
Wang et al. Journal of Translational Medicine           (2024) 22:57  
https://doi.org/10.1186/s12967-023-04807-y

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Integrating single-cell and bulk RNA 
sequencing data unveils antigen presentation 
and process-related CAFS and establishes 
a predictive signature in prostate cancer
Wenhao Wang1†, Tiewen Li1†, Zhiwen Xie1†, Jing Zhao1, Yu Zhang1, Yuan Ruan1* and Bangmin Han1*   

Abstract 

Background Cancer-associated fibroblasts (CAFs) are heterogeneous and can influence the progression of pros-
tate cancer in multiple ways; however, their capacity to present and process antigens in PRAD has not been investi-
gated. In this study, antigen presentation and process-related CAFs (APPCAFs) were identified using bioinformatics, 
and the clinical implications of APPCAF-related signatures in PRAD were investigated.

Methods SMART technology was used to sequence the transcriptome of primary CAFs isolated from patients under-
going different treatments. Differential expression gene (DEG) screening was conducted. A CD4 + T-cell early activa-
tion assay was used to assess the activation degree of CD4 + T cells. The datasets of PRAD were obtained from The 
Cancer Genome Atlas (TCGA) database and NCBI Gene Expression Omnibus (GEO), and the list of 431 antigen 
presentation and process-related genes was obtained from the InnateDB database. Subsequently, APP-related CAFs 
were identified by nonnegative matrix factorization (NMF) based on a single-cell seq (scRNA) matrix. GSVA functional 
enrichment analyses were performed to depict the biological functions. A risk signature based on APPCAF-related 
genes (APPCAFRS) was developed by least absolute shrinkage and selection operator (LASSO) regression analysis, 
and the independence of the risk score as a prognostic factor was evaluated by univariate and multivariate Cox 
regression analyses. Furthermore, a biochemical recurrence-free survival (BCRFS)-related nomogram was established, 
and immune-related characteristics were assessed using the ssGSEA function. The immune treatment response 
in PRAD was further analyzed by the Tumor Immune Dysfunction and Exclusion (TIDE) tool. The expression levels 
of hub genes in APPCAFRS were verified in cell models.

Results There were 134 upregulated and 147 downregulated genes, totaling 281 differentially expressed genes 
among the primary CAFs. The functions and pathways of 147 downregulated DEGs were significantly enriched 
in antigen processing and presentation processes, MHC class II protein complex and transport vesicle, MHC class 
II protein complex binding, and intestinal immune network for IgA production. Androgen withdrawal diminished 
the activation effect of CAFs on T cells. NMF clustering of CAFs was performed by APPRGs, and pseudotime analysis 
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yielded the antigen presentation and process-related CAF subtype CTSK + MRC2 + CAF-C1. CTSK + MRC2 + CAF-C1 
cells exhibited ligand‒receptor connections with epithelial cells and T cells. Additionally, we found a strong associa-
tion between CTSK + MRC2 + CAF-C1 cells and inflammatory CAFs. Through differential gene expression analysis 
of the CTSK + MRC2 + CAF-C1 and NoneAPP-CAF-C2 subgroups, 55 significant DEGs were identified, namely, APPCA-
FRGs. Based on the expression profiles of APPCAFRGs, we divided the TCGA-PRAD cohort into two clusters using NMF 
consistent cluster analysis, with the genetic coefficient serving as the evaluation index. Four APPCAFRGs, THBS2, DPT, 
COL5A1, and MARCKS, were used to develop a prognostic signature capable of predicting BCR occurrence in PRAD 
patients. Subsequently, a nomogram with stability and accuracy in predicting BCR was constructed based on Gleason 
grade (p = n.s.), PSA (p < 0.001), T stage (p < 0.05), and risk score (p < 0.01). The analysis of immune infiltration showed 
a positive correlation between the abundance of resting memory CD4 + T cells, M1 macrophages, resting dendritic 
cells, and the risk score. In addition, the mRNA expression levels of THBS2, DPT, COL5A1, and MARCKS in the cell mod-
els were consistent with the results of the bioinformatics analysis.

Conclusions APPCAFRS based on four potential APPCAFRGs was developed, and their interaction with the immune 
microenvironment may play a crucial role in the progression to castration resistance of PRAD. This novel approach 

provides valuable insights into the pathogenesis of PRAD 
and offers unexplored targets for future research.

Introduction
Prostate cancer is the most prevalent cancer in males 
worldwide and the second leading cause of cancer-related 
death in men [1]. Due to the paramount role of androgen 
receptor (AR) signaling in prostate cancer cell growth 
and survival in the regulation of cell growth and survival 
[2–4], androgen deprivation therapy (ADT), which inhib-
its  AR signaling,  has  been the standard treatment  for 
early-stage and metastatic prostate cancer until recently 
[5, 6]. Unfortunately, after 18–24 months of ADT, includ-
ing the recently developed potent antiandrogen enzaluta-
mide (Enz), most patients eventually relapse and develop 
castration-resistant prostate cancer (CRPC) [7–9]. In 
addition to endocrine therapy, new drugs [11, 12] have 
been investigated and developed in recent years, and 
chemotherapy can be used as an alternative treatment for 
patients who have failed endocrine therapy [10], although 
its efficacy for CRPC patients is still poor. Moreover, 
there are currently no curative treatment options for 
metastatic castration-resistant prostate cancer (mCRPC), 
and its prognosis is dismal [13]. Therefore, it is impera-
tive to elucidate the underlying mechanisms of castration 
resistance after ADT in prostate cancer.

