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Abstract 

Background Machine learning (ML) represents a powerful tool to capture relationships between molecular altera-
tions and cancer types and to extract biological information. Here, we developed a plain ML model aimed at distin-
guishing cancer types based on genetic lesions, providing an additional tool to improve cancer diagnosis, particularly 
for tumors of unknown origin.

Methods TCGA data from 9,927 samples spanning 32 different cancer types were downloaded from cBioportal. 
A vector space model type data transformation technique was designed to build consistently homogeneous new 
datasets containing, as predictive features, calls for somatic point mutations and copy number variations at chromo-
some arm-level, thus allowing the use of the XGBoost classifier models. Considering the imbalance in the dataset, due 
to large difference in the number of cases for each tumor, two preprocessing strategies were considered: i) setting 
a percentage cut-off threshold to remove less represented cancer types, ii) dividing cancer types into different groups 
based on biological criteria and training a specific XGBoost model for each of them. The performance of all trained 
models was mainly assessed by the out-of-sample balanced accuracy (BACC) and the AUC scores.

Results The XGBoost classifier achieved the best performance (BACC 77%; AUC 97%) on a dataset containing the 10 
most represented tumor types. Moreover, dividing the 18 most represented cancers into three different groups (endo-
crine-related carcinomas, other carcinomas and other cancers),such analysis models achieved 78%, 71% and 86% 
BACC, respectively, with AUC scores greater than 96%. In addition, the model capable of linking each group to a spe-
cific cancer type reached 81% BACC and 94% AUC. Overall, the diagnostic potential of our model was comparable/
higher with respect to others already described in literature and based on similar molecular data and ML approaches.

Conclusions A boosted ML approach able to accurately discriminate different cancer types was developed. The 
methodology builds datasets simpler and more interpretable than the original data, while keeping enough infor-
mation to accurately train standard ML models without resorting to sophisticated Deep Learning architectures. In 
combination with histopathological examinations, this approach could improve cancer diagnosis by using specific 
DNA alterations, processed by a replicable and easy-to-use automated technology. The study encourages new 
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Background
Cancer is the second cause of death worldwide after 
hearth disease, accounting for more than 9 million 
deaths in 2018 [1]. In the last decades, scientists explored 
molecular mechanisms at the base of this disease and 
discovered that genetic features of tumors are crucial to 
ensure accurate diagnosis and effective therapies. Later, 
advances in high-throughput technologies allowed more 
comprehensive exploration of both genetic and epige-
netic landscape of cancer. Among them, next generation 
sequencing (NGS) provided an unprecedented powerful 
tool to analyze and understand the complexity of can-
cer genomes. The Cancer Genome Atlas (TCGA) pro-
gram started fifteen years ago, and more than 20,000 
molecularly characterized primary tumors, and matched 
normal samples, spanning 33 cancer types are now avail-
able to the scientific community, providing an extraordi-
nary resource for deepening and further shedding light 
on tumor complexity. This large collection of datasets 
(genomic, transcriptomic, epigenomic data), profiled on 
multiple technological platforms, strongly reinforces the 
opportunity not only to improve the molecular altera-
tions’ understanding in human cancers, but also to refine 
the ability to diagnose, treat and prevent cancer in the 
era of precision medicine [2]. Several studies already 
underlined the importance of using molecular data to 
distinguish tumor subtypes [3–7], and now the increase 
of available data has no previous for systematically ana-
lyzing differences and similarities between tumors, based 
on their genetic and epigenetic traits. It is known that the 
complex framework of somatic alterations detected in 
cancer is typically the result of a relatively small number 
of functional oncogenic alterations (driver mutations), 
overcame by non-functional alterations (passenger 
events) which do not substantially contribute to cancer 
initiation and progression [8, 9]. In this context, the low 
“signal to noise” ratio between the number of functional 
and non-functional events is one of the major challenges 
for data mining and analysis.

