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Abstract 

Background The tumor microenvironment and intercellular communication between solid tumors and the sur-
rounding stroma play crucial roles in cancer initiation, progression, and prognosis. Radiomics provides clinically 
relevant information from radiological images; however, its biological implications in uncovering tumor pathophysi-
ology driven by cellular heterogeneity between the tumor and stroma are largely unknown. We aimed to identify 
radiogenomic signatures of cellular tumor-stroma heterogeneity (TSH) to improve breast cancer management 
and prognosis analysis.

Methods This retrospective multicohort study included five datasets. Cell subpopulations were estimated using bulk 
gene expression data, and the relative difference in cell subpopulations between the tumor and stroma was used 
as a biomarker to categorize patients into good- and poor-survival groups. A radiogenomic signature-based model 
utilizing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was developed to target TSH, and its 
clinical significance in relation to survival outcomes was independently validated.

Results The final cohorts of 1330 women were included for cellular TSH biomarker identification (n = 112, mean 
age, 57.3 years ± 14.6) and validation (n = 886, mean age, 58.9 years ± 13.1), radiogenomic signature of TSH identifica-
tion (n = 91, mean age, 55.5 years ± 11.4), and prognostic (n = 241) assessments. The cytotoxic lymphocyte biomarker 
differentiated patients into good- and poor-survival groups (p < 0.0001) and was independently validated (p = 0.014). 
The good survival group exhibited denser cell interconnections. The radiogenomic signature of TSH was identified 
and showed a positive association with overall survival (p = 0.038) and recurrence-free survival (p = 3 ×  10–4).

Conclusion Radiogenomic signatures provide insights into prognostic factors that reflect the imbalanced tumor-
stroma environment, thereby presenting breast cancer-specific biological implications and prognostic significance.
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Introduction
Breast cancer exhibits genetic diversity both between and 
within tumors, leading to diverse tumor phenotypes, dis-
ease progression, and therapeutic resistance [1, 2]. The 
tumor microenvironment is a complex ecosystem com-
prising immune cells, fibroblasts, extracellular matrix, 
and cytokines [3], while the surrounding stromal cells [4, 
5] protect tumor cells from immune activity [6]. Altered 
environmental heterogeneity influences tumor initia-
tion, progression, and response to therapy [7]. Increased 

Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

*Correspondence:
Zhong Lü
lz3399@wmu.edu.cn
Lihua Li
lilh@hdu.edu.cn
1 Institute of Intelligent Biomedicine, Hangzhou Dianzi University, 
Hangzhou 310018, China
2 Affiliated Dongyang Hospital of Wenzhou Medical University, 
Dongyang 322100, China

http://orcid.org/0000-0003-0435-6453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-04748-6&domain=pdf


Page 2 of 15Fan et al. Journal of Translational Medicine          (2023) 21:851 

tumor-infiltrating lymphocytes (TILs) have been found 
to be associated with chemotherapy response and 
improved survival [8]. Environmental heterogeneity, par-
ticularly in terms of immune cell subtypes such as CD4 
cells and T cells, is associated with less activation of the 
immune response and poorer survival in breast cancer 
[9, 10]. A comprehensive understanding of tumor envi-
ronmental heterogeneity is crucial for accurate prognos-
tic assessment and effective treatment management of 
breast cancer.

To this end, many studies have focused on estimat-
ing the composition of multiple cell subpopulations by 
deconvoluting bulk tissue microarray data derived from 
tissue mixtures [11]. Technologies such as CIBERSORT 
have been developed to deconvolute large-scale RNA 
mixtures for the identification of cellular biomarkers and 
therapeutic targets [12]. By estimating the abundance 
of immune and stromal cell populations within hetero-
geneous tissues, environmental heterogeneity can be 
characterized [13]. Estimated cell subpopulations have 
been correlated with therapeutic response and survival 
outcomes in breast cancer [14–16]. Beyond this routine 
genomic approach, imaging techniques offer a nonin-
vasive means to reveal tumor heterogeneity driven by 
underlying pathophysiological processes [17].

Currently, radiogenomic/radiomics studies are increas-
ingly being performed by linking imaging features to 
molecular/genomic status [18–21] with the ultimate 
goal of improving disease management for patients 
[22–25]. Radiogenomic signatures of TILs have been 
identified and are associated with survival in patients 
with breast cancer [26]. Predictive imaging features that 
reflect cell subpopulations estimated from genomic data 
were identified to stratify the survival of patients [27, 
28]. Tumor microenvironment-associated imaging fea-
tures were used to assess chemotherapy responses and/
or survival outcomes [29]. Breast cancer heterogeneity 
was evaluated by texture analysis of dynamic-contrast 
enhanced magnetic resonance imaging (DCE-MRI) and 
T2-weighted MRI for the prediction of survival outcomes 
in breast cancer [30]. All these studies demonstrated 
that tumor microenvironmental characteristics can be 
captured using noninvasive images that are ubiquitously 
used in clinical practice.