The tumor microenvironment (TME) is a highly com-
plex system composed of tumor cells and stromal cells, 
resulting in the multifaceted nature of malignant tumors 
[14]. Traditionally, the primary focus in comprehending 
carcinogenesis has been the tumor cell and its under-
lying mechanisms [15]. However, dynamic cross-talk 
between cancer cells and stromal cells is also crucial for 
cancer progression [16–18]. CAFs, which are activated 
fibroblasts, are components of the tissue microenviron-
ment [19]. The stromal-to-tumor interaction is largely 

influenced by CAFs, which stand as the most promi-
nent stromal component within the TME [20]; they can 
secrete cytokines, chemokines, and growth factors that 
exert direct and indirect effects on tumorigenesis, prolif-
eration, progression, and invasion of cancer cells [21–23]. 
At the same time, novel therapies targeting cancer, with 
mechanisms such as interfering with tumor metabolism 
to inhibit its malignant progression [24], treat tumors 
through targeted nanomedicine delivery systems [25, 26]. 
Moreover, progress in drug delivery using nanoparticles 
has led to substantial improvements in the efficiency of 
delivering drugs to disease sites, consequently greatly 
enhancing therapeutic effectiveness [27–30]. In contrast 
to traditional endocrine therapy drugs, nanoparticles effi-
ciently direct anti-cancer medications towards metastatic 
sites of prostate cancer while minimizing adverse effects 
on the host [31, 32]. In the development and application 
of these therapies, CAFs exhibit important activities. As 
with the diversity in CAF origins, the heterogeneity in 
CAF fate and function has received great attention and 
has led to the possibility of targeting a subpopulation of 
CAFs to combat cancer. The common classification of 
CAFs is myofibroblastic CAFs (myCAFs) and inflamma-
tory CAFs (iCAFs) [33, 34]. Antigen-presenting CAFs 
(apCAFs), which present MHC class-II-restricted anti-
gens and activate CD4 T cells to demonstrate antigen-
presenting capacities, were identified and reported for 
the first time in pancreatic cancer with the efficacy of sin-
gle-cell transcriptomics [35]. Nevertheless, the compre-
hensive characteristics of apCAFs and their associations 
with prognosis and immunotherapy response in prostate 
cancer remain inadequately understood.

In this study, we utilized single-cell RNA-sequencing 
(scRNA-seq) data and transcriptome data to identify 
subclusters of APPCAFs and develop an APPCAF-asso-
ciated risk signature for PRAD. In addition, we analyzed 
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the clinical characteristics associated with the APPCAF 
signature and investigated the immune landscape and 
immunotherapy responsiveness. Furthermore, using 
the risk score and clinicopathological characteris-
tics, we developed a prognostic nomogram to analyze 
the correlation between APPCAF characteristics and 
PRAD prognosis. Our findings provide novel microen-
vironment insight  into the pathophysiology of PRAD 

and may provide ideas and approaches for treating 
prostate cancer.

Results
Isolation and transcriptomic profiling of CAFs 
from patients with PCa
Figure  1 depicts the framework and experimen-
tal procedures of the entire study. To elucidate the 

Fig. 1 Study flow diagram
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differential gene expression profiles between the pre-
ADT and post-ADT groups, transcriptome sequencing 
was performed. Based on our transcriptome sequenc-
ing data, a total of 281 differentially expressed genes 
(DEGs) were identified between the pre-ADT and 
post-ADT groups, including 134 upregulated genes 
and 147 downregulated genes (Fig.  2A). The heat-
map of DEGs revealed distinct clustering of samples 
from the pre-ADT and post-ADT groups (Fig.  2B). 
Subsequently, enrichment analysis was conducted 
on the identified DEGs. The DEGs were significantly 
enriched in GO-BP terms, such as antigen processing 
and presentation processes (Fig.  2C); GO-CC terms, 
such as MHC class II protein complex and transport 
vesicle (Fig. 2D); GO-MF terms, such as MHC class II 
protein complex binding (Fig.  2E); and KEGG signal-
ing pathways, such as intestinal immune network for 
IgA production (Fig.  2F). These results indicated a 

significant decrease in CAFs implicated in APP follow-
ing ADT treatment.

Identification of APP‑related CAFs contributing to the TME 
in PCa
The PCa scRNA-seq used in our study consisted of 
36,424 cells from 13 samples of prostate cancer patients, 
with major cell types such as epithelial cells, T cells, mye-
loid cells, stromal cells, and B cells annotated (Fig.  3A). 
The analysis of cellChat unveiled a myriad of interac-
tions among these cellular types (Fig.  3B). The propor-
tions of the six cell types across the 13 prostate cancer 
samples are shown in Fig.  3C. Within the PCa dataset, 
stromal cells were classified into CAFs and endothelial 
cells (Fig.  3D). Subsequently, NMF clustering of CAFs 
was performed using APPRGs, resulting in the identi-
fication of seven subtypes (Fig.  4A). Next, pseudotime 
analysis displayed the trajectories of NMF-clustered 
CAF subtypes (Fig.  4B). Further analysis of the feature 

Fig. 2 Identification of DEGs between pre-ADT and post-ADT treatments through transcriptomic sequencing data analysis and functional 
enrichment analysis. A Volcano diagram of DEGs. B Heatmap of transcriptomic data. Enrichment analysis of DEGs in GO-BP terms (C), GO-CC terms 
(D), GO-MF terms (E), and KEGG pathways (F)
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genes for the seven NMF subtypes revealed APP-related 
CAFs, namely, CTSK + MRC2 + CAF-C1. CAFs that 
did not exhibit APP-related effects were designated 
as NoneAPP-CAF-C2 (Fig.  4C). In addition, cellChat 
analysis demonstrated that compared to Non-APP-
CAF-C2 cells, CTSK + MRC2 + CAF-C1 cells exhib-
ited more ligand‒receptor connections with epithelial 
cells and T cells (Fig.  4D, E). Additionally, by calculat-
ing the Pan-CAF score based on previously reported 
signatures [36], we found a strong association between 
CTSK + MRC2 + CAF-C1 cells and inflammatory CAFs 
(Fig.  4F). As shown in Fig.  4G, various genes related to 
the ECM, MMPs, and proinflammatory processes were 
significantly upregulated in CTSK + MRC2 + CAF-C1 
cells.

