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Abstract

Local skin flaps are frequently employed for wound closure to address surgical, traumatic, congenital, or oncologic
defects. (1) Despite their clinical utility, skin flaps may fail due to inadequate perfusion, ischemia/reperfusion injury
(IRI), excessive cell death, and associated inflammatory response. (2) All of these factors contribute to skin flap necrosis
in 10-15% of cases and represent a significant surgical challenge. (3, 4) Once flap necrosis occurs, it may require addi-
tional surgeries to remove the entire flap or repair the damage and secondary treatments for infection and disfigura-
tion, which can be costly and painful. (5) In addition to employing appropriate surgical techniques and identifying
healthy, well-vascularized tissue to mitigate the occurrence of these complications, there is growing interest in explor-
ing cell-based and pharmacologic augmentation options. (6) These agents typically focus on preventing thrombosis
and increasing vasodilation and angiogenesis while reducing inflammation and oxidative stress. Agents that modu-
late cell death pathways such as apoptosis and autophagy have also been investigated. (7) Implementation of drugs
and cell lines with potentially beneficial properties have been proposed through various delivery techniques includ-
ing systemic treatment, direct wound bed or flap injection, and topical application. This review summarizes pharma-
cologic- and cell-based interventions to augment skin flap viability in animal models, and discusses both translatabil-

ity challenges facing these therapies and future directions in the field of skin flap augmentation.
Keywords Skin flap, Cell-based therapy, Flap viability, Pharmacologic treatment

Introduction

Local skin flaps are frequently employed for wound
closure to address surgical, traumatic, congenital, or
oncologic defects [1]. Despite their clinical utility, skin
flaps may fail due to inadequate perfusion, ischemia/
reperfusion injury (IRI), excessive cell death, and asso-
ciated inflammatory response [2]. All of these factors
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contribute to skin flap necrosis in 10-15% of cases and
represent a significant surgical challenge [3, 4]. Once
flap necrosis occurs, it may require additional surger-
ies to remove the entire flap or repair the damage and
secondary treatments for infection and disfiguration,
which can be costly and painful [5]. In addition to
employing appropriate surgical techniques and identi-
fying healthy, well-vascularized tissue to mitigate the
occurrence of these complications, there is growing
interest in exploring cell-based and pharmacologic aug-
mentation options [6]. These agents typically focus on
preventing thrombosis and increasing vasodilation and
angiogenesis while reducing inflammation and oxida-
tive stress. Agents that modulate cell death pathways
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such as apoptosis and autophagy have also been inves-
tigated [7]. Implementation of drugs and cell lines with
potentially beneficial properties have been proposed
through various delivery techniques including systemic
treatment, direct wound bed or flap injection, and topi-
cal application (Fig. 1).

This review summarizes pharmacologic- and cell-
based interventions to augment skin flap viability in
animal models, and discusses both translatability chal-
lenges facing these therapies and future directions in
the field of skin flap augmentation.

Pharmacologic treatments

First-line interventions for improving flap viability
typically include surgical technique optimization and
hemodynamic support, usually followed by pharmaco-
logical or cell-based therapies as second-line interven-
tions to ensure the best flap survival. Insufficient blood
supply and IRI are the two main causes of distal flap
necrosis [2]. To improve blood supply and decrease the
incidence and effects of IRI, a variety of pharmacologic
interventions have been explored for their observed or
theoretical utility in improving skin flap viability. While
many medications have several benefits, they will be
discussed broadly as antithrombotic agents, vaso-
dilators, pro-angiogenic therapies, antioxidants and
anti-apoptotics, upregulators of autophagy, and anti-
inflammatory drugs.

Application Options

Intravenous Intraperitoneal
Injection Injection

= I =
Subcutaneous Direct Topical
Injection Injection Application

Fig. 1 Therapeutics can be applied to skin flaps through various
modalities. Six common modalities are visualized: oral, intravenous
injection, intraperitoneal injection, subcutaneous injection,

direct injection, and topical application. These are demonstrated
on a murine McFarlane skin flap model
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Antithrombotic agents

Arterial or venous thrombosis can impair capillary cir-
culation and nutrient supply to the flaps [2, 8]. Venous
obstruction occurs more frequently than arterial obstruc-
tion due to lower flow rate and thin, friable nature of
veins. Thrombosis could be induced via two mechanisms:
(1) increased platelet and neutrophil adhesivity due to
local injury that releases free radicals, enzymes, and
cytokines to obstruct the capillaries and (2) activation of
the coagulation cascade to form a clot [8]. Anti-throm-
botic drugs can reduce thrombotic risk and improve
blood circulation to reduce tissue necrosis and improve
flap viability (Table 1). They can be categorized into two
groups: anti-platelet agents or antithrombin activator/
clotting factor inhibitors. Clinically, both aspirin and
heparin are given empirically to patients prior to under-
going skin flap surgery with the goal of improving circu-
lation and thereby flap survival.