Emerging evidence suggests that the microenviron-
ment is regulated through ongoing cellular crosstalk [31, 
32], and interactions between tumor cells and the stroma 
play a crucial role in inducing an altered environment 
associated with cancer initiation, progression [2, 33], 
metastasis [34], response to neoadjuvant chemotherapy 
(NACT), and patient prognosis [35, 36]. While existing 
radiogenomic studies have predominantly focused on 
analyzing either tumors or the surrounding stroma, the 

predictive value of imaging in capturing the cellular het-
erogeneity between the two, which serves as a surrogate 
for prognosis analysis, remains uncertain.

The purpose of our study was to identify radiogenomic 
signatures of cellular tumor-stroma heterogeneity (TSH) 
and to investigate the potential of imaging TSH as a bio-
marker for predicting prognosis in breast cancer. In con-
trast to conventional data-driven studies that focus on 
identifying clinically relevant imaging signatures, our 
radiogenomic analysis delves into the cellular interactions 
between tumor and stroma, thereby providing additional 
genomic-level information with biological significance.

Materials and methods
Study design
The framework of this three-stage study is depicted in 
Fig.  1. First, we estimated cell subpopulations using the 
microenvironment cell population counter (MCP)-coun-
ter algorithm [13]. This was accomplished by utilizing 
bulk gene expression data from both the tumor and sur-
rounding stroma, forming the tumor-stroma develop-
ment dataset (Fig.  1a). The cellular TSH biomarker was 
defined as the relative difference in cell subpopulation 
abundance between the tumor and stroma. Patients were 
separated into good- and poor-survival groups accord-
ing to their cellular TSH biomarker values. Moreover, we 
conducted an analysis of network-level cellular connec-
tions and correlations, wherein each cell subpopulation 
was represented as a node, and the relationships between 
these nodes were defined as edges.

It is important to note that to identify the radiog-
enomic signature of cellular TSH, it is necessary to have 
matched pairs of imaging and genomic data derived from 
both the tumor and stroma in the tumor-stroma devel-
opment dataset. Unfortunately, such paired data are 
relatively scarce compared to data obtained solely from 
tumors, which presents a challenge in conducting radiog-
enomic analysis of TSH. Therefore, we mapped the pre-
dicted TSH using cell subpopulations derived exclusively 
from the tumor (Fig. 2). To validate the feasibility of our 
approach, we employed the tumor-stromal validation 
dataset comprising genomic data and follow-up data. 
The prognostic significance of TSH was confirmed in this 
dataset.

Second, the cellular biomarker-based predictive model, 
established using the tumor-stroma development data-
set, was applied to the radiogenomic development data-
set, which comprised matched imaging and genomic 
data (Fig. 1b). The TSH score was predicted by utilizing 
the estimated cell subpopulation data from the tumors. 
We extracted radiomic features (n = 572) from each 
sample and identified radiogenomic signatures by link-
ing the imaging features derived from both the tumor 
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and surrounding stroma with the predicted cellular TSH 
values. An imaging signature-based model was subse-
quently developed to classify patients into either good or 
poor survival groups.

Third, we independently validated the prognostic sig-
nificance of the identified radiogenomic signatures by 
assessing their association with survival in prognostic 
validation datasets 1 and 2 (Fig. 1c).

Datasets
This retrospective study included multicohort datasets 
of 1330 patients with genomic, imaging, and clinical 
data (Fig.  3). The tumor-stromal development dataset 
(n = 112) was collected from TCGA-BRCA [37, 38] of 
the Cancer Imaging Archive (TCIA) cohort. Initially, the 
dataset consisted of 1092 gene expression data points. 
We selected samples that had gene expression data from 
both the tumor and the surrounding parenchyma to form 
the tumor-stromal development dataset. This dataset 
was utilized to identify prognostic cell subpopulation 

biomarkers associated with tumor-stroma heterogene-
ity (TSH) and to assess cell subpopulation connectivity 
within the tumor or stroma.

For the tumor-stromal validation dataset (n = 886), we 
collected genomic data from tumors alone from TCGA-
BRCA. The dataset initially included 1092 samples, while 
the samples overplayed in the tumor-stromal develop-
ment dataset (n = 112) and the radiogenomic develop-
ment dataset (n = 91) were eliminated. After excluding 
one patient with gene expression data solely from the 
parenchyma region, one patient without clinical data, 
and one with no available survival data, we obtained 886 
samples with RNA data from tumors. This dataset served 
as a validation set to confirm the identified cell subpopu-
lation biomarkers from the tumor-stroma development 
dataset.