More recently, the results of several studies, focused 
on cancer-type identification, highlighted different pat-
terns of genomic alterations which seem to indicate that 
tumors originating in the same organ or tissue can vary 
substantially in terms of lesions [10]. On the other hand, 
similar patterns can be observed in tumors from tissues 
of different origin [11]. These phenomena, described as 

intra-cancer heterogeneity and cross-cancer similarity, 
represent both a clinical challenge and an opportunity 
to design, in the future, new diagnostic and therapeutic 
protocols based on genomic traits of tumors [2]. Notably, 
aimed at potential applications at the clinical level as well, 
it would be of great interest to identify a method able to 
distinguish different tumor subtypes. Consequently, sev-
eral studies, based on gene expression profiling, have 
tried to differentiate a relatively small number of cancer 
types or subtypes, by taking advantage of on-line avail-
able datasets [12, 13]. In this scenario, in addition to the 
development of an effective and reliable approach to 
distinguish and categorize different types of tumors, it 
would be very relevant to generate a novel practical can-
cer diagnostic tool, ideally able to use as few distinctive 
molecular features as possible.

In the last decades Machine learning (ML) technolo-
gies [14] allowed us to handle these complex and high-
dimensional cancer genome data, by constructing reliable 
and easy-to-use automated diagnostic tools for clinical 
applications [15, 16], thus extracting new information on 
relationships between molecular alterations and human 
cancers [17, 18]. Several studies described the applicabil-
ity of ML models to predict primary sites of cancers from 
unknown primary tumor [9, 19, 20], to distinguish can-
cer types and normal tissues [21–23] or also to determine 
molecular drivers or multi-omics predictor of resistance/
response to therapeutic treatments [24, 25]. In addition, 
ad-hoc replicable feature extraction methods can be used 
to transform the original genes’ alterations raw data into 
a structured usable dataset. The latter can feed super-
vised learning architectures [14] to generate classification 
models which are able to accurately distinguish multi-
ple cancer types based on the transformed data. Feature 
selection/ranking algorithms can reduce the complex-
ity of the dataset to improve the accuracy of the trained 
models and can provide insights on biological mecha-
nisms at the base of cancer.

The aim of this study was to develop a ML  approach 
able to distinguish cancer types with high accuracy, 
based on somatic point mutations (SPMs) calls and copy 
number variations (CNVs). At the translational level, 
this model could improve cancer diagnosis by using 
specific tumor DNA alterations as cancer diagnostic 
tools, embedded in a replicable easy-to-use automated 
technology.

investigations which could further increase the classifier’s performance, for example by considering more features 
and dividing tumors into their main molecular subtypes.
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Furthermore, by highlighting differences as well as sim-
ilarities among tumors, according to gene mutations and 
copy number alterations rates, further insights into the 
characterization of the molecular landscape of different 
tumors can be obtained, thus increasing our understand-
ing of cancer heterogeneity.

Methods
Feature extraction strategy and dataset construction
Molecular data, including SPMs and CNVs, of 10,768 
samples spanning 32 different cancer types were down-
loaded from cBioportal (https:// www. cbiop ortal. org/). 
Most were primary tumors, except for skin cutaneous 
melanoma, 82% of which were metastases. This dataset 
derived from TCGA PanCancer Atlas project (https:// 
www. cell. com/ pb- assets/ conso rtium/ panca ncera tlas/ 
panca ni3/ index. html), goals of which are to assemble 
consistent TCGA data across tumor types as well as plat-
forms. Studies we included in our analysis have uniform 
clinical characteristics, consistent processing and nor-
malization of molecular data and are ideally elaborated 
for comparative analyses [26]: in this context, we consid-
ered the number of calls for SPMs and CNVs at chromo-
some arm-level as predictive features of cancer types in a 
supervised ML manner.

Of note, SPMs and CNVs represent the main genomic 
lesions characterized so far as well as the main types of 
alterations identified in cancers: variants involving few 
nucleotides (SPMs), are the most studied somatic altera-
tions in human cancers and can now be detected with 
high accuracy [8]; on the other hand, large genomic rear-
rangements, particularly CNVs, although less studied, are 
also relevant to tumorigenesis, representing the prevalent 
kind of alteration in some tumor types [27].

We devised a feature extraction technique inspired by 
Computer Science applications, which produces a homo-
geneous and highly interpretable dataset, and which is 
easy to implement in a computer program. This tech-
nique is of the Vector Space Model (VSM) type [28, 29], 
in which rough data are transformed into vectors belong-
ing to a certain geometrical space by counting the num-
ber of occurrences of specific elements in the considered 
data. It is worth mentioning that putting data into a geo-
metrical space allows us to compute distance, and so 
similarities between samples, and consequently to train 
accurate ML models. The VSM paradigm is often suc-
cessfully applied in Natural Language Processing (NLP) 
under the hood of bag-of-words techniques [30], in which 
texts are transformed into vectors by counting the num-
ber of occurrences of certain words. The bag-of-words 
VSM approach has a major limitation when applied to 
NLP: the counting mechanism does not consider the 
order in which elements (words) are observed, which is 

