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Abstract 

Background Chest Computed tomography (CT) scans detect lung nodules and assess pulmonary fibrosis. While pul-
monary fibrosis indicates increased lung cancer risk, current clinical practice characterizes nodule risk of malignancy 
based on nodule size and smoking history; little consideration is given to the fibrotic microenvironment.

Purpose To evaluate the effect of incorporating fibrotic microenvironment into classifying malignancy of lung nod-
ules in chest CT images using deep learning techniques.

Materials and methods We developed a visualizable 3D classification model trained with in-house CT dataset 
for the nodule malignancy classification task. Three slightly-modified datasets were created: (1) nodule alone (micro-
environment removed); (2) nodule with surrounding lung microenvironment; and (3) nodule in microenvironment 
with semantic fibrosis metadata. For each of the models, tenfold cross-validation was performed. Results were 
evaluated using quantitative measures, such as accuracy, sensitivity, specificity, and area-under-curve (AUC), as well 
as qualitative assessments, such as attention maps and class activation maps (CAM).

Results The classification model trained with nodule alone achieved 75.61% accuracy, 50.00% sensitivity, 88.46% 
specificity, and 0.78 AUC; the model trained with nodule and microenvironment achieved 79.03% accuracy, 65.46% 
sensitivity, 85.86% specificity, and 0.84 AUC. The model trained with additional semantic fibrosis metadata achieved 
80.84% accuracy, 74.67% sensitivity, 84.95% specificity, and 0.89 AUC. Our visual evaluation of attention maps 
and CAM suggested that both the nodules and the microenvironment contributed to the task.

Conclusion The nodule malignancy classification performance was found to be improving with microenvironment 
data. Further improvement was found when incorporating semantic fibrosis information.

Introduction
Low-dose computed tomography (CT) is the gold stand-
ard for early lung cancer detection [1–3]. These scans are 
designed to detect lung nodules, which are then deter-
mined by radiologists to be either benign or malignant. 
Currently, lung nodules are characterized according 
to the Lung CT Screening Reporting and Data System 
(Lung-RADS) developed by the American College of 
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Radiology (ACR) [4]. This system focuses on informa-
tion derived from the nodules alone (e.g. solidity, shape, 
growth rate, and texture) with little consideration given 
to the nodule microenvironment. Studies, however, have 
shown that nodule microenvironments such as fibrosis 
may play a role in lung cancer malignancy. Karampit-
sakos et  al. and Li et  al. found that pulmonary fibrosis 
increases a patient’s risk of developing lung cancer. Salva-
tore et al. revealed that pulmonary fibrosis is observed in 
6.6% of lung cancer screening participants compared to 
0.03% among men and 0.02% among women of the gen-
eral public [5–7]. Many risk factors are shared between 
pulmonary fibrosis and lung cancer and CT imaging has 
played a crucial role in the early detection of both dis-
eases [8, 9]

Deep learning (DL) algorithms, specifically convo-
lutional neural networks (CNNs), have been used in 
lung nodule detection, segmentation, and classifica-
tion tasks with high accuracy and efficiency [10–17]. An 
explainable model can be achieved with visualization 
maps attached to the model, specific features and struc-
tures can be highlighted in the images. This could help 
researchers to better understand how a model reaches 
decisions, and identify features associated with it [18, 19]. 
Zhu et al. [11] retain the segmented nodules by discard-
ing the background information when performing nod-
ule classification, and Xiao et al. [12] isolate nodules from 
the encompassing tissues based on the presupposition 
that the presence of surrounding tissue might negatively 
impact the classification outcome. Other studies [13–17] 
encompassed adjacent soft tissue structures due to the 
utilization of 2D or 3D bounding boxes as training data. 
However, these studies did not conduct a performance 
comparison between solitary nodules and nodules situ-
ated within diverse pulmonary contexts, therefore, the 
potential impact on the microenvironment still remains 
unclear. To the best of our knowledge, no DL-based stud-
ies have investigated the impact of the fibrotic microenvi-
ronment on the lung nodule classification task.