The radiogenomic development dataset (n = 91) was 
obtained from TCGA-BRCA with matched imaging and 
genomic data. This dataset initially included 137 samples. 
After excluding one sample with unavailable genomic 

Fig. 1 Study framework. a Cellular tumor-stroma heterogeneity biomarker identification. b Imaging the cellular tumor-stroma heterogeneity. c 
Prognostic validation. Radiogenomic analysis by associating cellular tumor-stroma biomarkers and imaging features
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data and 21 samples with incomplete imaging data, we 
retained 115 women for analysis. We excluded 24 samples 
with genomic data from both the tumor and surrounding 
stroma, as they were utilized in the tumor-stromal devel-
opment dataset. The resulting dataset (n = 91) contained 
tumor gene expression, matched imaging, and survival 
outcome data from the same patients. This dataset ena-
bled the identification of radiogenomic signatures by 
linking imaging features with TSH scores.

The prognostic significance of the radiogenomic sig-
natures was validated using two datasets with imaging 
data and corresponding survival information. The prog-
nostic validation 1 (n = 61) and prognostic validation 2 
(n = 180) datasets were collected from the Breast-MRI-
NACT-Pilot [39] and ISPY1 [40] datasets, respectively. 
The prognostic validation 1 dataset initially included 64 
patients. After excluding three patients owing to poor 
image quality, we included 61 samples for analysis. The 
prognostic validation 2 dataset, initially consisting of 222 
women, underwent additional exclusions: 22 patients 
were excluded due to incomplete DCE-MRI series, nine 
patients were excluded because the tumors were not vis-
ually distinguishable by radiologists, and 11 patients were 

excluded due to poor image quality. The remaining data-
set included 180 patients.

Imaging protocols
The radiogenomic development dataset contained DCE-
MRI with a T1-weighted, 3D spoiled gradient echo 
sequence. The imaging protocol details can be found 
elsewhere [20]. The DCE-MRI comprised a precontrast 
image series  (S0) and three to six postcontrast image 
series, with a temporal resolution of approximately 110 s. 
The in-plane resolution ranged from 0.53–0.86 mm, the 
matrix was 256 × 192, the slice thickness ranged from 
2.0–3.0 mm, and the flip angle was 10◦.

For the prognostic validation 1 dataset, DCE-MRI was 
conducted using a 1.5T fat-suppressed MRI scanner (GE 
Healthcare, Milwaukee, Wisconsin, USA), with patients 
positioned in the prone position. Further information 
regarding the imaging protocols can be found elsewhere 
[41]. The imaging parameters were as follows: repetition 
time (TR) = 8 ms; echo time (TE) = 8 ms; flip angle = 20°; 
in-plane resolution ranging from 0.7–0.9  mm; and slice 
thickness ranging from 2–2.4 mm. After the administra-
tion of a bolus of 0.1 mmol/kg gadobutrol, the first and 

Fig. 2 Imaging cellular tumor-stroma heterogeneity
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second postcontrast image series were acquired at 2.5 
and 7.5 min, respectively.

For the prognostic validation 2 dataset, DCE-MRI was 
performed using a 1.5T scanner with fat-suppressed 
T1-weighted imaging. The imaging parameters were set 
as follows: matrix = 256 × 192; field of view = 16–18  cm, 
TR ≤ 20  ms; TE = 4.5  ms, flip angle = 45°, slice thick-
ness ≤ 3 mm, and in-plane resolution ≤ 1 mm. The post-
contrast image series was acquired at 2.5 and 7.5  min 
after the administration of the contrast agent.

Image preprocessing and feature analysis
Owing to the varied imaging protocols of the different 
manufacturers used in the study, each image was resized 

to a resolution of 0.8 × 0.8 mm and a thickness of 2 mm to 
ensure consistent image resolution. Subsequently, image 
normalization was performed by mapping each image to 
a standardized grayscale and dividing the pixel values by 
the mean value of the parenchymal region. Breast areas 
were obtained by excluding skin and chest walls. The 
stroma area was manually annotated and defined as a tis-
sue band with a width of 20 mm (25 × 0.8 mm = 20 mm) 
extending from the tumor boundary [42]. The segmenta-
tion of breast tumors was performed using a spatial fuzzy 
c-means clustering method with the tumor’s center loca-
tion as the initial “seed” being manually annotated by two 
experienced radiologists in consensus, each possessing 
10 years of expertise [43]. To ensure the accuracy of the 

Fig. 3 Data collection flowchart
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breast tumor segmentation results, manual correction 
was performed by the radiologists, which accounted for 
less than 5% of the segmentations.

Radiomic features (n = 107) were calculated using the 
publicly available Pyradiomics software package [44]. 
These features comprised statistical (n = 18), morpho-
logical (n = 14) and textural features (n = 75). The tex-
ture features included a gray-level cooccurrence matrix 
(GLCM) (n = 24), gray-level run length matrix (GLRLM, 
n = 16), gray-level zone length matrix (GLSZM, n = 16), 
gray-level difference matrix (GLDM, n = 14), and neigh-
bourhood gray-tone difference matrix (NGTDM, n = 5). 
A detailed list of these features is presented in Additional 
file 1: Table S1.