relevant from a semantic point of view. The adaptation 
of the VSM approach to our application does not suffer 
from the previous drawback, as data is not characterized 
by a relevant ordering pattern. In particular, the proposed 
feature extraction consisted of counting, for each sam-
ple in the dataset, the occurrences of SPMs and CNVs 
in the p-arm and q-arm of each chromosome. Below, the 
adopted VSM feature engineering procedure is briefly 
described. Samples of the original available data were 
downloaded separated according to each specific tumor 
type. Assume we have a set t = 1,…,T of tumor types. For 
each tumor type t, two datasets were available: one for 
SPMs (say SPM[t]) and one for CNVs (say CNV[t]).

Concerning a generic SPM[t], it contains data from a 
set i = 1,…,It of tumor samples, each associated to gener-
ally multiple records. Each record corresponds to a single 
SPM observed for a sample i, and reports: the bar code 
identifier associated to sample i, the chromosome where 
the SPM is detected, and the starting and ending posi-
tion of the SPM in such chromosome. Notice that the 
specific p or q arm of the chromosome where the SPM 
is located can be directly retrieved from these positions. 
Single Nucleotide Polymorphisms (SNPs), Deletions 
(DELs), Insertions (INSs) and Oligo Nucleotide Polymor-
phisms (ONPs) were considered as SPMs. An example of 
a SPM[t] dataset for a generic tumor type t is depicted in 
Additional file 1: Figure S1.

The structure of a given CNV[t] is similar to the SPM[t] 
one, reporting for each record: the sample identifier, the 
chromosome associated to the CNV, the starting and 
ending position, and the segment mean of the CNV 
(see e.g. Additional file 1: Figure S2). From the segment 
mean value, we computed the type of CNV as: Dele-
tions (DLTs) for values ≤ -0.3, Shallow-Deletions (SHDs) 
for values > -0.3 and ≤ -0.1, Gains (GANs) for values > 0.1 
and ≤ 0.3, and Amplifications (AMPs) for values > 0.3. An 
example of a CNV[t] dataset for a generic tumor type t is 
depicted in Additional file 1: Figure S2.

For each tumor type t, for each tumor sample i, and 
for both the SPM[t] and CNV[t] datasets, the VSM pro-
cedure consists in counting the occurrence of, respec-
tively, the four SPMs and the four CNVs, for each of the 
chromosome arm p and q in 23 chromosome pairs (the Y 
chromosome is excluded from the analysis). This results 
in two intermediate datasets, denoted for simplicity as 
VSM-SPM[t] and VSM-CNV[t]. Then VSM-SPM[t] and 
VSM-CNV[t] are merged based on the tumor sample 
identifiers. This generates, for each tumor type, a VSM-
SPM-CNV[t] unified dataset with samples of 368 features 
(4 from VSM-SPM[t] and 4 from VSM-CNV[t] for each 
of the 2 arms of the 23 chromosomes).

Finally, all VSM-SPM-CVN[t] datasets built for 
each tumor type t are gathered to generate the final 

https://www.cbioportal.org/
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
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VSM-SPM-CVN dataset of 9,927 samples. Such number 
of samples is lower than the original one (10,768) because 
when the VSM-SPM[t] and VSM-CNV[t] were merged, 
some samples lacked one of the two types of data, and so 
they were removed. However, the number of the removed 
samples is not significant with respect to the dimension-
ality of the whole dataset. Except for this, no missing val-
ues issues were encountered.

The pseudocode of the described VSM data transfor-
mation procedure as well as the final dataset on which 
all experiments have been carried out, are reported in 
Additional file 1: Figure S3 and Additional file 1: Table S1, 
respectively .

It is worth mentioning that, at first, one may consider 
datasets with finer grained resolution levels, by further 
dividing the chromosome arms into subregions in which 
to count SPMs and CNVs. Experiments have been car-
ried out in this direction but, on the datasets used, while 
requiring much larger computational effort, they did not 
provide improvements with respect to the basic arms-
based resolution. Therefore, for the sake of brevity, they 
were not reported here.

In conclusion, after the feature extraction phase, the 
dataset included 9,927 samples (some samples were 
removed due to missing values), each consisting of 368 
features and one target representing the cancer type.