Identification of APPCAF‑related genes using single‑cell 
RNA‑sequencing data
Differential gene expression analysis of the 
CTSK + MRC2 + CAF-C1 and NoneAPP-CAF-C2 sub-
groups revealed 55 significantly differentially expressed 
genes, which were designated APPCAF-related genes 
(APPCAFRGs) (Additional file 3: Table S3). Subsequently, 
through univariate Cox regression analysis, we identified 

20 genes with prognostic value for BCR (Fig.  5A). The 
correlation circus plot in Fig. 5B depicts the relationships 
among these genes. Furthermore, analysis of copy num-
ber variation (CNV) rates revealed a high frequency of 
deletions in POSTN, COL10A1, and MARCKS in TCGA 
(Fig.  5C). The genomic loci of these genes on human 
chromosomes are illustrated in Fig. 5D.

NMF Clustering Analysis Based on TCGA‑PRAD Patients
Next, we performed NMF consensus clustering analysis 
using the expression profiles of the 20 APPCAFRGs. As 
depicted in Fig. 6A and B, we successfully partitioned the 
TCGA-PRAD cohort into two clusters and optimized the 
grouping using the cophenetic coefficient as an evalu-
ation metric. Subsequently, we assessed the prognostic 
disparities between the clusters using KM curve analysis 
and found a significant distinction in patient outcomes 
between the C1 and C2 subtypes (p = 0.011). Addition-
ally, patients within the C2 cluster exhibited a markedly 
shorter median time to BCR (Fig. 6C). Moreover, to fur-
ther investigate the distinctive characteristics, we applied 
PCA, tSNE, and UMAP dimensionality reduction tech-
niques, which unequivocally demonstrated significant 
discrepancies between the C1 and C2 subtypes (Fig. 6D).

Fig. 3 Overview of prostate cancer scRNA-seq from GSE141445. A The cell type annotation of 32,602 cells using t-distributed stochastic neighbor 
embedding (t-SNE) and uniform manifold approximation and projection (UMAP) plots. B Analysis of cell‒cell communication between six major 
cell types using CellChat. C Cellular composition across patients, showing the distribution of cell types. D Identification of CAFs from the stromal 
cells
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Characteristics of APPCAF‑related gene subtypes in PCa 
patients
We performed gene differential expression analysis 
between the C1 and C2 subtypes, and the top 50 sig-
nificant DEGs are presented in Fig.  7A. Subsequently, 
we investigated the expression patterns of the 20 APP-
CAF-related genes in the C1 and C2 subtypes. Consist-
ent with the findings from the univariate Cox analysis, 
genes with HR > 1 exhibited higher expression levels in 
the C2 subtype, while genes with HR < 1 showed higher 
expression levels in the C1 subtype (Fig.  7B). The dis-
tribution of various clinical features in the C1 and C2 
subtypes within the TCGA-PRAD samples is depicted 

in Fig.  7C. Furthermore, we assessed the proportions 
of 23 tumor immune cell infiltrations in the C1 and 
C2 subtypes utilizing the ssGSEA method (Fig.  7D). 
In addition, we performed GO and KEGG enrichment 
analyses to identify significant pathways and functions 
linked to the DEGs between the C1 and C2 subtypes. 
The KEGG enrichment analysis revealed significant 
enrichment of pathways such as tryptophan metabo-
lism, propanoate metabolism, and alanine, leucine, and 
isoleucine degradation in the C1 subtype. In contrast, 
the C2 subtype exhibited significant enrichment in 
pathways related to the cell cycle, homologous recom-
bination, and DNA mismatch repair (Fig. 7E). The GO 

Fig. 4 Identification of antigen processing and presentation-related subtypes in CAFs. A UMAP visualization of NMF clustering subtypes 
based on APP-related genes in CAFs. B Pseudotime trajectory analysis of NMF clusters. C Definition of APP-related subtypes in CAFs. Cell‒cell 
communication from APP-related CAFs to epithelial cells (D) and T cells (E). F Associations between APP-related CAF subtypes and previous 
signatures. G Heatmap demonstrating differential average expression levels of common signaling pathway genes between the two APP-related 
subtypes
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enrichment analysis showed significant enrichment of 
the C1 subtype in various amino acid catabolic pro-
cesses, while the C2 subtype exhibited significant 
enrichment in pathways related to STAT protein family 
binding, negative regulation of tyrosine kinase activity, 
and Fcγ receptor signaling (Fig. 7F).

Establishment and validation of the prognostic signatures 
of APPCAF‑related genes
To establish the APPCAF-related signatures, we ini-
tially employed Lasso regression and conducted tenfold 
cross-validation using the 20 APPCAF-related genes 
(Fig.  8A, B). Four key genes, THBS2, DPT, COL5A1, 

and MARCKS, were identified and incorporated into the 
development of the prognostic model. The TCGA-PRAD 
cohort served as the training set, whereas the GSE116918 
and GSE70769 cohorts served as the validation sets. 
Using the median signature risk score as a threshold, 
we classified patients in both the training and validation 
sets into high-risk and low-risk groups. The KM curve 
revealed a significant difference in prognosis between the 
high-risk and low-risk groups, with the former exhibit-
ing worse outcomes (Fig. 8C–E). Furthermore, Fig. 8F–H 
revealed that higher risk scores were associated with an 
increased likelihood of BCR occurrence in prostate can-
cer patients.