Imaging features were calculated from the tumor and 
surrounding stromal tissues at different imaging phases 
and maps, including precontrast  (S0), the subtraction 
image between the intermediate postcontrast image and 
 S0 (termed  SI), and subtraction images between the last 
postcontrast image and  S0 (termed  SL). Morphologi-
cal features, on the other hand, were only calculated on 
a single sequence from the tumors since there were no 
discernible shape characteristics present in the stromal 
regions. In total, 572 radiogenomic imaging features were 
extracted from each sample.

Cell subpopulation estimation and cell network analysis
The microenvironment cell population counter (MCP-
counter) R package (http:// github. com/ ebecht/ MCPco 
unter) was used to generate the absolute abundance 
scores of the immune and stromal cell types. The MCP-
counter algorithm enables the estimation of eight 
immune cell types, namely, CD3+ T cells, CD8+ T cells, 
cytotoxic lymphocytes, NK cells, B lymphocytes, mono-
cytic lineage, myeloid dendritic cells, and neutrophils, 
as well as two stromal cells, endothelial cells and fibro-
blasts, for comprehensive characterization of the tumor 
microenvironment [13]. This method was performed by 
comparing the gene expression profiles with predefined 
reference gene sets.

To ensure robust analysis, we excluded genes that dis-
played zero expression or were missing data in 80% of 
the samples. The estimation of each cell subpopulation 
was performed using log2-transformed gene expression 
data obtained from tumor and/or surrounding stromal 
samples.

In addition to investigating tumor-intrinsic or stromal 
factors, we also explored the influence of cellular bio-
markers reflecting TSH, which may induce significant 
phenotypic alterations and influence the progression 
of breast cancer. The cell subpopulation biomarker 
associated with TSH was defined as the ratio of cell 

subpopulation abundance between the tumor and stro-
mal tissue, calculated using the following formula:

where ATumor and AStroma denote the abundance of the 
cell subpopulations.

In the analysis of cellular networks, a cell subpopula-
tion was designated as a node, while the establishment 
of network edges was based on node similarities under 
a predetermined threshold (Pearson correlation coef-
ficient > 0.5). The evaluation of network topology in the 
good- and poor-survival groups involved the computa-
tion of various topological parameters, including network 
diameter, edge number, node number, network centrali-
zation, network heterogeneity, network density, clus-
tering coefficient, and characteristic path length. These 
topological parameters were calculated using widely 
accessible Cytoscape software (https:// cytos cape. org/) 
to ensure accurate measurements and consistent analysis 
methodologies.

Statistical analysis
Radiogenomic signatures were established by associat-
ing imaging data with predicted TSH scores using a ran-
dom forest-based classifier. To mitigate multicollinearity 
effects, feature pairs with high similarity (r > 0.8) were 
removed from the predictive model. Genetic algorithm-
based feature selection was employed to generate an 
optimal subset of features for classification. A tenfold 
cross-validation procedure was used to optimize feature 
selection and model building, reducing the risk of under-
fitting or overfitting.

Survival analysis was performed using the Kaplan–
Meier method, obtaining hazard ratios (HRs) with 95% 
confidence intervals. The log-rank test was utilized to 
evaluate differences in survival rates between strati-
fied groups and determine the significance of the sur-
vival curves. A multivariate Cox regression model was 
employed to assess the independent association of the 
cell subpopulations or radiogenomic signatures with 
overall survival (OS) or recurrence-free survival (RFS) 
while adjusting for the available clinical variables, includ-
ing age, estrogen receptor (ER), progesterone receptor 
(PR), human epidermal growth factor receptor 2 (HER2), 
and tumor size. Patients were censored at 10 years in the 
absence of events. A likelihood ratio test was performed 
to determine whether the inclusion of radiogenomic sig-
natures as explanatory variables significantly improved 
model fit compared to models based solely on clinical 
variables.

The Benjamin–Hochberg method was used to con-
trol for false discovery. The Wilcoxon signed-rank test 

ATumor − AStroma

AStroma

,

http://github.com/ebecht/MCPcounter
http://github.com/ebecht/MCPcounter
https://cytoscape.org/
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was used to assess the differences in cell subpopulation 
abundance between the tumor and stroma. All statisti-
cal analyses were performed using MATLAB (R2018, 
MathWorks) and R (version 4.0; R Foundation for Sta-
tistical Computing).

Results
Study cohort
Five datasets comprising genomic, imaging, and clini-
cal data were utilized for the identification and valida-
tion of TSH biomarkers, development of radiogenomic 
signatures, and prognostic assessments. Detailed 
descriptions of patient characteristics according to 
age, menopausal status, race, ER status, PR status, 
HER2 status, family history, tumor size, histological 
status, recurrence/survival status, and follow-up status 
(alive, dead, or lost to follow-up) are listed in Table 1.

Cellular tumor‑stroma heterogeneity biomarker 
identification
The estimated cell subpopulations from tumors, includ-
ing T cells, CD8 T cells, cytotoxic lymphocytes, B lineage 
cells, and myeloid dendritic cells, exhibited a significant 
positive association with good OS (corrected p < 0.05) 
(Additional file  1: Table  S2). Conversely, the neutrophil 
cell subpopulation from the surrounding nontumoral tis-
sue was negatively correlated with poor OS (corrected 
p < 0.05) (Additional file 1: Table S3), consistent with pre-
vious research [45].