Preprocessing phase and ML methods
The dataset of 9,927 instances appeared highly unbal-
anced, since some cancer types were characterized by 
a small number of samples, further complicating the 
already challenging 32-classes classification problem.

Standard techniques for data imbalance, like under-
sampling or over-sampling (see e.g., [31]), are not ade-
quate to deal with the considered case-study. Indeed, 
under-sampling of the most represented tumor seems 
to result in significant loss of information, as the sam-
ples’ fragmentation into many tumor types implies that 
the number of samples is not so large also for the most 
represented ones. On the other hand, over-sampling 
techniques like SMOTE (see [32]), are known to be not 
particularly suited for multi-class problems with many 
classes (like the investigated one), as it may cause over-
lapping of the samples of different classes.

For the reasons above-mentioned, the following two 
preprocessing strategies have been considered to address 
the inherent data imbalance:

 i. Setting a percentage cut-off threshold to remove 
from the analysis all cancer types whose percentage 
of occurrences in the dataset was below an estab-
lished threshold (similarly to what done in [9]),

 ii. Grouping cancer types into different groups, and 
training a specific ML model for each of them, to 
have smaller dimensional classification difficulty 
and make analysis easier. This strategy requires 
a prior mechanism to recognize to which group 
a certain sample belongs. We have implemented 
this groups’ recognition mechanism by training 
an additional ML model. So, this strategy can be 
viewed as a sequential two-phase ML approach: 
for the first phase, a ML model was trained to 
recognize to which cancer group a certain sam-
ple belongs to, and, in the second phase, for each 
group a specific ML model was trained to deter-
mine the cancer type of that group. Clearly, the 
previous strategies may show drawbacks. Concern-
ing (i), the removal of less represented cancer types 
makes the ML problem easier, but reduces the pur-
pose of model applicability. As to (ii), the sequential 
two-phase ML approach, although reducing data 
imbalance and facilitating cancer type classifica-
tion within each group, may combine errors of the 
second phase (intra-group cancer type classifica-
tion), and errors of the first phase (group recogni-
tion). However, in certain practical cases, the group 
membership of samples may be known “a priori”, so 
that the first phase is not really required. Moreo-
ver, it has to be noticed that the data imbalance is 
proper of the dataset considered in this work, but 
in presence of more balanced ones the proposed 
feature extraction and ML methodology could be 
applied without the need of implementing strate-
gies (i) or (ii).

Four types of experiments have been compared:

a. training a ML model to classify all the 32 cancer 
types,

b. training a ML model to classify a subset of the most 
represented cancer types (strategy (i)),

c. a sequential two-phase approach to classify all the 32 
cancer types, (strategy (ii)).

d. a sequential two-phase approach to classify a subset 
of the most represented cancer types (strategies (i) 
and (ii)).

In all cases the performance of all the trained models 
has been determined by dividing the dataset into train-
ing and testing sets (respectively the 70% and 30% of 
the samples), by extracting randomly the samples to be 
included in the testing set to maintaining the propor-
tion between classes of the whole dataset. Of note, the 
80/20 and a 90/10 train-test splits were also evaluated, 
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which returned similar results, so 70/30 was chosen, 
thus considering a larger and more reliable testing set.

The hyperparameters of the trained models have been 
carefully determined by a grid-search method with a 
fivefold cross-validation technique [14] to improve the 
performance and reduce as much as possible overfitting 
phenomena.

Many ML methods have been tested, including Multi-
layer Perceptrons [33, 34], Support Vector Machines [35, 
36], K-Nearest-Neighbors [37] and XGBoost [38, 39]. 
Tests have been performed also with a Deep Learning 
architecture, by using Convolutional Neural Networks 
[40].

The reported results are the ones obtained by XGBoost, 
as, on all the considered experiments, it achieved by far 
the best performance, as it reveals to be the best com-
promise between simplicity of the model and expressive 
power. The performance of the other tested algorithms 
above-mentioned is shown in Additional file 1: Table S2.

Results
Genomic features extraction
In this study, the number of calls for SPMs and CNVs 
at chromosome arm-level were considered as predictive 
features of cancer types. As mentioned above, overall, we 
obtained a dataset of 9,927 samples, each one made up of 
368 features and one target representing the cancer type, 
for a total of 32 different cancers.