The purpose of this study is to assess the influence of 
integrating a fibrotic microenvironment aspect into the 
classification of nodule malignancies through the utili-
zation of DL algorithms. We developed a novel 3D clas-
sification network featuring attention gates, specifically 
designed to mitigate the loss of model efficiency in the 
processing of nodules and their associated microenvi-
ronment. This innovation incorporates several novel 
technical contributions: (1) multiple attention gates ema-
nate from distinct network depths, serving the purpose 
of accentuating salient features at shallower network 
depths. This collective input significantly influences the 
final classification outcome; and (2) predictive vectors 
derived from these attention gates can be concatenated 

with additional clinical data. Subsequently, this combined 
information is passed through a fully connected layer, 
culminating in the generation of a definitive classification 
result. By iteratively incorporating and excluding micro-
environmental data in experiments, our investigation 
aims to elucidate any conceivable associations between 
fibrotic tissue presence and the categorization of nodule 
malignancy.

Materials and methods
Data were retrospectively collected in compliance with 
the Health Insurance Portability and Accountability 
Act, institutional review board approval, and waivers of 
informed consent.

Study design
4500 patients with chest CT scans containing fibrosis 
were identified. Patients less than 21 years old at the time 
of the initial CT scan were excluded. Lung nodules were 
identified and labeled with a single point marked approx-
imately in the center of the nodule by a senior radiolo-
gist with over 20 years of experience via the VGG image 
annotator (VIA) web-based interface [20]. Two 3D DL 
models, one for nodule segmentation and one for nod-
ule classification were used in this study (Fig.  1). The 
segmentation model was trained to delineate nodules. 
The classification model was trained with the objective 
of distinguishing between cancerous and non-cancerous 
nodules, while also determining the presence of fibrotic 
tissues in the surrounding region. Biopsy results and 
radiologist reports were used as the ground truth labels. 
The classification accuracy was compared to the nodule 
volume doubling time (VDT).

Datasets
The two datasets used in this study were the publicly 
available LIDC-IDRI with thoracic CT scans (1018 cases) 
and the in-house dataset (1088 cases). Information about 
the in-house dataset can be found in Table 1. The LIDC-
IDRI dataset was used for the nodule segmentation task 
and pre-training of the nodule classification model [21]. 
We leveraged the high-quality consensus nodule annota-
tions provided in the LIDC dataset to train the segmen-
tation model and the pretraining of the classification 
model. For the in-house dataset, screening and diagnos-
tic CT examinations were collected from 4500 patients. 
A pool of 1088 cases met the inclusion and exclusion 
criteria. Among 1088 cases, 144 cases (13.23%) were 
confirmed to be malignant by pathological biopsy, and 
57 cases (5.24%) were deemed “highly suspicious” by 
radiologists. For the nodule malignancy classification, 
we considered nodules in the two scans independently. 
A dataset containing 345 malignant (labeled 1) and 743 
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benign (labeled 0) nodules was constructed. Three sepa-
rate data subsets were used in the training: (1) nodules 
only (microenvironment removed), (2) nodules with sur-
rounding soft tissue microenvironment, and (3) nodules 
and microenvironment with semantic fibrosis metadata. 
For the pulmonary fibrosis classification task, 489 cases 
out of 1,088 cases were labeled by radiologists as fibro-
sis. Fibrosis is defined as fibrotic tissue presented adja-
cent to the nodule or presented in the nodule-growing 
microenvironment.

Segmentation model
The segmentation model within our pipeline served the 
purpose of preparing inputs for the nodule classification. 

In this stage, the model generated two distinct datasets: 
one that excluded background information and another 
that exclusively included background information. The 
underlying assumption was that by eliminating the back-
ground, any lung fibrosis-related details were either una-
vailable or significantly minimized. Consequently, the 
classification model was tasked with making decisions 
solely based on the attributes of the nodules themselves.

The architecture of our 3D segmentation model was 
based upon the U-Net framework (3D UNet, Monai 
[22]), featuring an analysis path (encoder) and a synthesis 
path (decoder). Within this framework, we incorporated 
3D convolutional layers and 3D pooling layers to extract 
intricate features from the input volume. In the decoding 