Univariate analysis of the cellular TSH biomarker 
revealed significant positive associations between T cells, 
cytotoxic lymphocytes, B-lineage cells, NK cells, myeloid 
dendritic cells, and good OS (corrected p < 0.05). A higher 
abundance of these cell subpopulations within the tumor, 
compared to the stroma, was indicative of favorable sur-
vival outcomes (Table  2). Notably, the cytotoxic lym-
phocyte biomarker retained its independent association 
with breast cancer patient survival in the multivariable 

Table 1 Patient characteristics

Parameter Tumor‑stromal 
development (n = 112)

Tumor‑stromal 
validation (n = 886)

Radiogenomic 
development (n = 91)

Prognostic validation 
1 (n = 180)

Prognostic 
validation 2 
(n = 61)

Age

 Median 56.5 (30–90) 59 (26–90) 56 (29–82) 42.9 (26.7–68.8) 48 (29.7–72.4)

 Mean ± SD 57.3 ± 14.6 58.9 ± 13.1 55.5 ± 11.4 47.7 ± 8.8 48.1 ± 9.8

ER

 Positive 78 (70) 650 (73) 75 (82) 101 (56) 28 (46)

 Negative 21 (19) 200 (23) 16 (18) 77 (43) 20 (33)

 N/A 13 (11) 36 (4) 0 2 (1) 13 (21)

PR

 Positive 68 (61) 560 (63) 66 (73) 84 (47) 22 (36)

 Negative 31 (28) 287 (32) 25 (27) 94 (52) 26 (43)

 N/A 13 (11) 39 (5) 0 2 (1) 13 (21)

HER2

 Positive 23 (21) 128 (14) 13 (14) 52 (29) 14 (23)

 Negative 56 (50) 459 (52) 44 (48) 124 (69) 31 (51)

 N/A 33 (29) 299 (34) 34 (38) 4 (2) 16 (26)

Follow-up (years)

 Median 3.45 (0.0–10.8) 1.98 (0.0–23.6) 2.99 (0.5–9.4) 3.90(0.5–6.8) 5.39 (0.3–9.8)

 Mean ± SD 3.92 ± 2.37 3.23 ± 3.39 3.66 ± 2.11 3.84 ± 1.45 4.77 ± 2.75

Recurrence

 Event NA NA NA 49(27) 23(38)

 No-event NA NA NA 131(73) 38(62)

Death

 Event 43 (38) 97 (11) 2 (2) 33 (18) NA

 No-event 69 (62) 789 (89) 89 (98) 143 (80) NA

 Unknown 0 0 0 4 (2) NA
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survival analysis (HR = 0.13, p = 0.017) (Additional file 1: 
Table S4).

Relative cytotoxic lymphocyte subpopulation abun-
dance was used as the cellular TSH biomarker to separate 
patients into good- and poor-survival groups (threshold 
ratio, 0.3512). There was no significant difference in the 
cytotoxic lymphocyte subpopulation between the tumor 
and stromal tissues in the good-survival group (mean 
0.9233 ± 0.36056 vs. 0.8628 ± 0.2787, Wilcoxon signed 
rank p = 0.455), whereas in the poor- survival group, 
this cell subtype was significantly higher in the stroma 
than in the tumors (0.9631 ± 0.2135 vs. 0.3531 ± 0.1437, 
Wilcoxon signed rank p = 7.755 ×  10–16) (Fig.  4a). This 
cell subpopulation was positively associated with good 
survival in breast cancer patients (p < 0.0001) (Fig.  4b). 
This means that the tumor tissues in the good-survival 
group had higher levels of various cell subpopulations. 
Additionally, all cell subpopulation abundances were 
significantly lower in the tumor than in the stroma in 
the poor-survival group (Fig.  4c), whereas the opposite 
trend was observed in the good-survival group (Fig. 4d). 
A stronger correlation of cytotoxic lymphocyte cell sub-
population abundance between the tumor and stroma 
(r = 0.45, p = 0.003) was observed in the good-survival 
group, whereas a weaker correlation (r = 0.11, p = 0.92) 
was found in the poor-survival group (Additional file  1: 
Figure S1). The findings that the cytotoxic lymphocyte 
cell subpopulation is associated with survival were con-
sistent with previous studies [46–48].

Analysis of tumor‑stroma heterogeneity by cell 
subpopulation networks
Both the tumor and stroma exhibited distinct cell sub-
population networks in the good-survival and poor-
survival groups, as depicted in Fig.  5a and b. Notably, 
the stroma-based cell subpopulation network displayed 
dense intrinsic connectivity, while the tumor-based 

network exhibited sparse connectivity. Furthermore, 
the topological parameters (n = 9) of the cell subpopula-
tion network differed significantly between the poor and 
good-survival groups for both stromal and tumor-based 
networks, as illustrated in Fig. 5c, d, and Additional file 1: 
Table S5.