In Fig. 1A the dataset obtained after feature extraction 
phase and the descriptive statistics for each tumor type, 
including number of samples (total tumor count) and rel-
ative proportion respect to the whole dataset (class pro-
portion), tumor count used as training and testing sets as 
well as their corresponding proportion are shown.

Overall, the imbalance in the dataset, due to the differ-
ent number of samples for each tumor, is well evident. 
Breast invasive carcinoma (brca) tops the list with 994 
samples, while the following eight tumor types [colorectal 
adenocarcinoma (coadbread), brain lower grade glioma 
(lgg), uterine corpus endometrial carcinoma (ucec), lung 
adenocarcinoma (luad), head and neck squamous cell 
carcinoma (hnsc), prostate adenocarcinoma (prad), thy-
roid carcinoma (thca) and lung squamous cell carcinoma 
(lusc)], have a tumor count of approximately 500. Ten 
tumors [skin cutaneous melanoma (skcm), stomach ade-
nocarcinoma (stad), bladder urothelial carcinoma (blca), 
ovarian serous cystadenocarcinoma (ov), glioblastoma 
multiforme (gbm), liver hepatocellular carcinoma (lihc), 
kidney renal clear cell carcinoma (kirc), cervical squa-
mous cell carcinoma (cesc), kidney renal papillary cell 
carcinoma (kirp) and sarcoma (sarc)] fall within a range 
of 230–440 samples; the remaining thirteen tumor types, 
contribute below 200 in the total number of samples.

Because of this dataset imbalance, pre-processing 
techniques by considering class grouping (two-phase 
approach) in a subset of the most represented cancer 
types was one of the approaches used, including dividing 
samples into endocrine-related cancers, other carcino-
mas, and other tumors, for a total of six, nine, and three 
cancer types in each group respectively, as shown in the 
bar chart of Fig. 1A.

The distribution of the features, in terms of average 
number of SPMs and CNVs at chromosome arm-level by 
considering the whole dataset, is shown in Fig. 1B.

In this work, the combination of the high resolution 
CNV dataset (Deletion, Shallow-Deletion, Gain and 
Amplification) and SPM dataset (SNP, DEL, INS and 
ONP) was considered.

Performance of the XGBoost classifier models 
on the preprocessed datasets
Main pre-processing techniques considered in this work 
were threshold-controlled datasets, use of low resolution 
cytoBand classification to further divide chromosome 
arms into subregions and, consequently, increase the 
number of features, as well as class grouping. The perfor-
mance of all trained models (reported in Additional file 1: 
Table S3.) is assessed through the out-of-sample balanced 
accuracy (BACC) i.e., the average of the accuracy scores 
obtained on each single class (not suffering from data 
imbalance), and the AUC scores.

In the following sections, models achieving the best 
performance are described and the hyperparameter val-
ues considered for the grid-search and the selected ones 
are reported in Additional file 1: Table S4. For these mod-
els, also sensitivity, specificity, F1-score and Matthew 
Correlation Coefficient (MCC) were evaluated, as they 
may be relevant in case of data imbalance.

Cut‑off threshold experiments
A method of dealing with class imbalance considered in 
this work was setting threshold for the number of sam-
ples corresponding to each cancer type. This technique 
uses only the tumors which satisfy the provided thresh-
old value. Although this method results in the loss of 
samples and thus of tumor classes, it offers a balanced 
dataset where all the classes are reasonably represented. 
The results of the application of this technique yielded 
two datasets of 7,724 and 5,396 samples when thresholds 
of 300 (top sixteen tumor types) and 450 (top ten tumor 
types) were used, respectively.

In the first case (top sixteen tumor types, correspond-
ing to the 70% of the entire dataset), the BACC obtained 
was 70.72%. As for the AUC, the model yielded 0.96 
(Fig.  2A). Regarding the individual tumor accuracy, 
skcm and thca showed the highest scores (81% and 87%, 
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Fig. 1 A Table showing the dataset used in this study and bar chart displaying the size of each tumor, in terms of number of samples, 
and the division of the most represented cancer types (N = 18) into groups, based on biological criteria (endocrine-related cancers, other 
carcinomas and other tumors). The total count for each tumor is reported. B Bar chart showing the arithmetic average related to somatic point 
mutations (SPMs) and copy number variations (CNVs) at chromosome arm-level considering the whole dataset
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respectively), while hnsc, lihc, and stad displayed the 
lowest accuracy score compared to other tumors (< 60%).