Aspirin is an irreversible inhibitor of the enzyme
cyclooxygenase, the key enzyme in metabolizing arachi-
donic acid. Aspirin has been shown to be highly effec-
tive in improving skin flap viability, hence its frequent
use in clinical settings. While some studies indicate that
this effect is mediated by inflammation modulation and
improvement of flap circulation through direct vasodi-
lation more so than an anti-platelet aggregation effect
[15], others indicate all three of these effects contribute
meaningfully to aspirin’s benefits [16]. Clopidogrel (an
irreversible platelet aggregation inhibitor), alternatively,
has also been shown to improve skin flap viability but
through a primarily antiaggregatory effect [17].

Several anticoagulants have been studied in animal
local skin flap survival models, many of which are also
employed clinically. Key differences among these agents
are their mechanisms of action, routes of administration,
and clinical indications. Low molecular weight Heparin
(LMWH) and Hirudin are subcutaneously administered
anticoagulants, while Bivalirudin and Activated Protein
C can be administered intraperitoneally or intravenously.
In contrast, Hirudoid is a topical anti-inflammatory,
antithrombotic, and fibrinolytic drug with reduced sys-
temic effects. A study in 2019 by Livaoglu et al. showed
that daily topical Hirudoid application on random dorsal
skin flaps in rats resulted in significantly lower inflamma-
tion, edema, and intravascular thrombosis scores, as well
as a smaller flap necrosis area (31.7% vs. 48.9%) compared
to control animals [8]. Subcutaneous injection of natural
and recombinant Hirudin and intraperitoneal injection
of Bivalirudin following creation of random flaps in rats
also both increased flap survival rates. The mechanisms
underlying this effect may involve reducing thrombosis,
improving flap blood supply, and upregulation of vas-
cular endothelial growth factor (VEGF) activity, which
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promotes formation of new blood vessels in the flap [11,
10].

Another study investigated subcutaneous use of
LMWH—which acts by enhancing antithrombin III—
in four pedicled-flap models in rabbits and found that
LMWH had a rapid therapeutic effect on flap circulation
and survival length [9]. All of the congested flaps sur-
vived when treated with LMWH, while the control group
showed necrosis in one-sixth of the flap area [9]. Finally,
intravenous administration of Activated Protein C in rats
also showed significantly improved flap survival in the
experimental group compared to the control (68.9% vs.
39.3%, respectively) 1 week after the injection [12]. Inter-
estingly, potentially due to time-sensitive transcriptional
changes, earlier Activated Protein C injections prior to
elevation of the flap were associated with higher flap sur-
vival [12]. However, disadvantages of Activated Protein C
treatment include increased risk for significant hemor-
rhage during flap dissection when administered preoper-
atively, short half-life of the drug, and potential need for
supraphysiologic doses as much as 1000-fold higher than
those safely used in patients [12].

Vasodilators

Vasoconstriction following skin flap elevation is a com-
mon cause of flap necrosis [18]. Release of norepi-
nephrine from flap dissection and injured sympathetic
neurons produces a local hyperadrenergic environment
[19]. Consequently, nutrient-rich blood flow to the dis-
tal aspect of the flap may become restricted, and blood
is redirected through low-pressure arteriovenous shunts,
increasing the risk of irreversible ischemic necrosis [18,
19]. Vasodilators to improve flap viability (Table 2) act
directly on arteriolar smooth muscle and can be catego-
rized into three groups: those that target the nitric oxide
synthase (NOS) pathway to release nitric oxide (NO),
those that target the NOS pathway in combination with
other mechanisms, and those that induce vasodilation
through non-NOS-mediated mechanisms.

