden 
index and calculated using R software. We classified 
the samples into “SRRM-low” and “SRRM-high” groups 
based on the cut-off value. The Kaplan–Meier approach 
(log-rank test) was employed to analyze the PFS curves of 
the SRRM-low and SRRM-high groups, which were plot-
ted with the survminer package in R software. The accu-
racies of different models were compared using the AUC 
and Akaike information criterion (AIC) in the pROC and 
basicTrendline packages in R software; higher AUC and 
lower AIC indicated a more accurate model predictive 
ability. Fisher’s exact test was used to analyze the fre-
quency differences between both groups. Multiple com-
parison adjustments were made for Fisher’s exact test in 
the fdrtool package. Volcano plots were created using the 
ggplot2 package in R software and were used to analyze 
the different frequencies in variant genes between the 
SRRM-low and SRRM-high groups. The statistical analy-
ses for this study were performed using R version 3.5.1 
(https:// www.r- proje ct. org/) and GraphPad Prism 7.01 
(https:// www. graph pad. com/). In addition, statistical sig-
nificance was set at P < 0.05.

Results
Characteristics of patients
The basic clinical features of patients with NSCLC 
treated with ICIs in the training and validation cohorts 
are displayed in Table  1; there were 64 (40.25%) and 43 
(40.95%) male patients, respectively. In the two cohorts, 
100 (62.89%) and 71 (67.62%) patients, respectively, were 
> 60 years of age. The majority of individuals in the train-
ing (111 [69.81%]) and validation (81 [77.14%]) cohorts 
were “current smokers” or “ever smokers.” Our study 
revealed that in the training and validation cohorts, 47 
(29.56%) and 27 (25.71%) patients, respectively, had a 
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high TMB (≥ 10 muts/Mb). Furthermore, 15 (9.44%) 
and 10 (9.52%) individuals, respectively, had high PD-L1 
expression (≥ 50%). In the training and validation 
cohorts, 38 (23.90%) and 23 (21.90%) patients, respec-
tively, achieved clinical response.

Selecting optimal sub‑regional radiomic features 
and constructing the SRRM
The habitat images are presented in Fig. 2A, and the three 
colors represent different clusters. A total of 5688 radi-
omics features were extracted from three sub-regions. 
After eliminating redundant radiomic features, 1288 fea-
tures remained for feature selection in each sub-region, 
resulting in a total of 3864 features. We used only 1288 
features from the conventional radiomic features for 
further analysis. Based on the fivefold cross-validation, 
LASSO was applied to select optimal sub-regional radi-
omic features from the training cohort (Fig.  2B), and 
based on the analysis, 11 sub-regional radiomics features 
were eventually selected (Fig.  2C; Table  2). Similarly, in 
the training cohort, eight conventional radiomics were 

identified in patients with lung cancer who were treated 
with ICIs (Table  2). A total of 11 sub-regional radiomic 
features were employed to develop the SRRM to predict 
response to ICI treatment in the training cohort using 
SVM algorithms. Meanwhile, six conventional radiomics 
were used to develop the radiomics model in the training 
cohort. The SRRM demonstrated a higher AUC than the 
radiomics model in the training cohort (0.90 [95% con-
fidence interval (CI) 0.84–0.96] and 0.77 [95% CI 0.67–
0.87], respectively, both P < 0.001; Fig. 2D). The DeLong’s 
test for the two ROC curves was significant (P = 0.025). 
The recall and precision of the SRRM demonstrated a 
better performance than that of the radiomics model 
(recall: 87.42% vs. 76.72%, respectively; precision: 82.50% 
vs. 69.99%, respectively) (Fig. 2E). The AIC of the SRRM 
was significantly lower than that of the radiomics model 
(106.57 vs. 133.80, respectively).

SRRM testing in the validation cohort
To analyze the performance of the models, the valida-
tion cohort was used for testing and the SRRM showed 
a higher AUC than the radiomics model (0.86 [95% CI 
0.77–0.96] vs. 0.79 [95% CI 0.67–0.90], respectively, 
both P < 0.001; Fig. 3A). The DeLong’s test for two ROC 
curves was not significant (P = 0.377). The recall and 
precision of the SRRM demonstrated a better perfor-
mance than that of the radiomics model (recall: 85.71% 
vs. 74.14%, respectively; precision: 79.00% vs. 70.13%, 
respectively) (Fig.  3B). Next, we further visualized the 
sub-regional radiomic features from the CT images of 
two patients. A good treatment response was observed 
in patient 1 according to the CT images and the SRRM 
value was significantly lower (0.32) than that of patient 2 
(1.02) (Fig. 3C). The wavelet-HHL_gldm_Large Depend-
ence Emphasis, wavelet-HLH_glszm_Large AreaHigh 
GrayLevel Emphasis, and wavelet-HHH_firstorder_Kur-
tosis features from the three different sub-regions were 
more concentrated in the tumor area in patient 1 than in 
patient 2, suggesting that the heterogeneity of the tumors 
may be different.