Fig. 5 Analysis of characteristic APPCAF-related genes from scRNA-seq. A Univariate Cox regression analysis conducted on 55 APPCAF-related 
genes in the TCGA-PRAD cohort. B Circos plot illustrating the correlations of 20 prognosis-associated APPCAF-related genes. C Copy number 
variation (CNV) frequency analysis of 20 APPCAF-related genes. D Chromosomal localization of the 20 APPCAF-related genes
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Identification of independent prognostic factors 
and construction of the nomogram
To further assess the predictive performance of our con-
structed prognostic model for BCR in PCa, we investi-
gated the contribution of various indicators, including 
Gleason grade, PSA, T stage, and risk score, using univar-
iate and multivariate Cox regression analyses in patients 
from the TCGA-PRAD, GSE116918, and GSE70769 
cohorts. As depicted in Fig. 9A, B, the risk score emerged 
as an independent prognostic factor for BCR in TCGA-
PRAD patients (HR: 2.447, p = 0.002). Similarly, in the 
GSE116918 cohort, the risk score also demonstrated 
an independent prognostic value for BCR (HR: 2.150, 
p = 0.048) (Fig.  9C, D). Moreover, in PCa patients from 
the GSE70769 cohort, the risk score was identified as 
an independent prognostic factor for BCR (HR: 1.969, 
p = 0.010). Subsequently, we developed a nomogram 
based on Gleason grade, PSA, T stage, and risk score 
(Fig.  9G). Furthermore, calibration curve analysis indi-
cated a high level of concordance between the predicted 
BCRFS and the actual BCRFS (Fig. 9H). Decision curve 
analysis revealed that the nomogram and risk score were 
more stable and accurate in predicting BCR than Gleason 
grade, PSA, and T stage (Fig. 9I).

Correlation between the signatures of APPCAF‑related 
genes and clinical characteristics
We further evaluated the differences in clinical charac-
teristics between high-risk and low-risk prostate cancer 
patients. In the TCGA-PRAD cohort, the composition 
differences in clinical features between the high-risk 
and low-risk subgroups revealed significant disparities 
in the Gleason grade, T stage, and N stage (Fig.  10A). 
Figure  10B illustrates a significant positive correlation 
between the risk score and PSA (R = 0.18, p = 0.00024). 
Furthermore, in the GSE116918 cohort, significant differ-
ences were observed between the high-risk and low-risk 
groups in terms of Gleason grade and T stage (Fig. 10C). 
Additionally, there was a significant positive correlation 
between the risk score and PSA (R = 0.19, p = 0.0023) 
(Fig. 10D).

APPCAFRS‑based immune‑related discrepancies in PCa
In light of the disparities in the tumor immune micro-
environment between the low-risk and high-risk sub-
groups, we conducted a comprehensive investigation 
into the immune-related differences in the TCGA-
PRAD and GSE116918 cohorts. Initially, a differential 
analysis of immune cell infiltration between the low-risk 

Fig. 6 NMF clustering divided the samples in the TCGA-PRAD cohort into two subgroups. A Rank and cophenetic correlation coefficients after NMF 
rank survey. B A consensus map of NMF clusters. C KM curve for the clusters based on APPCAF-related genes. D Scatter plot of PCA scores of two 
APPCAFRG clusters. E tSNE plot of the two clusters. F UMAP plot of the two clusters
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and high-risk subgroups in both cohorts revealed an 
increased abundance of resting memory CD4 + T cells, 
M1 macrophages, and resting dendritic cells in the 
high-risk subgroup, while plasma cells exhibited a lower 
infiltration abundance (Fig.  11A, B). Subsequently, we 
calculated immune functional scores for patients in both 
cohorts. As illustrated in Fig.  11C and D, the high-risk 

group displayed significantly elevated scores for inflam-
mation-promoting, MHC Class I (MHC I), and T helper 
cells. Additionally, an examination of the correlation 
between the risk score and immune checkpoint-related 
genes revealed a negative association between the risk 
score and multiple immune checkpoint-related genes 
(Fig. 11E, F). In addition, the analysis of immune therapy 

Fig. 7 Comparative analysis of clinical characteristics, tumor immune microenvironment, and gene enrichment among distinct subtypes derived 
from NMF clustering. A Heatmap depicting the DEGs among the subtypes identified through NMF clustering. B Expression patterns of 20 
prognosis-associated APPCAF-related genes across the subtypes. C Comparison of clinical and pathological factors between the two subtypes. D 
Differential analysis of 23 immune cell types between the two clusters. Enrichment analysis of DEGs between the two subtypes in GO (E) and KEGG 
pathways (F)
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Fig. 8 Establishment and validation of a prognostic model based on APPCAF-related genes. A The coefficients in Lasso regression analysis. (B) 
Selection of lambda in the Lasso regression model using tenfold cross-validation. The KM survival curves for the patients from TCGA-PRAD (C), 
GSE116918 (D), and GSE70769 (E). The risk scores, BCRFS status, and gene expression levels in TCGA-PRAD (F), GSE116918 (G), and GSE70769 (H)
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Fig. 9 Construction of the nomogram and the prediction accuracy based on independent prognostic factors. Univariate and multivariate 
regression analyses revealed a significant correlation between BCRFS and risk scores, as well as various clinical parameters in the TCGA-PRAD (A, B), 
GSE116918 (C, D), and GSE70769 (E, F) cohorts. G Nomogram for predicting 1-year, 3-year, or 5-year BCRFS time in PCa patients. H 1-, 3-, and 5-year 
nomogram calibration curves of the TCGA-PRAD cohort Decision curve analysis for 1-year (I), 3-year (J), and 5-year (K) BCRFS
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sensitivity prediction in low-risk and high-risk patients 
using the TIDE database revealed that high-risk patients 
exhibited a diminished response to immune therapy and 
a greater likelihood of immune evasion (Additional file 4: 
Figure S1A, B). Furthermore, using the previously estab-
lished pancancer genomic instability features [37], we 
analyzed immune subtypes within the low-risk and high-
risk subgroups. As depicted in Additional file  4: Figure 
S1C, high-risk patients demonstrated a higher prevalence 
of the C1 subtype, which scored higher in tumor muta-
tion burden, noninteger copy number alterations, and 
homologous recombination deficiency. Finally, in the 
IMvigor 210 cohort, we stratified patients based on the 
risk score, and in alignment with our previous findings, 
patients in the high-risk group exhibited a worse progno-
sis (Additional file 4: Figure S1D).