In the stroma-based network, the good-survival group 
demonstrated a higher network diameter and greater 
node and edge numbers than the poor-survival group. 
Conversely, within the tumor-based network, the good-
survival group exhibited a higher network edge number, 
density, and clustering coefficient than the poor-survival 
group. Interestingly, the good-survival group displayed 
relatively lower network centralization, indicating a 
greater dispersion of node centrality scores throughout 
the network in comparison to the maximum centrality 
score obtained. This finding suggests enhanced commu-
nication among cells, particularly T cells, to the central 
node in patients with poor survival.

Imaging cellular tumor‑stroma heterogeneity
To establish a predictive model for the TSH score, we 
employed cell subpopulations derived from tumors. Fig-
ure  2 depicts a schematic representation of the radiog-
enomic analysis conducted on cellular TSH. Utilizing 
cross-validation-based feature selection, cytotoxic lym-
phocyte and fibroblast subpopulations were identified as 
key predictors targeting TSH, yielding an AUC of 0.962, 
with a sensitivity and specificity of 0.893 (Fig.  6a). To 
ascertain the reliability of our correlation map, we pro-
ceeded to validate the predictive model using an inde-
pendent tumor-stroma dataset. Remarkably, the TSH 
score predicted by this model significantly stratified 
patients into distinct good and poor-survival groups 
(p = 0.014) (Fig. 6b).

Subsequently, we applied the TSH model to the 
radiogenomic development dataset utilizing estimated 

Table 2 Prognostic assessment of the relative tumor-stroma cell subpopulation

Feature Beta HR (95% CI) Wald p value Corrected p

T cells − 0.96 0.38 (0.207–0.703) 9.54 0.002 0.01

 CD8 T cells -0.06 0.94 (0.823–1.084) 0.66 0.415 0.415

Cytotoxic lymphocytes − 1.78 0.17 (0.066–0.426) 14.07 0.00018 0.002

B lineage − 0.57 0.57 (0.357–0.895) 5.93 0.015 0.037

NK cells − 0.86 0.42 (0.206–0.875) 5.39 0.02 0.04

 Monocytic lineage − 0.75 0.47 (0.160–1.393) 1.85 0.174 0.222

Myeloid dendritic cells − 0.90 0.41 (0.218–0.755) 8.09 0.0045 0.015

 Neutrophils − 2.26 0.10 (0.012–0.898) 4.23 0.04 0.066

 Endothelial cells − 0.82 0.44 (0.107–1.810) 1.3 0.255 0.283

 Fibroblasts − 1.07 0.34 (0.072–1.625) 1.82 0.177 0.222
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cell subpopulation data derived from tumors to pre-
dict the TSH score. Notably, the predicted TSH score 
successfully separated patients within the radiog-
enomic development dataset into distinct good-sur-
vival (n = 46) and poor-survival (n = 45) groups, using a 
threshold of 0.5. To establish an imaging feature-based 
predictive model for the classification of these groups 
based on the TSH score, we employed an optimal sub-
set of imaging features, constituting the radiogenomic 
signature of TSH.

To identify this optimal subset of imaging features, 
we employed a genetic algorithm-based feature selec-
tion method with a population size of 100 and 100 itera-
tions under tenfold cross-validation. Following feature 
selection, the predictive model retained six features, as 
outlined in Additional file 1: Table S6. Among these fea-
tures, three were extracted from tumors, encompassing 
two morphological features (flatness and sphericity) and 
two texture features (long-run high gray level empha-
sis extracted from the precontrast image and inverse 

Fig. 4 Distribution of cell subpopulations within and surrounding tumors in the good-survival and poor-survival groups. a The distributions 
of the abundance of cytotoxic lymphocyte cell subpopulations from tumor and stromal tissues in the good- and poor-survival groups. b Survival 
curves for the abundance of cytotoxic lymphocyte cell subpopulations. c Boxplots of cell subpopulation abundances in tumors and stromal regions 
in the poor-survival group. d Boxplots of cell subpopulation abundances in tumors and stromal regions in the good-survival group. In the boxplot, 
the centerline indicates the median; box limits indicate the 25% and 75% quantiles; whiskers represent the 1.5× interquartile range; and points 
above or below whiskers represent outliers
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difference moment normalized (IDMN) extracted from 
the postcontrast image). Additionally, two features were 
extracted from the stroma, including the IDMN feature 
and gray level nonuniformity (GLSZM).

The radiogenomic signatures identified in our study 
serve as surrogate markers for cellular TSH and hold 
significant prognostic value. These signatures provide 
informative assessments for patient prognosis, reflecting 

Fig. 5 Network topology in the poor-survival and good-survival groups. a The cell subpopulation network in the good-survival group; b The cell 
subpopulation network in the poor-survival group; c The radar map of the topological parameters (n = 9) of the stroma-based cell subpopulation 
network for good- and poor-survival groups; d The radar map of the topological parameters (n = 9) of the tumor-based cell subpopulation network 
for good- and poor-survival groups
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the potential of radiogenomics in enhancing our under-
standing of tumor-stroma interactions and facilitating 
personalized treatment decisions.