Comparison of the SRRM with TMB score and PD‑L1 
expression
PD-L1 expression and TMB score were used as predictors 
of immunotherapy response, and it was relatively more 
challenging to compare them with the SRRM. Two sam-
ples from patient 3 (low PD-L1 expression) and patient 4 
(high PD-L1 expression) from the validation cohort are 
presented in Fig. 4A. In the training cohort, the SRRM-
low group (cutoff value < 0.936) had a higher treatment 
response than the PD-L1-high (70% vs. 50%, respec-
tively, P = 0.003) and TMB-high groups (70% vs. 38%, 
respectively, P < 0.001) did (Fig.  4B). In the validation 

Table 1 Characteristics of patients in the training and validation 
cohorts

NA not available, TMB tumor mutational burden, PD-L1 programmed death-
ligand 1

Characteristic Training cohort 
(n = 159)

Validation 
cohort 
(n = 105)

Sex

 Female 69 (43.39%) 49 (46.67%)

 Male 64 (40.25%) 43 (40.95%)

 NA 26 (16.36%) 13 (12.38%)

Age (years)

 ≤ 60 33 (20.75%) 21 (20.00%)

 > 60 100 (62.89%) 71 (67.62%)

 NA 26 (16.36%) 13 (12.38%)

Smoking status

 Smoker 111 (69.81%) 81 (77.14%)

 Non-smoker 22 (13.83%) 11 (10.48%)

 NA 26 (16.36%) 13 (12.38%)

TMB

 High 47 (29.56%) 27 (25.71%)

 Low 61 (38.36%) 47 (44.76%)

 NA 51 (32.08%) 31 (29.53%)

PD-L1 expression

 High 15 (9.44%) 10 (9.53%)

 Low 94 (59.11%) 63 (60.00%)

 NA 50 (31.45%) 32 (30.47%)

Response status

 Response 38 (23.90%) 23 (21.91%)

 Non-response 121 (76.10%) 82 (78.09%)
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cohort, the SRRM-low group also had a higher treatment 
response than the PD-L1-high (64% vs. 39%, respectively, 
P < 0.001) and TMB-high groups (64% vs. 25%, respec-
tively, P < 0.001) did (Fig. 4B). In the training cohort, the 
SRRM demonstrated a higher AUC (0.90 [95% CI 0.84–
0.96], P < 0.001) than the PD-L1 expression (0.78 [95% CI 
0.67–0.88], P < 0.001, DeLong’s test P = 0.032) and TMB 
score (0.64 [95% CI 0.52–0.75], P = 0.039, DeLong’s test 
P = 0.001) did (Fig.  4C). In the validation cohort, the 
SRRM demonstrated a higher AUC (0.86 [95% CI 0.77–
0.96], P < 0.001) than the PD-L1 expression (0.66 [95% CI 
0.51–0.80], P = 0.034, DeLong’s test P = 0.024) and TMB 
score (0.54 [95% CI 0.38–0.70], P = 0.552, DeLong’s test 
P = 0.001) did (Fig. 4D). Univariate analysis showed that 
TMB score, PD-L1 expression, and SRRM were associ-
ated with responses to immunotherapy (OR: 0.42 [95% CI 
0.17–1.00], 0.15 [95% CI 0.05–0.37], and 27.18 [95% CI 
9.16–95.87], P = 0.049, < 0.001, and < 0.001, respectively) 
(Table  3). Multivariate analysis revealed that PD-L1 
expression and the SRRM were two independent predic-
tors of the response to immunotherapy (OR: 0.09 [95% 
CI 0.02–0.33] and 37.32 [95% CI 10.00–196.64], P < 0.001 
and < 0.001, respectively). Combination of the SRRM 
and PD-L1 expression showed high AUCs in the training 