Prediction of chemotherapy sensitivity
To further elucidate the differences in chemotherapy drug 
response between the low-risk and high-risk subgroups, 
we evaluated the predictive capacity of the risk model for 
chemotherapy drug sensitivity using the TCGA-PRAD 

dataset. Our analysis revealed that the high-risk group 
exhibited increased sensitivity to eight chemotherapy 
drugs, including SB505124 and JAK1_8709 (Fig. 12A, B). 
Conversely, the low-risk group demonstrated higher sen-
sitivity to drugs such as WIKI4 and WEHI-539 (Fig. 12C, 
D).

Validation of the feature genes and CD4 + T‑cell early 
activation assay
We conducted qRT‒PCR analysis to investigate the 
relative differential expression of these signature genes 
in vitro. The prostate CAFs exhibited a significant upreg-
ulation of THBS2, COL5A1, and MARCKS, while DPT 
showed a significant downregulation when compared 
to the normal prostate stromal fibroblast line WPMY-1 
(Fig. 13A–D). Subsequently, we examined the expression 
of these signature genes in the pre-ADT and post-ADT 
groups by subjecting the CAF cell lines to in vitro andro-
gen deprivation therapy. As depicted in Fig. 13E, follow-
ing ADT treatment, THBS2, COL5A1, and MARCKS 
were significantly upregulated, whereas DPT showed an 
insignificant downregulation. Using an early activation 

Fig. 10 Correlation analysis between risk scores and clinical features. A Pie chart depicting the variations in clinical pathological factors 
between the high-risk and low-risk subtypes in TCGA. B Scatter plot illustrating the correlation between risk score and PSA levels in TCGA. C Pie 
chart depicting the variations in clinical pathological factors between the high-risk and low-risk subtypes in GSE116918. B Scatter plot illustrating 
the correlation between risk score and PSA levels in GSE116918
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Fig. 11 Differential analysis of tumor-infiltrating immune cells between the two risk subgroups. The discrepancy in immune cell infiltration 
in the two risk subpopulations in TCGA-PRAD (A) and GSE116918 (B). Comparison of immune function scores between the low and high groups 
in TCGA-PRAD (C) and GSE116918. The correlation between the APPCAFRS-based risk score and immune checkpoint genes in TCGA-PRAD (E) 
and GSE116918 (F)
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assay, compared to pre-ADT CAFs, post-ADT CAFs did 
not induce measurable OVA-specific T-cell activation in 
coculture with T cells, as indicated by early activation 
markers of TCR ligation (CD25 and CD69) (Fig. 13F–H).

Materials and methods
Isolation and transcriptome sequencing of primary CAFs
Tumor tissues were collected from patients with pros-
tate cancer who underwent radical prostatectomy at 
the Department of Urology, Shanghai General Hospital, 
Shanghai Jiao Tong University School of Medicine. The 

methodology and procedures for isolating primary CAFs 
from prostate cancer tissues were previously described 
[38]. A total of 12 primary CAF samples were obtained 
from 12 patients. Among them, 6 patients did not receive 
any treatment within the 3–6  months before radical 
prostatectomy, while the remaining 6 patients under-
went androgen deprivation therapy with abiraterone 
and leuprorelin before the surgery. Subsequently, RNA 
sequencing analysis was conducted on 6 pre-ADT and 6 
post-ADT primary CAFs using the switching mechanism 
at the 5’ end of RNA template (SMART) technology.

Fig. 12 Drug sensitivity prediction in low- and high-risk groups. Box plots depicting more sensitive drugs in the high-risk group (A, B). Box plot 
illustrating more sensitive drugs in the low-risk group (C, D)



Page 15 of 21Wang et al. Journal of Translational Medicine           (2024) 22:57  

DEG analysis and enrichment analysis
The DEG analysis was performed on the SMART 
sequencing results using the "Limma" package [39]. The 
selection criteria for DEGs were set as |logFC|> 1 and p 
value < 0.05. Subsequently, we conducted an enrichment 
analysis on the DEGs by utilizing the GO and KEGG 
databases.

Data collection and processing
The scRNA-seq data utilized in this study were obtained 
from the GSE141445 dataset available in the GEO data-
base [40]. After an initial integration of the samples, we 
generated gene expression and phenotype matrices con-
sisting of 36,424 scRNA-seq datasets. Additionally, bulk 

RNA-seq data with clinical characteristics were down-
loaded from both the TCGA database and the GEO 
database. The study encompassed three distinct cohorts, 
namely, TCGA-PRAD, GSE116198 [41], and GSE70769 
[38]. To ensure robust data quality, we selected patients 
with clearly defined biochemical recurrence outcome 
information, considering a minimum follow-up duration 
of 30 days. The final analysis included a total of 419 sam-
ples from TCGA-PRAD, 248 samples from GSE116918, 
and 90 samples from GSE70769.

Visualization of major cell types and subtypes in PCa
Using the "Seurat" package [42], a Seurat object was gen-
erated based on scRNA-seq data from the GSE141445 

Fig. 13 Validation of relative gene expression levels in vitro for genes included in the APPCAFRS. The relative expression levels of THBS2 (A), 
COL5A1 (B), MARCKS (C), and DPT (D) in WPMY-1 cells and CAFs. The relative expression levels of THBS2, COL5A1, MARCKS, and DPT in pre-ADT 
and post-ADT CAFs (E). An example of a T-cell early activation assay. CD4 + T cells that were cocultured with different CAF subtypes. After exclusion 
by forward- and side-scatter, residual viable cells were stained for CD4, CD25 and CD69. A representative example of CD4 gating is shown 
in the left Panel (F). Each of the other panels shows the CD69 + population upon coculture of T cells with pre-ADT CAFs or post-ADT CAFs 
following incubation with OVA (G, H)



Page 16 of 21Wang et al. Journal of Translational Medicine           (2024) 22:57 

dataset. Initially, cells with gene expression exceed-
ing 4000 or below 200, as well as cells with high levels 
of mitochondrial gene expression (pctMT > 15%), were 
excluded. Subsequently, the top 2000 variable genes 
were selected for data normalization using the FindVari-
ableFeatures function in the Seurat package. We applied 
the ScaleData and RunPCA functions to the normalized 
data for principal component analysis (PCA). Dimen-
sionality reduction and visualization of the data were 
achieved using the t-distributed stochastic neighbor 
embedding (t-SNE) and uniform manifold approximation 
and projection (UMAP) methods. Finally, cell annotation 
and visualization of major cell types or subtypes were 
conducted based on the expression of specific marker 
genes for different cell types.