Examples of agents that target the NOS pathway
include sodium nitroprusside (SNP), diethylenetriamine
NONOate (DETA-NO), sildenafil, and metformin. Trans-
dermal iontophoretic delivery of NO donors such as SNP
and DETA-NO showed significantly improved perfusion
in rat skin flaps [20, 26]. Similarly, pre-operative admin-
istration of metformin, a primary therapeutic option for
type 2 diabetes, has been shown to enhance NOS activity
via the 5" adenosine monophosphate-activated protein
kinase pathway, resulting in significant improvements in
vasodilation and flap viability in rats [18].

Vasodilating therapies that target NOS signaling in
concert with other pathways include vasonatrin pep-
tide (VNP) and a combination treatment of Azelaic
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acid, minoxidil, and caffeine (AMC). VNP, a synthetic
natriuretic peptide derived from the combination of
atrial natriuretic peptide and C-type natriuretic peptide,
induces smooth muscle vasodilation. In rats, Wang et al.
demonstrated these combined effects resulted in a signif-
icant increase in mean vessel diameter, blood perfusion
volume, and flap viability while reducing thrombosis,
inflammatory mediators, and oxidative injury [23]. Like
VNP, studies with AMC on rat skin flaps have shown a
significant increase in NOS activity [22]. This effect has
been attributed to the 5a-reductase inhibitory proper-
ties of azelaic acid—a dermatological treatment for skin
conditions—which promotes NOS expression and NO
production by inhibiting dihydrotestosterone (DHT) syn-
thesis [22]. Azelaic acid has also been found to enhance
levels of the anti-apoptotic protein B-cell lymphoma 2
[22]. Multiple animal studies have underscored the utility
of NOS pathway modulators in enhancing local flap per-
fusion and survival, supported by the ubiquitous reduc-
tion in flap necrosis observed [18, 20-22].

Agents that facilitate vasodilation through non-NOS
pathways that have been studied to promote flap sur-
vival include calcitonin gene-related peptide (CGRP),
an endogenous hormone known for its potent vasodila-
tory effects, and nifedipine, a selective calcium channel
blocker commonly prescribed for hypertension [19, 25].
While the precise mechanism of CGRP has not been
fully elucidated, some of its effect has been attributed to
CGRP receptor binding on smooth muscle cells, while
nifedipine’s effect is associated with the inhibition of the
a-2 receptor. Calcitonin gene-related peptide also exhib-
its anti-inflammatory properties, while nifedipine pos-
sesses antioxidant properties, prevents calcium influx,
and inhibits platelet aggregation [19, 25, 24]. These mul-
tifaceted therapeutic mechanisms highlight the utility of
CGRP and nifedipine in optimizing local skin flap sur-
vival in rats [19, 25, 24].

Pro-angiogenic therapies

In addition to anti-thrombotic agents and vasodilation
to promote blood flow, viability of the distal flap can also
be enhanced through vascular formation and remod-
eling (Table 3) [33]. In ischemic skin flaps, angiogenesis is
typically mediated by VEGF and basic fibroblast growth
factor (bFGF), which is secreted by keratinocytes and
fibroblasts in response to hypoxia [27]. VEGF binds to
receptors on the surface of the dermal vascular endothe-
lium to stimulate mitosis, inhibit endothelial cell apopto-
sis, and enhance vascular permeability and cell migration
[27]. Direct injection of VEGF into rat skin flaps has been
shown to significantly increase flap viability area (38.9%
in the control vs. 80.4% in the VEGF-treated group) [10].
Similarly, upregulation of bFGF expression in the flap bed
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using plasmid-based methods significantly decreased the
area of flap necrosis and enhanced vascularity in dorsal
skin flaps. Although both VEGF and bFGF are promis-
ing agents to improve vascularization in ischemic flaps,
their short half-life, expensive costs, instability requiring
complicated storage, and uncertainty regarding effective/
safe dosage remain significant limitations which have
prompted researchers to investigate alternative angio-
genic therapeutics [28, 29].

Atorvastatin, a HMG-CoA reductase inhibitor used
clinically in the treatment of dyslipidemia, has also been
shown to have biphasic VEGF-mediated angiogenic
effects [37]. At high doses, studies have suggested ator-
vastatin to reduce VEGF expression in various human
tissues [38]. However, murine studies have shown lower
concentrations to enhance endothelial cell proliferation,
migration, and differentiation through upregulation of
VEGEF [37]. A study by Chen et al. showed 7 days of oral
atorvastatin administration after dorsal skin flap eleva-
tion in rats enhanced VEGF expression and vascular den-
sity, reducing necrosis area by 20% [35].