Fig. 2 Least absolute shrinkage and selection operator was used to select features and construct the SRRM. A CT images, cluster images, 
and three-dimensional-cluster results are presented. B, C Optimal sub-regional radiomics (n = 11) were selected in patients with non-small cell lung 
cancer who underwent immunotherapy. D ROC curves for immunotherapy response prediction using the developed SRRM in the training cohort. 
E Precision–recall curves for response prediction using the developed SRRM in the training cohort.  SRRM sub-regional radiomics model, ROC 
receiver operating characteristic, CT computed tomography, AUC  area under the curve

Table 2 Selected radiomics associated with response in patients 
who received immunotherapy

Groups Selected radiomics

Training cohort (sub-regional 
radiomics, n = 11)

wavelet-LLL_glcm_InverseVariance
wavelet-LHL_ngtdm_Busyness
wavelet-HLH_glrlm_GrayLevelNonUni-
formityNormalized
wavelet-HLH_glszm_GrayLevelNonUni-
formityNormalized
wavelet-HHH_firstorder_Mean
wavelet-HHH_firstorder_Kurtosis
wavelet-LLH_ngtdm_Busyness
wavelet-HLH_glszm_LargeAreaHighG-
rayLevelEmphasis
squareroot_gldm_LargeDependence-
LowGrayLevelEmphasis
original_shape_Flatness
wavelet-HHL_gldm_LargeDependen-
ceEmphasis

Training cohort (radiomics, 
n = 8)

wavelet-LLL_glcm_MaximumProbability
wavelet-LLL_firstorder_90Percentile
wavelet-LHL_ngtdm_Busyness
wavelet-HLL_glcm_MaximumProb-
ability
wavelet-HLH_gldm_DependenceEntropy
wavelet-HLH_firstorder_Median
squareroot_firstorder_Median
squareroot_firstorder_90Percentile
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Fig. 3 Validation of the SRRM for immunotherapy response prediction. A ROC curves for immunotherapy response prediction using the developed 
SRRM in the validation cohort. B Precision–recall curves for response prediction using the developed SRRM in the validation cohort. C Three 
sub-regional radiomics were visualized, as shown in the two patients.  SRRM sub-regional radiomics model, ROC receiver operating characteristic

Fig. 4 Comparison of the SRRM with TMB score and PD-L1 expression. A Images with negative (left) and positive (right) PD-L1 expression 
on immunohistochemistry are shown. B Different frequencies of immunotherapy among SRRM-low, PD-L1-high expression, and TMB-low groups. 
C ROC curves of predictive immunotherapy response using the SRRM, PD-L1 expression, and TMB score in the training and D validation cohorts.  
PD-L1 programmed death-ligand 1, TMB tumor mutational burden, SRRM sub-regional radiomics model, ROC receiver operating characteristic
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and validation cohorts (0.90 [95% CI 0.83–0.97] and 0.88 
[95% CI 0.81–0.96]; P < 0.001 and < 0.001, respectively).

PFS analysis of the SRRM in the training and validation 
cohorts
To reveal the association between the SRRM and prog-
nosis, we analyzed the PFS in the two cohorts. We found 
that the SRRM-low group had a longer median PFS than 
the SRRM-high group (9.70 vs. 1.80 months, respectively; 
hazard ratio (HR) = 0.35 [0.24–0.50], P < 0.001; Fig.  5A) 
in the training cohort. Similarly, the SRRM-low group 

had a longer median PFS than the SRRM-high group 
(9.00 vs. 2.10 months, respectively; HR = 0.42 [0.26–
0.67], P = 0.001; Fig.  5B) in the validation cohort. The 
sub-group analysis was performed for PD-L1 expression 
and TMB score. In the PD-L1-high expression (≥ 50%) 
cohort, the SRRM-low group had a longer median PFS 
than the SRRM-high group (15.60 vs. 2.60 months, 
respectively; HR = 0.40 [0.17–0.98], P = 0.039; Fig.  5C). 
In the PD-L1-low expression (< 50%) cohort, the SRRM-
low group had a longer median PFS than the SRRM-high 
group (8.60 vs. 1.90 months, respectively; HR = 0.43 

Table 3 Univariate and multivariate analyses for the response in the training cohort

OR odds ratio, CI confidence interval, TMB tumor mutational burden, PD-L1 programmed death-ligand 1, SRRM sub-regional radiomics model