Nonnegative matrix factorization (NMF) of APPRGs in CAFs
A gene set comprising 431 antigen processing and pres-
entation-related genes (APPRGs) was obtained from 
the InnateDB database (https:// www. innat edb. com) 
(Table  S1). To further investigate the CAFs involved in 
antigen processing and presentation, we employed the 
NMF algorithm [43] to perform dimensionality reduc-
tion analysis on the 431 APPRGs in CAFs. Different cell 
types within CAFs were determined based on the scRNA 
expression matrix.

Identification of the DEGs and characteristics 
of APP‑related CAF subtypes in PCa
Differential gene analysis was conducted using the Fin-
dAllMarkers function, employing filtering criteria of 
|logFC|> 1 and adjusted p value < 0.05, to identify genes 
that exhibited significant differences between CAF sub-
types, thus warranting further investigation. Subse-
quently, the CellChat package [44] was utilized to infer 
and analyze intercellular communication. The netVisual 
circle function was employed to visualize the strength of 
cell‒cell communication networks between APP-related 
CAF subtypes, ranging from the source cell cluster to 
various other cell clusters. Finally, the AddModuleScore 
function was applied to calculate feature scores for the 
APP-related CAF subtypes based on their characteristic 
genes.

NMF clustering identification of subtypes 
of APPCAF‑related genes
The correlation between APPCAF-related genes and 
BCR was evaluated in TCGA-PRAD samples using uni-
variate Cox regression analysis. Subsequently, the mRNA 
expression matrix of APPCAF-related genes was col-
lected from the TCGA-PRAD dataset. The "NMF" pack-
age in R was utilized, and the Brunet method was applied 

to perform NMF clustering. We determined the optimal 
value of k, representing the number of clusters, by con-
sidering cophenetic correlation coefficients and silhou-
ette scores.

Analysis of the characteristics of clusters based 
on APPCAF‑related genes
Differential expression analysis was conducted 
on distinct clusters of APPCAF-related genes in 
TCGA-PRAD samples using the "limma" package. Sub-
sequently, the ssGSEA function in the “GSVA” pack-
age was utilized to evaluate the disparities in immune 
cell infiltration among the clusters of APPCAF-
related genes [45]. Additionally, the GSVA package 
was employed to perform GO and KEGG enrichment 
analysis on the DEGs identified between the clusters of 
APPCAF-related genes.

Development and validation of a risk signature based 
on APPCAF‑related genes
To mitigate overfitting, we employed the "glmnet" 
package to perform LASSO regression analysis. Utiliz-
ing the APPCAF-related genes associated with prog-
nosis, we constructed an APPCAF-related signature 
(APPCAFRS). Subsequently, we utilized the "predict" 
function in R to assign risk scores to each sample in the 
TCGA-PRAD cohort. Based on the median risk score, 
the samples were categorized into low-risk and high-
risk subgroups. Moreover, employing the median risk 
score derived from the TCGA-PRAD cohort, we strati-
fied PCa patients from the GSE116918 and GSE70769 
cohorts into high-risk and low-risk subgroups. Finally, 
we conducted the following analyses in the three PCa 
cohorts: (1) Kaplan‒Meier analysis was performed to 
assess the survival differences between the high-risk 
and low-risk subgroups; (2) the "pheatmap" package 
was utilized to visualize the expression levels of genes 
in the APPCAF-related signature and the distribution 
of outcomes in the cohorts; and (3) univariate and mul-
tivariate Cox regression analyses were employed to 
evaluate the independence of the risk score and clinical 
features as prognostic factors.

Establishment of a nomogram and comparison of clinical 
features between low‑ and high‑risk patients
To predict the 1-year, 3-year, and 5-year biochemi-
cal recurrence-free survival (BCRFS) in PCa patients, 
a nomogram was developed. Subsequently, to assess 
the performance of the nomogram, a calibration curve 
was generated by comparing the predicted probabili-
ties with the observed outcomes at 1  year, 3  years, 
and 5  years, thereby gauging its accuracy. Addition-
ally, a chi-square test was conducted to examine the 

https://www.innatedb.com
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associations between the APPCAF-related signature 
(APPCAFRS) and clinical features such as T stage, 
Gleason grade, and PSA level.

Investigation of immune‑related differences based 
on the APPCAF‑related signature
To explore the immune-related differences associated 
with the APPCAFRS, we examined the variations in 
the tumor immune microenvironment between low-
risk and high-risk subgroups. Initially, the CIBERSORT 
algorithm was applied to calculate the infiltration com-
position of 22 immune cell types in each PCa sample, 
allowing for an analysis of the changes in immune cell 
infiltration between the low-risk and high-risk sub-
groups [46]. Subsequently, the activity differences of 
immune-related pathways between the high-risk and 
low-risk subgroups were assessed using the ssGSEA 
function in the "GSVA" package, with the Wilcoxon 
rank-sum test employed for analysis.

Exploring immunotherapeutic responsiveness 
and potential drug treatments
To pinpoint patients who could potentially benefit 
more from immune checkpoint inhibitor (ICI) therapy, 
we conducted a correlation analysis between the risk 
score and immune checkpoint-related genes. Subse-
quently, the Tumor Immune Dysfunction and Exclusion 
(TIDE) tool was applied to assess the immune treat-
ment response in prostate cancer patients, evaluating 
the responsiveness to immune therapy between the 
high-risk and low-risk subgroups using a chi-square 
test. Moreover, we utilized the "oncoPredict" package 
to predict drug sensitivity between the high-risk and 
low-risk subgroups.