Finally, some angiogenic therapies possess dual angio-
genic and anti-inflammatory/anti-oxidant properties,
such as memantine, calcitriol, and vinpocetine. Intraperi-
toneal injection of memantine, an excitatory amino acid
receptor antagonist, calcitriol, a metabolite of vitamin D,
and vinpocetine, a derivative of the alkaloid vincamine,
have all been demonstrated to promote flap vasculariza-
tion in rats through upregulation of VEGF production [2,
27, 36]. In addition, these therapeutics may also attenuate
oxidative stress, mitigate IRI, and suppress inflammatory
responses [2, 27, 36].

Antioxidants and anti-apoptotics

Even in the setting of adequate circulation, transient
ischemia can still result in partial flap necrosis due to
IRL IRI can generate excess reactive oxygen free radicals
and decrease anti-oxidant defenses, leading to endothe-
lial cell swelling, vasoconstriction, and increased capil-
lary permeability [39]. These changes result in damage to
the mitochondrial wall and activate apoptotic pathways
[2, 40-43]. Therefore, antioxidant, anti-inflammatory,
and autophagic agents have been studied for their utility
in reducing oxidative stress and preventing cell death in
ischemic flaps.

By interacting with radicals to form less reactive prod-
ucts, anti-oxidant agents have shown promise in reduc-
ing IRI as well as increasing flap vascularization and
survival in rat abdominal skin flaps (Table 4) [2, 27, 36,
44]. During IRI, lipid peroxidation generates malondial-
dehyde (MDA) which can crosslink proteins and DNA
to damage cells [2, 45]. Superoxide dismutase (SOD) is
a metalloprotein that can scavenge superoxide radicals
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to reduce oxidative stress and is one of the body’s best
defenses against free radicals [2]. Angiogenic agents such
as memantine, calcitriol, vinpocetine (discussed above
in “Pro-angiogenic Therapies” section) have been shown
to reduce flap tissue damage and oxidative stress in skin
flaps by downregulating MDA and glutathione while
increasing SOD levels.

Similarly, enhanced activity of natural cellular defense
mechanisms against free radicals through topical/oral
administration of tocopherols (vitamin E) and retinoids
(vitamin A) or injection of ascorbate (vitamin C) and glu-
tathione have been shown to improve flap survival signif-
icantly in rats [49]. Interestingly, various studies have also
demonstrated an association between hyperthyroidism
and oxidant-mediated tissue damage [50, 51]. In a study
by Rahimpour et al. use of anti-thyroid medications pro-
pylthiouracil and methimazole were both found to signif-
icantly improve random-pattern dorsal skin flap survival
in rats by promoting cellular antioxidant activity [46].

Aside from lipid peroxidation, the xanthine oxidase
(XO) system in endothelial cells is another major source
of free radicals. A study by Rasti-Ardakani et al. showed
that treatment pre- and post-skin flap elevation in dogs
with an XO inhibitor such as allopurinol allowed flaps
to tolerate a longer period of ischemia, with reduced
inflammation and smaller areas of necrosis [47]. Impor-
tantly, the efficacy of allopurinol to enhance viability may
be dependent on tissue- and species-specific XO activ-
ity, as this intervention was found to be less successful in
preserving skin flap survival in pigs [47, 52].

Upregulators of autophagy

Autophagy is a highly conserved cellular degradation
process to protect against metabolic stress, cellular dam-
age, and programmed cell death [53]. Upregulation of
autophagy can reduce oxidative stress-mediated damage,
enhance angiogenesis in endothelial cells Ak strain trans-
forming (Akt) pathway activation, and thus improve the
survival rate of skin flaps (Table 5) [54].