*P-value < 0.05

Variable Univariate analysis Multivariate analysis

OR (95% CI) P‑value OR (95% CI) P‑value

Sex (female vs. male) 0.87 (0.36–2.05) 0.762 – –

Age (years) (≤ 60 vs. > 60) 0.47 (0.12–1.40) 0.208 – –

Smoking status (smoker vs. non-smoker) 0.49 (0.10–1.64) 0.293 – –

TMB score (high vs. low) 0.42 (0.17–1.00) 0.049* 0.32 (0.07–1.14) 0.087

PD-L1 score (high vs. low) 0.15 (0.05–0.37) < 0.001* 0.09 (0.02–0.33) < 0.001*

SRRM (high vs. low) 27.18 (9.16–95.87) < 0.001* 37.32 (10.00–196.64) < 0.001*

Fig. 5 Association between the SRRM and PFS. A The SRRM predicts the PFS in the training and B validation cohorts. PFS curves of patients 
with C high PD-L1 expression (≥ 50%). D Low PD-L1 expression (< 50%). E High TMB score (≥ 10 muts/Mb), and F low TMB score (< 10 muts/Mb).  
PFS progression-free survival, PD-L1 programmed death-ligand 1, TMB tumor mutational burden, SRRM sub-regional radiomics model, CI confidence 
interval, HR hazard ratio
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[0.30–0.60], P < 0.001; Fig. 5D). Meanwhile, in the TMB-
high (≥ 10 muts/Mb) cohort, the SRRM-low group had 
a longer median PFS than the SRRM-high group (16.60 
vs. 2.50 months, respectively; HR = 0.33 [0.19–0.58], 
P < 0.001; Fig. 5E). Similarly, in the TMB-low (< 10 muts/
Mb) cohort, the SRRM-low group had a longer median 
PFS than the SRRM-high group (3.50 vs. 1.80 months, 
respectively; HR = 0.54 [0.36–0.80], P = 0.006; Fig.  5F). 
Cox regression analysis showed that the SRRM, PD-L1 
expression and TMB score were independent predic-
tors of immunotherapy for NSCLC (P = 0.009, 0.016, and 
0.018, respectively) in the combination of training and 
validation cohorts.

Association between the SRRM and variant genes
To analyze the association between SRRM and variant 
genes, different frequencies of genetic mutations, copy 
number variations, and fusion genes were compared. 
We found that H3C4 (6p22.2) and PAX5 (9p13.2) muta-
tions were significantly enhanced in the SRRM-low group 

(P = 0.006 and 0.025, respectively) (Fig.  6A), whereas 
EGFR (7p11.2) mutation and MDM2 amplification 
were significantly enhanced in the SRRM-high group 
(P = 0.040 and 0.059, respectively). The frequencies of the 
top 10 genetic mutations were compared between the 
SRRM-low and SRRM-high groups; only the frequency 
of EGFR mutation was significantly different between 
the two groups (Fig.  6B). We further explored the sub-
mutation type of EGFR and found that exon 21 mutation 
(L858R, Missense_Mutation) was related to the SRRM-
high group, whereas exon 20 mutation (H773dup, In_ 
Frame_Ins) was related to the SRRM-low group (Fig. 6C).

Discussion
In this study, large sub-regional radiomics were extracted 
from pretreatment CT images in patients with NSCLC 
who received ICI treatment. The LASSO and SVM meth-
ods were used to select features and develop the SRRM. 
Our results showed that the SRRM had better perfor-
mance in predicting immunotherapy response than 

Fig. 6 Relationship between the SRRM and variant genes. A Expressions of significantly enhanced variant genes in the SRRM-low and SRRM-high 
groups are shown using volcano plots. B Different frequencies of variant genes in the SRRM-low and SRRM-high groups. C Sites of EGFR mutation 
sub-types between the SRRM-low and SRRM-high groups are presented.  SRRM sub-regional radiomics model
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conventional radiomics, TMB score, and PD-L1 expres-
sion. We also found that the SRRM-low group showed 
longer PFS than the SRRM-high group in the training and 
validation cohorts. The SRRM showed good PFS predic-
tion ability of immunotherapy response regardless of the 
TMB score and PD-L1 expression status. Variant genes, 
including H3C4 and PAX5 mutations, were significantly 
associated with the SRRM-low group, whereas EGFR 
mutation was significantly associated with the SRRM-
high group, especially the L858R mutation sub-type.