Cell culture
The human benign prostate stromal cell line (WPMY-1) 
was obtained from the Cell Bank of the Shanghai Insti-
tutes for Biological Sciences, Chinese Academy of Sci-
ences. WPMY-1 cells were cultured in DMEM containing 
5% fetal bovine serum and 1% penicillin/streptomycin. 
All cells were cultured at 37 °C in a 5% CO2 environment.

Validation of feature gene expression by in vitro qRT‒PCR
To further validate the APPCAFRS, we conducted qRT‒
PCR analysis to assess the expression of characteristic 
genes in normal prostate stromal fibroblasts (WPMY-1), 
prostate cancer-associated fibroblasts (hTERT PF179T 
CAF), and pre-ADT and post-ADT CAFs. The ADT of 
CAFs was performed following a previously described 
method [47]. RNA was extracted from the cells using 

TRIzol reagent (Takara, Japan), and cDNA was synthe-
sized using a reverse transcription kit (Vazyme, China). 
Real-time PCR was carried out using the SyberGreen 
method to quantify the expression of target genes. The 
primer sequences utilized in this study can be found in 
Table S2.

CD4 + T‑cell early activation assay
After primary CAFs were sorted, 10 nM DHT and 10 nM 
ETOH were applied to simulate androgen intervention 
and cultured in vitro. A total of 1250–2500 sorted CAFs 
were cultured with 25  μg/ml OVA peptide 323–339 or 
without a peptide in U-bottom 96-well plates and incu-
bated at 37 °C and 5% CO2. PBMCs corresponding to pri-
mary CAFs were used to isolate and enrich CD4 + naïve 
T cells using the MojoSort Human CD4 Naïve T-Cell 
Isolation Kit (Biolegend #480,041). The CAF plates were 
washed twice, and 2500 CD4 + T cells were cocultured 
with 10% FBS/DMEM per week for 17 h. Cells were then 
washed and blocked and stained with the following anti-
bodies (all from Biolegend at 1:200): CD4 (Clone RPA-
T4), CD25 (Clone PC61.5), and CD69 (Clone FN50) for 
30 min at 4 °C.

Discussion
Growing  evidence  suggests that the malignant biologi-
cal behaviors of tumor cells are dependent on the inter-
cellular communication between tumor and stromal 
cells in a complex microenvironment [16–18, 48]. As 
essential components of the TME, CAFs regulate tumor 
proliferation, angiogenesis, invasion, metastasis, and 
treatment resistance in numerous malignancies [49, 50]. 
With recent advancements in cancer research, there 
are numerous approaches to overcome drug resistance, 
among which immunotherapy has revolutionized cancer 
treatment [51, 52]. Evidence suggests that antigen-pre-
senting cells are essential for T-cell activation and tumor 
immunity and that cancers can circumvent this immu-
nity through means of immune editing, such as immune 
dominance, the absence of immune checkpoints, or 
downregulating antigen-presenting cells [53, 54]. Anti-
gen-presenting cells are crucial for launching, program-
ming, and regulating tumor-specific immune responses 
[55, 56]. ApCAFs, a novel type of cancer-associated fibro-
blast capable of presenting MHC II-mediated antigens 
within the TME, were recently identified in pancreatic 
ductal adenocarcinoma and breast cancer [26, 57].

In this study, we sorted CAFs from radical prostatec-
tomy samples of patients who received neoadjuvant ther-
apy and patients who did not receive neoadjuvant therapy 
within 3–6  months. We discovered that the expres-
sion level of MHC-II-related molecules (HLA-DQA1, 
HLA-DRB1, and HLA-DRA) was significantly reduced 
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in CAFs after neoadjuvant treatment, as were the cor-
responding functional pathways (MHC class II protein 
complex assembly, antigen processing, and presentation 
of peptide antigen via MHC class II). We focused on spe-
cific CAFs associated with antigen presentation and sys-
tematically characterized and classified CAFs in PRAD 
using scRNA-seq data. Ultimately, we identified the 
CTSK + MRC2 + CAF cluster as an APPCAF cluster that 
interacts strongly with T cells, which may help regulate 
different aspects of tumor immune microenvironment 
(TIME) biology. Capitalizing on the unique attributes of 
these CAF cells, precise modulation of the tumor micro-
environment is feasible, thus enhancing the post-ADT 
antitumor immune profile in PCa patients. Furthermore, 
we devised a predictive model for biochemical recurrence 
in PCa patients. This model not only holds substantial 
promise for biomedical applications but also facilitates 
accurate stratification of PCa patients at an early stage, 
consequently elevating long-term prognostic outcomes.

Expanding upon the groundwork of our preliminary 
research, it is evident that the antigen presentation and 
processing functions of CAFs within the prostate cancer 
tissue microenvironment tend to wane following ADT 
treatment, potentially facilitating immune evasion. Con-
sequently, directing interventions toward CAFs equipped 
with antigen presentation capabilities could hold signifi-
cant promise in benefitting patients with prostate can-
cer. Against the backdrop of flourishing advancements 
in novel biomaterials and nanotechnology, more refined 
targeted nanoparticle systems have been meticulously 
devised for efficient drug delivery. Conventional inor-
ganic nanomaterials, including metal nanoparticles and 
carbon-based counterparts, have been associated with 
inherent neurotoxicity [58]. Conversely, green nanoma-
terials are surfacing as a groundbreaking avenue, boast-
ing reduced toxicity [59]. The research conducted by 
Mousavi et al. substantiates that environmentally friendly 
synthesized silver nanoparticles induce apoptosis and 
unveil dose- and time-responsive cytotoxic as well as 
anticancer effects on gastric cancer cells [60]. Moreover, 
Patrascu et al. elucidated the efficacy of a hybrid nanosys-
tem comprising biopolymeric membranes and silver nan-
oparticles, manifesting pronounced cytotoxicity against 
murine fibroblast L929 cells [61]. Our enthusiastic out-
look is grounded in the convergence of biomaterials and 
biomedicine directed at CAFs and strategic intervention 
in the intricate tumor microenvironment—a burgeoning 
domain of research.