As discussed earlier, calcitriol has been shown to
upregulate VEGF production and attenuate oxida-
tive stress, and this active form of vitamin D has been
one of the best studied medications for stimulation of
autophagy and relief of IRI. Intraperitoneal injection of
calcitriol for 7 days postoperatively was effective in pro-
moting autophagy-mediated angiogenesis and reduc-
ing oxidative injury in rat dorsal skin flaps, with 67.6%
area of tissue survival compared to 46.8% in control
animals [53]. In other rat studies, gastrodin, a chemi-
cal compound derived from the orchid Gastrodia elata,
has also been shown to upregulate autophagy, resulting
in enhanced angiogenesis and reduced cellular apop-
tosis [56, 55]. Similar injection for 7 days following flap
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elevation improved survival and increased expression of
both VEGF and multiple antioxidant markers including
SOD, endothelial NOS, and heme oxygenase-1 [55].

Other compounds capable of stimulating autophagy
have also been shown to be effective at promoting skin
flap survival in various mouse and rat studies. These
include catapol, a biologically active compound found
in the flowering plant Rehmannia glutinosa, andor-
grapholide, a diterpenoid isolated from the stem and
leaves of Andrographis paniculata, and nobiletin, a flavo-
noid found in citrus fruits [56, 58—57]. Each of these have
been shown to positively regulate autophagy, through
sirtuin 1, phophosoinositide 3-kinase/Akt, and 5" adeno-
sine monophosphate-activated protein kinase (AMPK)
activation, respectively. Murine flap studies have shown
these agents to decrease levels of pro-apoptotic mark-
ers, and promote angiogenesis, resulting in improved tis-
sue survival [57]. Collectively, these studies highlight the
protective role autophagy may play in promoting tissue
survival and spotlight the promise several plant-derived
compounds may possess in enhancing random skin flap
survival outcomes.

Anti-inflammatory agents

With tissue ischemia, activation of several inflamma-
tory signals occurs [41] which can potentiate evolution
of coagulative necrosis and inflammatory cell infiltra-
tion [64]. As the extent of necrosis increases, so too does
the intensity of inflammation [64]. Agents limiting the
inflammatory process may thus be useful to lessen tissue
damage and improve flap viability (Table 6).

Interestingly, many members of the most well-known
class of anti-inflammatory medications, non-steroidal
anti-inflammatory drugs (NSAIDs), have been shown
repeatedly to either have unequivocal or negative effects
in the setting of skin flaps [70-72]. Indeed, NSAID treat-
ment following skin flap elevation has been associated
with poor wound healing, increased incidence of infec-
tions and other complications, as well as decreased
neovascularization [71]. Despite this finding, anti-inflam-
matory effects of a number of other therapies have been
cited in their success at achieving increased skin flap
viability.

Gamma-aminobutyric acid (GABA) receptors,
expressed in immune cells, play a role in regulating
cytokine secretion and immune cell migration [68]. Ele-
vated GABA levels, primarily synthesized from gluta-
mate, have also demonstrated cytoprotective capabilities,
likely due to GABA’s inhibitory role as a neurotransmit-
ter [69]. Several GABA-modulating medications have
been investigated as potential treatments for enhanc-
ing skin flap viability by reducing inflammation. Iver-
mectin (IVM), originally used as an antiparasitic agent,
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demonstrated enhanced flap survival in animal studies
by upregulating the expression of GABA al subunit and
GABAB R1 receptor in immune cells [69]. Sodium val-
proate (SV), commonly prescribed as an anticonvulsant
medication, also exerts its effects through the GABA
pathway, and SV administration led to increased GABA
receptors and inhibition of histone deacetylase (HDAC)
signaling. The application of IVM and SV both resulted
in suppressed proinflammatory cytokine secretion, sig-
nificantly reduced necrosis areas, and improved flap
viability, indicating the potential clinical value of these
agents [68, 69].

Colchicine, a decades-old anti-inflammatory drug
used to treat gout, has similarly shown promise in miti-
gating inflammation and IRI-mediated necrosis through
the glutamate pathway, ultimately resulting in enhanced
skin flap survival [67]. The application of colchicine to
ischemia/reperfusion injured rats reduced proinflam-
matory cytokines IL-6 and TNF-a and mildly increased
glutamate and N-methyl-D-aspartate subunit 2A recep-
tor expression, a glutamate receptor found on nerve cells
and keratinocytes of the skin with known cytoprotec-
tive capabilities [67]. Furthermore, colchicine inhibited
microtubule polymerization, which affects neutrophil
adhesion, mobilization, and recruitment. Inflammation
was attenuated through increased induction of the M2
macrophage phenotype, which is known for dampening
of the immune response [67].