Fig. 1 The workflow. Models to segment and classify nodules based on their central point coordinates provided by radiologists. CT images were 
cropped into 64 × 64 × 64 voxel volumes according to the center coordinates and fed into the models. Nodule volumes are passing (1) the 3D 
UNet for nodule segmentation. With the segmentation mask, surrounding soft tissue (background) can be removed; hence the nodule volume 
estimation can be performed. Nodule volumes then go through (2) the classification model (3D Attention Net) to predict nodule malignancy 
and pulmonary fibrosis. Separate datasets (with or without semantic fibrosis information) can be selected as the input to the classifier. The model’s 
attention at different layers can be visualized and interpreted via attention coefficient maps and CAMs
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phase, 3D deconvolution was employed to reinstate the 
original feature map dimensions. Notably, the inclusion 
of residual units played a pivotal role in enabling the 
model to encompass contextual information surrounding 
the lung nodules. By incorporating these residual units, 
the entire network exhibited heightened precision, con-
sequently ameliorating the segmentation of lung nodules 
within medical images.

Nodule malignancy classification
Volume doubling time (VDT)
For cases with follow-up CT scans, the nodule volume 
doubling time (VDT) was calculated. We used our seg-
mentation model to estimate nodule volume. We then 
used the modified Schwartz formula to calculate VDT: 
VDT =

Ln(2)∗Days Between Scans
Ln(Volume on Second Scan/Volume on Baseline Scan)

 [23]. 
This formula assumes an exponential growth rate for 
lung cancer. It assumes that malignant cells divide at a 
constant rate, and thus lesions grow exponentially with 
time. It is worth noting that a shrinking nodule will have 
a negative VDT value. Shrinking nodules were classified 
as benign in this study. According to most studies, a vol-
ume doubling time below 400 days represents a high like-
lihood of malignancy, and a VDT above 500  days is 
characteristic of a benign nodule [24]. To prevent high 
false-positive rates, we set the threshold of malignancy to 
500 days.

DL‑based classification model
The proposed 3D Attention-gated Network (3D AG-
Net) classification model was adopted from the 2D 
Attention-Gated Sononet [25]. The 3D AG-Net consists 

of 17 3D convolution layers (3 × 3 × 3 convolution) to 
extract features from volumetric CT images input. Two 
soft attention gates, AG-1 and AG-2, were placed at 
the 11th and 14th layers, respectively (Fig.  2). Deviat-
ing from the main network flow, AG-1 and AG-2 can 
intercept salient features they deem necessary and filter 
out those features at their specific depths to make inde-
pendent predictions. The attention maps generated by 
the AGs provide visualizations of the network behav-
ior as well. Examples of the given nodules are shown in 
Fig. 3.

Hu et  al. [15] demonstrated that network depths 
could affect prediction performance on the LIDC data-
set, a trade-off between sensitivity and specificity was 
observed. Higher sensitivity was achieved at a deeper 
network, and higher specificity was achieved at an 
intermediate network. Hence, two attention-gated fea-
ture extraction modules were branched out at the 11th 
layer and 14th layer (intermediate depth) from the 
leading architecture (green lines with attention gates 
in Fig.  2) to optimize specificity performance. Mean-
while, the leading architecture has 17 layers to provide 
sufficient depth for improving sensitivity performance. 
At the final stage of the network, as indicated by red 
dashed lines in Fig.  2, predictive vectors generated by 
AG-1, AG-2, the final layer of the leading network, and 
semantic clinical metadata (e.g., lung fibrosis) can all 
be concatenated, followed by a fully connected layer to 
fine-tune the vectors and yield the optimized final pre-
diction results.

All experiments including preprocessing, develop-
ing, and evaluation of the model, were performed using 

Table 1 Dataset information
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Fig. 2 The schematics of the 3D Attention Network. The light-yellow blocks and the dark-yellow blocks indicate the convolutional layers 
and the ReLU, respectively. The orange blocks indicate the max-pooling operation resulting in a 1/2 image size. The purple blocks indicate the fully 
connected layer, and the green blocks indicate additional clinical metadata available. The green arrow-line and the red dashed-arrow-line are 
connecting operations and concatenating vectors, respectively

Fig. 3 Example cases for nodule segmentation. Four cases from the LIDC dataset and four In-house datasets were randomly selected and displayed 
here. The LIDC data with radiologist hand-drawn annotations for training and testing and the In-house data were used for inference only. 
For the LIDC dataset, columns (a), (b), and (c) are the original CT images, ground-truth segmentation provided by radiologists, and the generated 
masks by segmentation model, respectively. For the In-house dataset, columns (d), (e), and (f) are the original CT images, background removed 
(nodule only) images via auto-segmentation, and the background only (soft lung tissue) images, respectively
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Python version 3.6 and PyTorch 1.5 on NVIDIA GP102, 
GTX 1080 Ti.