Prognostic validation of the radiogenomic signatures
The identified radiogenomic signatures underwent 
independent validation through survival analysis using 
two prognostic validation datasets: validation dataset 1 
(n = 180) and validation dataset 2 (n = 61). Representa-
tive examples of the IDMN and flatness features are illus-
trated in Fig.  7a and b, respectively. The IDMN feature 
exhibited a significantly higher value (p = 6.386 ×  10–7) in 
the good-survival group than in the poor-survival group 
(prognostic validation 1 dataset, Fig. 7a). Moreover, ele-
vated IDMN values or enhanced tumor flatness were 
indicative of a favorable prognosis in the prognostic vali-
dation 2 dataset (Additional file 1: Figure S2).

The radiogenomic signatures identified in this study 
were used to generate a predicted TSH score. Analysis of 
this score revealed a significant positive correlation with 
both overall survival (OS) (p = 0.038) and recurrence-free 
survival (RFS) (p = 3 ×  10–4) in the prognostic validation 
1 and prognostic validation 2 datasets, as illustrated in 
Fig. 7c and d, respectively. After adjusting for confound-
ing factors such as age, HER2 status, ER status, PR status, 
and longest diameter, the radiogenomic signature main-
tained its significant prognostic value for OS (p = 0.004).

The validation of the identified radiogenomic signa-
tures in two independent prognostic validation datasets 
strengthens their prognostic value. Therefore, the sig-
nificant association between the predicted TSH score 
and both OS and RFS, coupled with its independent 

prognostic value, highlights the relevance and reliability 
of the radiogenomic signatures identified in our study.

Discussion
In this multicohort study, we identified the radiogenomic 
signatures of TSH and independently evaluated their 
clinical implications. The cellular TSH biomarker was 
determined by assessing the relative differences in its 
abundance within the tumor and stromal cell subpopu-
lations. These cellular TSH biomarkers demonstrated 
their effectiveness in differentiating patients into distinct 
groups with varying survival rates. To further validate 
the clinical significance of our findings, we developed 
a radiogenomic signature-based model targeting TSH 
and tested its predictive capabilities in two independent 
datasets. Overall, our study demonstrates the potential 
of radiogenomic analysis in uncovering hidden tumor 
phenotypes and highlights the promising role of these 
imaging-based surrogates in enhancing the accuracy of 
prognosis and treatment management.

We observed a positive correlation between cell sub-
population abundances estimated from the surround-
ing nontumoral tissue and poor survival, which is in 
line with previous findings [45]. In the network analysis 
of cell subpopulations, the good-survival group exhib-
ited a denser interconnection among themselves com-
pared to the poor-survival group, both in the tumor- and 
stroma-based cell subpopulation networks. A possible 
explanation is that an imbalanced microenvironment can 
influence tumor growth and progression in breast cancer 
[49–52]. The observed positive correlation between cell 
subpopulation abundances from the surrounding non-
tumoral tissue and poor OS, as well as the differential 

Fig. 6 Radiogenomic analysis and predictive model based on differences between the tumor and stroma. a The ROC curve for the predictive 
model. b The survival curves for the tumor-stromal validation dataset to evaluate the effectiveness of the identified relative cell subtype features
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Fig. 7 Imaging feature distribution and Kaplan–Meier survival analyses. a Boxplot of the inverse difference moment normalized (IDMN) features 
in precontrast images showing significantly higher values in the good survival group than in the poor-survival group (p = 6.386 ×  10–7). An example 
of a patient aged 54.16 years showed a higher feature value (0.9657) with good survival compared with a patient aged 44.5 years with poor survival 
(feature value = 0.9494). b Boxplot of the flatness feature showed significantly higher values in the good-survival group than in the poor-survival 
group (p = 0.01). Examples of a patient aged 62.4 years showed a higher feature value of 0.3086 with good survival than a patient aged 58.89 years 
with a feature value of 0.2700 with poor survival. The predicted tumor-stroma heterogeneity (TSH) score using radiogenomic signatures (n = 6) 
separated patients into good- and poor-survival groups for c overall survival (prognostic validation 1 dataset) and d recurrence-free survival 
(prognostic validation 2 dataset)
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interconnectivity patterns within cell subpopulation 
networks, provides valuable insights into the complex 
microenvironment of breast cancer. Further investiga-
tions into the underlying mechanisms governing these 
observed network characteristics hold promise for iden-
tifying novel therapeutic strategies aimed at improving 
patient outcomes.