Cell-based therapies

Cell-based therapies harness the self-renewing and
regenerative capabilities of living stem cells to improve
viability of skin flaps (Table 7). Cell-based therapies are
a relatively new strategy to improve flap viability com-
pared to pharmaceutical drugs and may act through vari-
ous mechanisms, including direct tissue repair, immune
modulation, and release of growth factors and cytokines
(Fig. 2). They can potentially provide a longer therapeu-
tic effect window due to the self-renewing and differen-
tiating capability of the cells. Additionally, mesenchymal
stem cells (MSCs) can differentiate into endothelial cells
to form new vessels and significantly lower necrosis rates
in rat dorsal skin flaps in ischemia—reperfusion condi-
tions, as shown by Foroglou et al. [76].

MSCs, and particularly adipose-derived stem cells
(ADSCs), are the most frequently studied cell types [3],
and have been associated with anti-oxidant, vasodilatory,
anti-inflammatory, and angiogenic effects [76]. Several
sources of MSCs, including ADSCs from lipoaspirate,
bone marrow, and human umbilical cord matrix stem
cells (hUCMs), have been studied and demonstrate dif-
ferent benefits and drawbacks in terms of therapeutic
potential and ease of harvest/isolation.
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Table 6 Anti-inflammatory therapies

Pharmacologic MoA RoA Animal model Treatment protocol References

therapy

Lidocaine Inhibition of sodium Subcutaneous injec- Rat caudally-based Post-operative Caoetal. [65]

Apelin-13 Thermosensi-
tiv Hydrogel

Prussian Blue

Nanozyme

Topiramate

Colchicine

Sodium valproate

Ethyl pyruvate

Heme oxygenase-1

Baclofen and bicucul-
line

channels, Inhibition

of platelet aggregation
Suppression of neu-
trophil mitochondrial
functions
Enhancement of cuta-
neous blood flow

Anti-inflammatory,
antioxidant, pro-angio-
genic, and vasodilatory
activities
Anti-inflammatory, anti-
oxidant, anti-apoptotic,
and anti-necroptotic
activities
Anti-inflammatory,
antioxidant, and pro-
angiogenic activities

Enhancement of glu-
tamate and NMDA
receptor, inhibition

of microtubule
Stimulation of GABA
receptor stimulation
and inhibition of HDAC
signaling
Anti-inflammatory,
antioxidant, anti-apop-
totic, antithrombotic
activities
Anti-inflammatory,
antioxidant, pro-angi-
ogenic, anti-apoptotic,
and vasodilatory
activities
Enhancement

of GABAA a1 subunit
and GABAB R1 receptor

tion

Intradermal injection
of hydrogel solution

Intradermal injection

Intraperitoneal injec-
tion

Intraperitoneal injec-
tion

Intraperitoneal injec-
tion

Intraperitoneal injec-
tion

Intraperitoneal injec-
tion

Intraperitoneal injec-
tion

dorsal random pattern
flap

Rat caudally-based
dorsal random pattern
flap

Rat chest axial-pattern
flap

Rat caudally-based
dorsal random pattern
flap (McFarlane flap)

Rat cranially-based
dorsal random pattern
flap

Rat cranially-based
dorsal random pattern
flap

Rat epigastric island
flap

Rat left hindlimb osteo-
myocutaneous flap

Rat cranially-based
dorsal random pattern
flap

injection once daily
for 7 days

Single immediate post-
operative injection

Pre-treatment 2 h prior
to procedure

Pre-operative injec-
tion 1 h and post-
operatively once daily
for 7 days

Pre-operative injection
30 min

Pre-operative injection
1 h prior or post-opera-
tive injection once daily
for 14 days

Post-operative injec-
tion 30 min once daily
for 7 days

Pre-operative injection
30 min

Pre-operative injection
30 min

Zheng et al. [64]

Hou et al. [43]

Ahmadzadeh et al. [66]

Tabary et al. [67]

Ala et al. [68]

Kayiran et al. [42]

Zheng et al. [40]

Tabary et al. [69]