Evaluations and statistical analysis
A tenfold cross-validation strategy was used to evaluate 
network performance and generalizability. True positive 
cases, true negative cases, false positive cases, and false 
negative cases are denoted as TP, TN, FP, and FN respec-
tively. The quantitative evaluation metrics used are listed 
below..

Qualitative evaluations were conducted with atten-
tion maps and class activation maps (CAM). A detailed 
description of CAM can be found in Additional file  1: 
Appendix SB. The one-way ANOVA pairwise t-test was 
performed with a confidence level set at 95%. In the 
process of evaluating multiple pairwise performances, a 
heightened susceptibility to committing a Type I error is 
observed. In order to mitigate this, a corrective measure 
known as the Bonferroni correction Eq.  (5) was applied 
on the α level restricting a more confined threshold for 
the adjusted p-value to reject the null hypothesis.

Results
Nodule segmentation
We observed a smooth decrease in the training loss with 
a fluctuated mean dice score in the validation loss due 
to the overfitting of the model. Therefore, we include a 
dropout rate of 20% during each epoch. Example cases of 
the segmentation results are shown in Fig. 3 for the LIDC 
dataset and the in-house dataset. We were able to see the 
similarity between the ground truth and the generated 
mask. We achieved an average dice score of 0.761 on the 
validation dataset after 50 epochs of training. The ADAM 
optimizer was used with the learning rate and dropout 
rate as 0.0001 and 0.2, respectively. Data augmentation, 
including random flips, intensity scaling, and intensity 

(1)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(2)Sensitivity =
TP

TP+ FN

(3)Specificity =
TN

TN+ FP

(4)

Dice Score =
2× the Area of Overlap

the total number of pixels in both images

(5)

Bonferroni-corrected p value =
The original p value

The number of tests performed

shifting, were used to improve model performance. The 
dice loss function was used as a metric to access the 
model performance and evaluate the testing dataset. The 
sliding window inference method which uses a rectangu-
lar or cube region of fixed dimension that "slides" across 
an image was applied to create binary classifications on 
whether or not each voxel belongs to a nodule. Although 
computationally expensive, this method determines if 
the window has an object that interests us. Accelerated 
methods such as cache IO and transform function fea-
tured by MONAI were also used to expedite the training 
process.

All experiments including preprocessing, develop-
ing, and evaluation of the model, were performed using 
Python version 3.6 and PyTorch 1.5 on NVIDIA GP102, 
GTX 1080 Ti.

3D AG‑Net Pre‑training on LIDC‑IDRI
To ensure the effectiveness of the 3D AG-Net for the 
nodule malignancy classification task, we validated the 
classification model using the LIDC dataset, which has 
public benchmarks. The model was trained with an early 
stopping strategy with patience of 50 epochs based on 
the highest validation accuracy. The network used binary 
cross-entropy (BCE) loss for nodule malignancy classifi-
cation. The input data is a 64 × 64 × 64 voxel CT nodule 
image, Adam optimizer with an initial learning rate set at 
0.0002, batch size 128. All experiments were conducted 
on an Nvidia GTX 1080 Ti GPU with PyTorch library. 
We achieved 91.57%, 83.34%, 90.46%, and 0.95 for accu-
racy, sensitivity, precision, and AUC, respectively, with 
the S1 and S2 (benign) versus S4 and 5 (malignant), 
which is compatible with the state-of-the-art mod-
els’ performances (Additional file  1: Appendix SC). The 
result trained with the complete LIDC dataset, S1, S2, S3 
(benign) versus S4 and S5 (malignant), also reported here 
as 85.11%, 77.78%, 88.54%, and 0.90 ± 0.04 for accuracy, 
sensitivity, specificity, and AUC, respectively (Table  2). 
Although the model trained with the complete LIDC 
dataset achieved lower metrics scores, it serves as a bet-
ter initializer for the training of the in-house dataset 
since the complete dataset better reflects the real-world 
conditions. Therefore the model is more generalized for 
later applications.