Identifying patients who can benefit from immuno-
therapy is a very active area of research; however, the cur-
rent predictive biomarkers are relatively limited [31–33], 
and the search for new valuable markers is a worthwhile 
endeavor. Previous studies have used radiomics of the 
whole tumor and found that it can predict the response 
to immunotherapy to some extent [34, 35]; however, no 
study has focused on the correlation between the intra-
tumoral heterogeneity and radiomics analysis of immu-
notherapy response. Recently, sub-regional radiomics 
has emerged as a novel approach, and the algorithm of 
mining tumor heterogeneity using sub-regional radiom-
ics has attracted attention [36, 37]. The efficacy of con-
current chemoradiotherapy could be well predicted 
by sub-regional radiomics [38]. In this study, we used 
multi-center data to reveal the association between sub-
regional radiomics and immunotherapy response, and 
found that the SRRM had better predictive performance 
and was superior to conventional radiomics. This may 
be attributed to the ability of sub-regional radiomics to 
better characterize tumor heterogeneity and better dis-
tinguish features between individual tumors, especially 
in the microenvironment. However, the intrinsic mecha-
nism of this emerging sub-regional radiomics for immu-
notherapy prediction needs further analysis.

Several discoveries have been made in the field of 
immunotherapy biomarkers; however, only PD-L1 and 
TMB have been predominantly utilized in clinical prac-
tice [39, 40]. Although these biomarkers are relatively 
good, their prediction accuracy is still not ideal. It is sug-
gested that both PD-L1 expression and TMB scores are 
based on tissue biopsies that sample only a small fraction 
of the tumor, and that the immunophenotypic and muta-
tional features may differ between different regions of the 
tumor [41, 42]. Therefore, the findings of the PD-L1 and 
TMB biomarkers may be biased, affecting the prediction 
of immunotherapy response. CT imaging has a unique 
advantage in characterizing tumor panorama, which can-
not be matched by any tumor histological sequencing. 
Although sub-regional radiomics is superior to conven-
tional radiomics, it is not clear how it compares with the 
two classical biomarkers, TMB and PD-L1. In this study, 
we compared the SRRM with PD-L1 expression and TMB 

scores and found that the SRRM was indeed superior to 
PD-L1 expression and TMB score in predicting immuno-
therapy response. Meanwhile, the SRRM also performed 
well in predicting PFS regardless of PD-L1 expression or 
TMB score. It is also noteworthy that sub-regional radi-
omics is a non-invasive predictive method; comparatively 
easier to perform than PD-L1 and TMB analysis, which 
require tissue biopsy; less expensive; and more acceptable 
to patients than performing PD-L1 and TMB analysis. 
Consequently, herein, we proposed the development of 
new radiology biomarkers.

Comparison of genomic variants and radiomics is a 
valuable research topic; however, it has been underex-
plored. The relationship between sub-regional radiomics 
and genomic alterations in the context of immunother-
apy for lung cancer has not been reported. We character-
ized the genes that were differentially mutated between 
the SRRM-low and SRRM-high groups using volcano 
maps and found that H3C4 and PAX5 mutations were 
associated with the immunotherapy-responsive SRRM-
low group, which has not been reported previously. In 
addition, EGFR mutations and MDM2 amplification were 
associated with the immunotherapy-resistant SRRM-
high group, similar to previous reports [7, 43]. How-
ever, our study further showed that mutation of exon 
21 of EGFR was associated with the SRRM-high group, 
whereas mutation of exon 20 was associated with the 
SRRM-low group. Different subtypes of EGFR mutations 
may have distinct impacts on the response to immuno-
therapy, which warrants further investigation.

This study had certain limitations. First, our study 
data were primarily derived from the MSKCC and TCIA 
cohorts, which represent an American population. Thus, 
the generalizability of the predictive power of these bio-
markers in patients with lung cancer from different coun-
tries is uncertain, requiring further validation with data 
from more diverse clinical settings. Second, our study is 
retrospective, and we need to design multi-center stud-
ies to incorporate sub-regional radiomics in prospective 
cohorts. Finally, we did not have access to the overall 
survival (OS) data; therefore, we could only analyze the 
relationship between the SRRM and PFS. The correlation 
between OS and the SRRM needs to be evaluated in the 
future.

Conclusions
We demonstrated that the SRRM based on pretreat-
ment CT images was a novel and reliable model in 
predicting the response to ICI treatment in patients 
with NSCLC. The SRRM was also used to perform risk 
stratification of PFS, distinguishing between patients 
with rapid and slow progression. Our study provides 
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new insights for predicting clinical outcomes of immu-
notherapy and could be useful for guiding clinical deci-
sion-making in the future.
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