ADSCs have the benefits of abundant reserves with
high proliferating ability, simple harvest with liposuc-
tion, and low donor site morbidity. However, the har-
vested lipoaspirate is initially impure and requires
either a large volume or a long period of in vitro expan-
sion to produce a sufficient number of ADSCs for
transplantation [73]. ADSCs have been found to effec-
tively reduce distal skin flap necrosis, with a meta-
analysis finding that treatment resulted in an absolute
risk reduction in necrotic skin area of 22.37% [77].
Augmentation of ADSCs with exosomes stimulated
by hydrogen peroxide [78] and preconditioning of
ADSCs with hypoxia [79] have been shown to amplify
these therapeutic effects. Several studies have isolated

various components of ADSCs, such as extracellular
vesicles and exosomes and have shown these to inde-
pendently improve skin flap survival, suggesting contri-
bution of these components to the therapeutic value of
these cells [80-83].

MSCs can be isolated from bone marrow and used in
cell-based therapies to improve flap viability. Interest-
ingly, while these cells have been shown to stimulate
VEGF activity, neovascularization, and collagen density
in rat random-pattern skin flaps, they do not appear to
have a beneficial effect on the fibroblast number or other
biomechanical parameters in flap wound healing [75].
The limited supply and invasive harvesting procedures
necessitated by stem cell therapies from the bone marrow
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Cells are harvested
from the relevant
tissue type and
processed prior to
administration in the
model organism,
typically via
subcutaneous
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Fig. 2 Cell-based therapies require the harvest of cells from relevant tissue type and processing prior to usage as a therapy for skin flaps. The most
common sources of these cells are adipose tissue, bone marrow, placental amniotic membrane, and the umbilical cord. These cells are typically

applied to preclinical murine models via subcutaneous injection, as depicted in a McFarlane flap
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are an important limitation their clinical tranlatability
[28].

Human umbilical cord matrix stem cells (hUCMs) are
derived from human umbilical cord Wharton’s jelly and
are more easily isolated in a large number. Compared to
BM-MSCs, hUCsM may have more robust proliferation
and differentiation capabilities, greater plasticity, and
lower immunogenicity. A study by Leng et al. showed
that hUCMSs promote vascularization by increasing cap-
illary density, enhancing angiogenic growth factors such
as VEGF and bFGF levels, and improving the survival of
ischemic epigastric mouse flap models [28].

Tissue engineering approaches have also been applied
to the field of cell-based therapies for skin flap survival,
with a 2022 study by Nazanin et al. exploring the use
of placental amniotic membrane as a scaffold source to
improve flap viability. From the amniotic membrane,
researchers have studied the utility of amniotic mem-
brane sheet (AMS) and micronized amniotic membrane
(MAM) products, which contain human amniotic MSCs,
a number of angiogenic growth factors, and ECM com-
ponents to impart tensile strength [74]. While both prod-
ucts were found to be effective treatments to improve rat
flap survival, each imparted different therapeutic benefits
[74]. Specifically, transplantation of MAM improved the
organization of collagen tissue and angiogenesis rate,
while AMS had more profound anti-inflammatory effects
[74]. AMS treatment was also found to increase epitheli-
alization of keratinocytes and the in-growth of fibroblasts
during wound healing [74].

In summary, cell-based therapies offer a promising
avenue for enhancing skin flap viability through the utili-
zation of various stem cell types, including mesenchymal
stem cells (MSCs), adipose-derived stem cells (ADSCs),
and human umbilical cord matrix stem cells (hUCMs).
Additionally, the incorporation of tissue engineering
approaches, such as placental amniotic membrane, adds
further depth to this innovative field of research and
presents diverse avenues for improving the survival and
quality of skin flaps. While evidence suggests promis-
ing utility for stem cells in improving skin flap viability,
many factors produced by these cells and their specific
effects remain poorly understood. Further characteri-
zation of the factors produced by distinct cell lines and
their impact on the post-operative skin flap environment
will provide a more granular understanding of the pos-
sible clinical utility of stem cells for improvement of skin
flap viability.