3D AG‑Net training on the in‑house dataset
For models trained with the in-house dataset with ten-
fold cross-validation, the experiment results are sum-
marized in Table 2 and Fig. 4. The performance of the 
3D AG-Net without pretraining (trained from scratch) 
achieved 78.84 ± 5.88%, 62.00 ± 13.65%, 87.29 ± 5.98%, 
0.83 ± 0.03 for accuracy, sensitivity, specificity, and 
AUC, respectively. The model with pretraining on 
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LIDC dataset achieved results of 79.03 ± 2.97%, 
65.46 ± 18.64%, 85.86 ± 6.29%, 0.84 ± 0.06 for accuracy, 
sensitivity, specificity, and AUC, respectively. When 
the background information was removed, it per-
formed slightly worse in most of the metrics except 
for specificity, achieving 75.61 ± 7.02%, 50.00 ± 25.46%, 
88.46 ± 7.88%, 0.78 ± 0.08 for accuracy, sensitivity, spec-
ificity, and AUC, respectively. When additional seman-
tic fibrosis metadata was provided, the 3D AG-Net 
yielded the best AUC when comparing all other types of 
datasets. The result was 80.84 ± 3.31%, 74.67 ± 14.78%, 
84.95 ± 5.43%, 0.89 ± 0.05 for accuracy, sensitivity, spec-
ificity, and AUC, respectively.

We used 3D AG-Net without pretraining as the 
baseline to compare with the model pretrained 
on LIDC dataset (AUC increase 1.2%), the model 
trained with background removed (AUC decrease 
6%, p-value < 0.01), and model trained with addi-
tional semantic fibrosis metadata (AUC increase 
7.2%, p-value < 0.01). We found statistical differences 
(p-value < 0.01) in AUC between adding (model trained 
with additional semantic fibrosis metadata) and remov-
ing (model trained with nodule background removed) 
fibrosis information. When semantic fibrosis informa-
tion is available to the network, the nodule malignancy 
classification accuracy increases 5.23%. Nodule volume 
doubling time (VDT) as the current clinical guideline 
to predict nodule malignancy is also included in the 
experiment for comparison. The VDT method achieved 
62.63%, 56.52%, and 65.48% of accuracy, sensitivity, 
and specificity respectively. Note that CNN trained 
with nodule-only images still outperformed the VDT 
method.

The 3D AG-Net was also trained with the in-house 
dataset to predict lung fibrosis using the ground-truth 
fibrosis diagnosis provided by radiologists (fibrosis as 

1, non-fibrosis as 0). The model achieved 73.01 ± 5.84%, 
75.18 ± 13.32%, 70.83 ± 6.22%, and 0.75 ± 0.07 for accu-
racy, sensitivity, specificity, and AUC, respectively.

Visualization
Figure  5 depicts network visualizations for nodule and 
fibrosis classification. Notably, distinct attention patterns 
emerge within the same case when different objectives, 
such as nodule or fibrosis classification, are employed.

For nodule classification, the network exhibits a similar 
attention pattern for true positive cases (Fig. 6a) and false 
positive cases (Fig. 6b). AG-1 surveys the nodule and the 
microenvironment, AG-2 removes the attention on the 
nodule and surveys the surrounding microenvironment, 
and CAM at the last layer shifts the attention back to the 
nodule parenchyma. For true negative cases (Fig. 6c) and 
false negative cases (Fig.  6d), another attention pattern 
is observed. The network attention starts with AG-1 the 
nodule and the microenvironment. Sequentially at the 
AG-2 layer, the network removes the attention from the 
majority of the nodule parenchyma with a focus on the 
microenvironment. At the final stage, the network com-
pletely removes the attention from the nodule.

In summary, the network conducts similar search pat-
terns at AG-1 and AG-2 stages for all the cases, then if 
the network attention shifts back to the nodule at the 
final stage, the classification will be malignant, while the 
attention remains at the microenvironment, the classi-
fication will be benign. In Fig. 6., We demonstrate cases 
of four possibilities including true positive (a), false posi-
tive (b), true negative (c), and false negative (d). It also 
presents the attention-gated maps and CAM of each 
case from left to right, respectively. We found that false 
positive cases usually occurred with larger nodule sizes, 
especially when the nodule size exceeds our per-defined 
64 × 64 × 64 ROI, therefore, there is limited nodule shape, 

Table 2 Quantitative results

Data are presented in the format of Mean (Standard deviation), AUC  area under the receiver operating characteristic