Increasing evidence has confirmed the prognostic value 
or therapeutic prediction of CAF-related gene mark-
ers in PRAD [62]. Based on the prognostic value of the 
CTSK + MRC2 + CAF cluster, we identified the differen-
tially expressed genes between the CTSK + MRC2 + CAF 

cluster and other CAF clusters and further developed an 
APPCAF-based risk signature with 4 genes; it was com-
posed of one protective gene (DPT) and three risk genes 
(THBS2 COL5A1 MARCKS). Among these four genes, 
MARCKS had the highest CNV loss frequency. CNV 
mutation burden affects gene expression level or activ-
ity, thereby influencing genetic modulation and caus-
ing PRAD progression [63, 64]. We further clarified the 
differentiation ability of APPCAF signature genes for 
prostate cancer via NMF clustering, which suggests that 
patients in APPRG Cluster C2 are associated with poorer 
clinical outcomes, and we discovered that prostate can-
cer samples with varying APPRG expression levels were 
significantly correlated with various pathways. APPRG 
Cluster C2 samples were significantly associated with 
mismatch repair, DNA replication, and somatic diver-
sification of immunoglobulins, while APPRG Cluster 
C1 samples were significantly associated with fatty acid 
metabolism, glutathione metabolism, and linoleic acid 
metabolism. Previous studies demonstrated a significant 
correlation between microsatellite instability or mis-
match repair status and the efficacy of immune check-
point inhibitors in prostate cancer [65–67]. Despite being 
uncommon, immune checkpoint blockades are effective 
for those with advanced prostate cancer and mismatch 
repair gene mutations [68].

CAFs interact intimately with immune T cells in the 
TME, thereby promoting the progression of the tumor 
[69, 70]. Sample risk exhibited a significant positive cor-
relation with CD4 + T cells and a significant negative cor-
relation with CD8 + T cells in our signature. In addition, a 
negative association was found between a high-risk score 
and the expression level of immune checkpoint inhibitor 
target genes. The TIME is composed of numerous and 
diverse immune cells in tumor tissues and significantly 
influences the immune status of the TME, thereby influ-
encing the immunotherapy efficacy of patients [71–73]. 
As essential components of the TME, CAFs can inter-
act directly with immune infiltration and remodel the 
immunosuppressive TME, allowing tumor cells to evade 
immune surveillance [74–76]. Despite the paucity of 
research on CAFs, Elyada and Friedman et  al. demon-
strated the effect of CAFs on the TIME via the antigen 
presentation method [26, 57]. In addition, apCAFs can 
trigger the local activation of CD4 + T cells and induce 
memory. Kerdidani et al. demonstrated that apCAFs were 
also capable of activating tumor-specific CD4 T cells and 
recruiting near CD4 T cells both in vivo and in vitro.

Concurrently, in previous studies, CAFs were prefer-
able for activating tumor cells and delivering microRNAs 
or other substances to tumor cells after androgen depri-
vation [26, 47, 77]. Few studies considered the changes 
in the immune characteristics of CAFs before and after 
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castration to study their effect on tumor cells. In regards 
to novelty, we demonstrated for the first time that andro-
gen withdrawal treatment leads to a decline in antigen 
presentation and a process-related phenotype in prostate 
CAFs. This observation is pivotal, as it holds the potential 
to amplify the effectiveness of ADT in patients with pros-
tate cancer. Based on the above clues, we further identi-
fied a potential CAF subtype in the prostate associated 
with antigen presentation and processing at the single-
cell level. Similar phenotypic features of CAFs have been 
previously reported in pancreatic cancer [35] but not in 
prostate cancer. Notably, no antecedent research within 
the domain of the prostate cancer immune microenvi-
ronment has hitherto singled out antigen presentation 
and processing-associated CAFs. Furthermore, a novel 
signature related to APPCAF in prostate cancer was 
established. Compared with previously published CAF-
associated prostate cancer signatures [61, 78], our signa-
ture is more reliable and clinically instructive, based on 
clinical specimens and derived from a group of potential 
CAF subtypes. Meanwhile, our findings revealed that the 
APPCAF-based signature had predictive potential for 
both prognosis and treatment response. These findings 
shed new light on the role of APPCAFs in the remodeling 
of tumor niches and the immune status of the TME.

However, our study also has several limitations. The 
generation of APPCAF clusters and APPCAF-based risk 
signatures was accomplished using retrospective data 
obtained from a public database. To avoid selection bias 
and enhance the accuracy of the analysis, future valida-
tion of this signature will require more prospective and 
multicenter PRAD cohorts. In addition, we only evalu-
ated the APPCAF-based risk signature in predicting 
prognosis. Therefore, our next objective is to conduct a 
comprehensive study aimed at elucidating the potential 
mechanisms underlying this signature, with the ultimate 
goal of its clinical administration.

Conclusions
We used a comprehensive bioinformatics analysis to 
identify DEGs between patients who received or did not 
receive ADT and discovered that CAFs downregulate the 
activity of antigen presentation and process-related path-
ways after castration. CTSK + MRC2 + CAF-C1 was iden-
tified as a CAF subtype associated with potential antigen 
presentation and processing. A signature based on four 
APPCAFRGs (THBS2, DPT, COL5A1, and MARCKS) 
was developed and validated, and the risk score derived 
from the signature demonstrated an inverse correla-
tion with the infiltration of various immune cells, indi-
cating that high risk was significantly correlated with 
poorer prognosis and clinical outcomes in PRAD. In vitro 
experiments were conducted to confirm the expression 

levels of four APPCAFRGs. These findings contribute 
to a better comprehension of the causes of immuno-
therapy’s poor efficacy in prostate cancer. Meanwhile, the 
study and investigation of the CAF subgroup of prostate 
cancer are aimed at exploring the relevant characteristics 
of antigen presentation and the process of CAFs in PRAD 
and offer new avenues for exploring potential combina-
tion treatment strategies.
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