Translatability challenges and future directions

Preclinical investigation of pharmacologic and cell-based
therapies has attempted to improve viability through a
variety of pathways, drug classes, and stem-cell types.
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Despite promising results, the translation of these thera-
pies to common clinical practice has yet to be seen. The
reasons for this are complex, though several include
negative drug side effects, complicated treatment regi-
mens, and high economic/logistic costs. Calcium channel
blockers like Nifedipine, for example, can cause palpita-
tions, edema, and constipation, while the antiepileptic
Sodium valproate can impede hair growth and amplify
weight gain when administered systemically. On the
topic of administration, treatment protocols may often be
demanding, with some drugs requiring daily injections
due to short half-lives and low plasma concentrations.
The cost of these agents can also be prohibitive for prac-
tical translatability, particularly for growth factors like
VEGF and cell-based therapies. Cell-based options are
accompanied by several logistical barriers which contrib-
ute to their high costs, such as sourcing, expansion, and
delivery. Clinical limitations such as immuno-rejection
and genetic stability exist as well.

The future of clinical practices to enhance skin flap
viability requires clear understanding of pro-survival
pathways, as well as validation of results in more rigorous
studies. Many of the experiments conducted in this field
have utilized small animal models, and large animal mod-
els as well as clinical trials with long-term follow-up will
ultimately be needed [77].

Furthermore, with promising results demonstrated by
induction of ischemia [84] to promote angiogenesis prior
to creating a skin flap, interest in preconditioning treat-
ments to prepare a skin region for use as a skin flap has
emerged. Studies have reported promising results with
hyperbaric oxygen therapy [85, 86] and local warming of
the skin using a heat blanket prior to surgery, which have
been shown to enhance skin flap survival in pigs [87].
Additionally, advances in flap care are moving toward
the direction of combination therapies that promote
viability by addressing a variety of pathways simultane-
ously [22, 88, 89]. For example, one study simultaneously
used hyperbaric oxygen therapy to promote angiogenesis
and nitroglycerin to promote vasodilation [90]. Another
study investigated the synergistic action of azelaic acid,
minoxidil, and caffeine to protect against IRI by targeting
parallel anti-apoptotic, anti-inflammatory, and antioxi-
dant pathways [22].

As techniques advance, so, too has drug delivery tech-
nology. Novel delivery mechanisms for pharmaceutical
therapies such as an injectable thermosensitive hydro-
gel [64] and photocrosslinked gelatin hydrogel implants
[91] have been introduced for optimized drug delivery.
These gel-based biomaterials allow for controlled release
platforms that can be applied directly to the wound bed
prior to flap closure, topically to the flap site, injected
directly into the flap, or incorporated into dressings [64].
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Nanoparticles that encapsulate drugs and target spe-
cific tissues or cells within a flap offer controlled release
and drug protection, ultimately enhancing delivery and
reducing systemic side effects [92].

Since survival rate of compromised skin flaps correlate
inversely with time, treatment following the first signs of
necrosis—particularly within the first 72-h window—is
important to provide timely interventions to minimize
the risk of flap necrosis [93, 94]. A recent paper reported
bioengineering sensors that use non-invasive electri-
cal measurements to monitor biochemical parameters,
such as pH value or dissolved oxygen concentration, and
biophysical parameters, like blood flow and tempera-
ture, to relay real-time information regarding flap viabil-
ity may thus be of future value [92]. These sensors allow
for timely detection of signs of flap failure, allowing an
opportunity for intervention and, ultimately, improved
survival [95].

Conclusion

Translational work in the field of skin flaps aimed at aug-
menting viability has demonstrated significant poten-
tial through diverse approaches, drug classes, and cell
types. Despite promising results, the translation of these
therapies to common clinical practice remains elusive.
Challenges such as clinical side effects, complex treat-
ment protocols, high economic and logistic costs, dosing
regimens, and incomplete understanding of underly-
ing molecular pathways have hindered their widespread
adoption. To overcome these obstacles and pave the way
for successful clinical implementation, future research
must focus on elucidating the intricate mechanisms of
action, conducting rigorous and comprehensive pre-
clinical and clinical trials, adopting a holistic approach
through combination therapies, exploring novel delivery
methods, and leveraging technological advancements for
flap monitoring. Moreover, validating results in large ani-
mal models and conducting long-term clinical trials will
be crucial for establishing the efficacy and safety of these
interventions. Recent advances in preconditioning treat-
ments, combination therapies, drug delivery systems,
and monitoring technologies offer hope for overcoming
the existing challenges and ultimately enhancing skin flap
viability in clinical settings. As the safety and efficacy of
pharmaceutical agents in flap viability continue to pro-
gress, they hold the potential to significantly improve
patient outcomes and contribute to advancements in
reconstructive surgery.
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