In our study, we observed a stronger correlation of 
cytotoxic lymphocyte cell subpopulation abundance 
between the tumor and stroma in the good-survival 
group, while a weaker correlation was found in the poor-
survival group. Cytotoxic lymphocytes are essential in 
tumor immunity due to their correlation with tumor 
size, overall survival, immune checkpoint expression, 
and tumor microenvironment characteristics [46, 48]. 
The higher abundance of cytotoxic lymphocyte cell sub-
populations in the tumor compared to the stroma can 
be attributed to enhanced tumor immune surveillance, 
increased tumor cell killing, activation of immune check-
points, induction of antitumor immune memory, and 
modulation of the tumor microenvironment, all of which 
foster antitumor immune responses and inhibit tumor 
growth [53].

To comprehensively assess tumor-stroma phenotypes, 
we conducted an evaluation of radiogenomic signatures 
derived from both the tumor and surrounding paren-
chyma tissues. Specifically, higher tumor flatness and 
sphericity values are associated with poor survival, which 
is consistent with previous findings [54]. These features 
are related to a more irregular tumor shape or a higher 
level of image heterogeneity. Furthermore, we observed 
a significantly higher IDMN value in the stroma of the 
good-survival group than in the poor survival group. 
Our radiogenomic model employs radiogenomic sig-
natures to estimate cellular TSH, which offers a non-
invasive approach to evaluate the entire tumor and its 
surrounding stroma. This imaging-based evaluation can 
be repeated throughout the course of treatment, provid-
ing valuable longitudinal information. Importantly, our 
study demonstrates the feasibility of utilizing imaging 
signatures of TSH with biological significance, eliminat-
ing the need for genomic data from tumors or stromal 
tissues. By leveraging noninvasive imaging, we have the 
opportunity to provide valuable insights into the tumor-
stroma interplay and its impact on patient outcomes, 
without the need for invasive biopsies at multiple sites.

Previous studies have investigated the association 
between radiomic features and the immune microenvi-
ronment in terms of TILs [26, 55]. Sun et al. developed a 
radiomic signature of CD8 T cells, which demonstrated 
an association with clinical response and outcomes in 
a cohort of 137 patients treated with anti-PD1 immu-
notherapy. Moreover, this signature was subsequently 

employed to predict lesion response in 94 patients who 
underwent combined immunotherapy and radiotherapy 
[28]. A related study developed and validated a stromal 
imaging signature that could accurately diagnose and 
predict the survival benefit of adjuvant chemotherapy 
in resected gastric cancer [29]. Notably, our study differs 
from previous investigations, as we integrated imaging 
and matched cell subpopulation data from both within 
and outside the tumor and applied them to external data-
sets for survival analysis.

This study has some limitations. First, this was a ret-
rospective study and may have been subject to patient 
selection bias. Second, the imaging data were collected 
from multiple cohorts, each with different imaging 
parameters. Therefore, it is crucial to conduct rigorous 
testing in future studies to assess the generalizability of 
the proposed imaging signatures in clinical applications. 
Third, the estimation of cell subpopulation abundance 
in this study relied on a deconvolution method utilizing 
mRNA data. It is worth noting that the accuracy of this 
method may impact the identification of cellular bio-
markers and should be taken into consideration. Third, 
the data size is limited in this study. It is also important 
to note that acquiring both gene expression and imag-
ing data simultaneously is particularly challenging and 
the availability of such data is limited. We have focused 
on obtaining paired gene expression and imaging data to 
train our models. This approach allows us to establish a 
correlation between the molecular characteristics repre-
sented by gene expression and the corresponding visual 
features observed through imaging techniques.

To address the critical challenge of incorporating prog-
nostic information embedded in tumor-stroma heteroge-
neity, our predictive model utilizes novel radiogenomic 
signatures. These signatures capture the latent asso-
ciations between the prognostic genomic signatures of 
TSH and radiomic features. As a result, these signatures 
have the potential to significantly enhance the accuracy 
of clinical prognostication with biological meanings. By 
providing valuable insights, our approach holds promise 
for improving patient management and guiding treat-
ment decisions.

Conclusions
We investigated cellular TSH and identified prognostic 
factors that reflect the environmental imbalance between 
the tumor and stroma. The relative abundance of cyto-
toxic lymphocyte subpopulations was used as a bio-
marker for cellular TSH, allowing for the stratification of 
patients into distinct survival groups. The good-survival 
group exhibited a more densely interconnected network 
of cell subpopulations, either within the tumor or stroma, 
than the poor-survival group. These cell biomarkers, 
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identified through radiological imaging signatures, have 
breast cancer-related biological implications and dem-
onstrate prognostic power. The radiogenomic signature 
of cellular TSH was positively associated with good sur-
vival. External validation using multicohort datasets 
further supports their clinical relevance for prognostic 
assessments. This proposed model has the potential to 
refine prognosis analysis and guide personalized ther-
apy for breast cancer patients who are likely to benefit 
from chemotherapy and have a favorable prognosis. Our 
framework could be extended to other cancer types to 
identify patients at high risk of recurrence. Further stud-
ies are required to confirm the clinical implications and 
establish the clinical utility of this approach.
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