*One-way ANOVA analysis performed with Bonferroni correction on accuracy: p-value = 0.0011 (statistical significance)
† One-way ANOVA analysis performed with Bonferroni correction on sensitivity: p-value = 0.0013 (statistical significance)
§ One-way ANOVA analysis performed with Bonferroni correction on specificity p-value = 0.35556 (statistical non-significance)

Dataset LIDC‑IDRI In‑house In‑house

Training strategy/data processing NA NA Pretrained 
on LIDC-IDRI 
data

Pretrained on LIDC-IDRI data/Nod-
ule surrounding tissues removed

Pretrained on LIDC-IDRI 
data/semantic fibrosis data 
added

Micro-environment information Available Available Available Not available Available

Accuracy (%)* 85.11 (3.19) 78.84 (5.88) 79.03 (2.97)* 75.61 (7.02)* 80.84 (3.31)*

Sensitivity (%)† 77.78 (12.24) 62.00 (13.65) 65.46 (18.64)† 50.00 (25.46)† 74.67 (14.78)†

Specificity (%)§ 88.54 (5.87) 87.29 (5.98) 85.86 (6.29)§ 88.46 (7.88)§ 84.95 (5.43)§

AUC 0.90 (0.04) 0.83 (0.03) 0.84 (0.06) 0.78 (0.08) 0.89 (0.05)
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boundary, and microenvironment information presented 
to the network. For false negative cases, nodules with less 
diffuse characteristics and more well-defined boundaries 
are more likely to be classified as benign by the network.

As for fibrosis classification, the network initially 
searches the surrounding soft tissue area close to the 
nodule and gradually enlarges the survey area in lung 
parenchyma to detect fibrotic tissues.

Discussion
To evaluate the role of the microenvironment in nod-
ule malignancy classification, we compared the model 
trained with nodule and microenvironment against the 

model trained with nodule alone (microenvironment 
removed). The statistical analysis showed a statisti-
cal significance (CI: 95%) that the performance of the 
method using not only the background information but 
also the semantic metadata was superior in accuracy 
(p-value = 0.0011) and sensitivity (p-value = 0.0013). 
The Bonferroni adjusted alpha coefficient was 0.01667. 
In addition, we found that although sensitivity 
decreased vastly by 15.46% after removing the nodule’s 
microenvironment, the specificity slightly increased 
by 2.6%, indicating that the detection ability of malig-
nant nodules decreased when the microenvironment 
was removed. While benign nodule detection remained 

Fig. 4 Receiver operating characteristic (ROC) curves and area under the curves (AUC) of experiments with different datasets and methods. The 
ROC curves demonstrated here are the averaged ROC based on the tenfold cross-validation. The averaged AUCs with one standard deviation are 
computed and listed in the legend area. The blue line, red line, green line, cyan line, magenta line, and the red dashed-line are indicating the nodule 
malignancy prediction results on the LIDC dataset, In-house dataset with metadata, In-house dataset (pretrained with LIDC), In-house dataset, 
and In-house dataset (background removed), respectively. Statistical differences were found in 1 LIDC dataset, trained from sketch v.s. In-house 
dataset, trained from sketch (p-value: 0.0319); 2 LIDC dataset, trained from sketch v.s. In-house dataset, background removed (p-value: 0.0001); 3 
In-house dataset, adding fibrosis metadata v.s. In-house dataset, background removed (p-value: 0.0002)
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unaffected. Thus, the factors that contribute to a nod-
ule’s malignancy may be dependent on the nodule and 
its microenvironment.

An intriguing observation pertains to comparing 
fibrosis incidence rates in malignant and benign nod-
ules. Malignant nodules exhibit a fibrosis incidence 
rate of 65%, while benign nodules demonstrate a rate 
of 35%, representing a 30% higher fibrosis rate in the 
former. To examine the relationship between fibrosis 
and malignancy, we purposely added semantic fibrosis 
data into the classifier right before the final fully con-
nected layer of the classification model. The classifier 
is, therefore, forced to consider the fibrosis informa-
tion when making the final prediction. When compar-
ing the model trained with and without the fibrosis 
metadata, we found that sensitivity increases by 9.21% 
when semantic fibrosis information is available, and 
specificity slightly decreases by 0.91%. In other words, 
the ability to detect malignant nodules was enhanced 
when fibrosis data was presented to the network during 
training.

In this study, we utilized two distinct approaches to 
assess nodule malignancy: VDT and deep learning 
models (3D AG-Net). VDT serves as a well-established 
method for evaluating nodule behavior predicated upon 
growth rate analysis. This approach offers valuable 
insights into the pace of nodule size alteration. How-
ever, the precision of VDT is susceptible to fluctuations 
due to factors such as measurement techniques, nod-
ule characteristics, and the threshold values employed 

to classify nodules as either rapidly expanding or stable. 
VDT, rooted in quantitative measurements, exhibits 
relative independence from extensive datasets for train-
ing, yet its simplicity constrains its ability to encapsu-
late intricate nodule attributes.

Conversely, deep learning models have exhibited the 
capacity to uncover subtle features that may elude con-
ventional methodologies. The accuracy of these models 
hinges on the quality and diversity of the training data, 
the architectural design of the model, and the criteria 
used for performance assessment. Consequently, deep 
learning models offer a more advanced and comprehen-
sive evaluation of lung nodules.

In our experimental approach, the VDT method 
yielded an accuracy of 62.63%, with a sensitivity of 
56.52% and specificity of 65.48%. Notably, 3D AG-Net 
trained on nodule-only images, devoid of microenvi-
ronment information, achieved an accuracy of 75.61%, 
sensitivity of 50.00%, and specificity of 88.46%. It is of 
significance that this CNN, trained exclusively with nod-
ule images, outperformed the VDT method by 12.98% in 
terms of accuracy.

Note that there are some limitations in the study. First, 
we labeled all shrinking-size nodules as benign (nega-
tive VDT values based on the modified Schwartz for-
mula). This assumption could lead to underestimating 
the VDT prediction accuracy and sensitivity because 
nodules with a decreased size could still be cancer. Sec-
ond, we used a segmentation model to segment lung 
nodules and then remove the background. Errors such 

Fig. 5 Network attention gates (AGs) and class activation maps (CAMs) visualizations. An example is network visualization for nodule prediction 
(first row) and lung fibrosis prediction (second row) tasks. The first, second, third, and fourth columns indicate the ground-truth (GT) CT image, first 
attention gate (AG-1) at No. 11 layer depth, second attention gate (AG-2) at No. 14 layer depth, and the class activation map (CAM) at the final layer, 
respectively. The fifth column indicates the nodule ground-truth mask (GT Mask), which is not available when the model was trained. The case 
demonstrated here is a benign nodule in the non-fibrotic lung, where both nodule malignancy and fibrosis models made the correct inferences. 
From the AGs and CAMs, we can observe the nodule network focuses on nodule parenchyma and its surrounding tissues, while the fibrosis network 
focuses on other lung tissue with the nodule parenchyma excluded
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as cases with partial surrounding tissue leaking into the 
dataset, or nodules partially removed by the segmenta-
tion algorithm, could propagate from the segmentation 
stage and affect the classification performance. There-
fore, the performance without microenvironment could 

be over- or under-estimated due to the limitation of the 
segmentation model. It is worth considering the explora-
tion of advanced segmentation models such as AMSU-
net [26] and Dual-Branch-UNet [27] in future research 
endeavors.

Fig. 6 Results of the 3D AG-Net on the in-house dataset. A true positive case (a), a false positive case (b), a true negative case (c), and a false 
negative case (d) were shown. In each case, it showed the center slice of the 64 × 64 × 64 volume, the slice with the AG-1 heatmap, the slice 
with the AG-2 heatmap, and the slice with CAM on top of it from left to right, respectively
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Conclusion
We have developed a DL-based pipeline containing 
an auto-segmentation model (3D U-net) and an atten-
tion-gated classification model (3D AG-Net) to classify 
lung nodule malignancy and pulmonary fibrosis. The 
model’s attention can be visualized at different depths 
thus making the model behavior interpretable. We have 
successfully demonstrated that the nodule microenvi-
ronment, especially fibrosis, contributes to the perfor-
mance of the nodule malignancy classification model. 
Microenvironment data increases nodule malignancy 
classification accuracy, sensitivity, and AUC. Model 
Performance is further increased when semantic lung 
fibrosis information becomes accessible.
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