As shown in Fig. 2B, the BACC achieved using the top 
ten tumor types (corresponding to the 50% of the entire 
dataset) was 77.53% with an AUC score of 0.97. Like the 
previous model, it was observed that skcm and thca con-
tributed the largest percentage to the overall accuracy 
score (86%) followed by that of coadread, lgg and brca 
with approximately 83%, while hnsc and luad accounted 
for the lowest accuracy score with only 66%.

Overall, in both models, thca tops the table with about 
86% accuracy scores, while hnsc, although making up 
about 5% of the dataset (sixth tumor in terms of number) 
was found at the bottom of the individual accuracy table.

Grouping experiments
An alternative used approach was to divide the most 
represented cancer types into groups, based on biologi-
cal criteria. The different tumor classes were grouped 
into three distinct groups: endocrine-related cancers, 

Fig. 2 Confusion matrices showing the performance, in terms of accuracy (ACC), balanced accuracy (BACC) and AUC score, of XGBoost model 
trained with the 16 (A) and 10 (B) most represented cancer types of the dataset, corresponding to the 70% and 50% of the entire dataset, 
respectively. The number of calls for somatic point mutations (SPMs) and copy number variations (CNVs) at chromosome arm-level were considered 
as predictive features of cancer types. This figure shows the two models that achieved the best performance
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other carcinomas and other tumors, resulting in the gen-
eration of three datasets comprising six, nine and three 
tumors, respectively, for a total of 18 different tumor 
types (Fig.  1A). These three models achieved 78.11%, 
71.35% and 86.50% BACC, respectively, and 0.96 AUC 
(Fig. 3A-D).

Looking more in detail at the individual accuracy 
scores, in the endocrine-related cancers dataset, thca and 
ov achieved the best performance with scores of 91% and 
85%, respectively, while the other cancer types within the 
group, showed accuracy values ranging from 64 to 80%.

Regarding the dataset of other carcinomas, coadread 
and kirc were the tumors with the highest accuracy 
scores, with values of approximately 80%.

Other tumor datasets consisted of gbm, lgg and 
skcm tumors, which showed 79%, 88% and 92% BACC, 
respectively.

Overall, as with the cut-off threshold experiments 
described above, we did not observe a direct link between 
tumor size, in terms of number of samples, and corre-
sponding accuracy scores; for example, although ov was 
not among tumors with the highest size, this cancer type 

Fig. 3 Confusion matrices showing the performance, in terms of accuracy (ACC), balanced accuracy (BACC) and AUC score, of XGBoost models 
trained with (A) Endocrine-related cancers (N = 6: brca, ucec,prad, thca, ov, cesc)), (B) Other carcinomas (N = 9: coadread, luad, hnsc, lusc, stad, 
blca, lihc, kirc, kirp) and (C) Other tumors (N = 3: lgg, skcm, gbm) dataset. (D) Bubble plot of individual tumor accuracies versus corresponding 
tumor proportions (number of sample for each tumor type/total number of samples) within the restricted dataset (total of 18 tumor types). Colors 
indicate the different groups while bubble size corresponds to the individual tumor proportion within the group to which it belongs (number 
of sample for each tumor type/total number of samples of the corresponding biological group). (E) Charts showing the size, in terms of total count 
and percentage, of each group (Endocrine-related cancers, Other carcinomas and Other tumors) in the new created dataset in which each sample 
is associated with the group it belonged to, thus with the three groups as targets. The confusion matrix shows the performance of the model
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performed very well (85% accuracy score). On the other 
hand, ucec was characterized by a high number of sam-
ples but an accuracy of only 73%.

After grouping cancers into the three distinct catego-
ries, a dataset was produced that unified all the groups 
but in which each sample was associated with the group 
it belonged to. As a result, a new dataset with the three 
categories (endocrine-related cancers, other carcinomas 
and other tumors) as targets was created.

The bar and pie charts in Fig. 3E show the count and 
percentage of each target group. Specifically, other carci-
nomas dataset had the highest count with 3,796 samples, 
contributing to 45.9% of the new dataset, followed by 
endocrine-related cancers dataset (3,148 samples, 38%) 
and other tumors dataset (1,332 samples, 16.1%). Overall, 
the new model achieved an 81.37% BACC with AUC of 
0.94.

Regarding individual accuracy, it was observed that 
other carcinomas had the highest accuracy score with 
percentage of 86% followed by endocrine-related cancers 
with 82% and other tumors with 76%.

Notably, these accuracy values were significantly higher 
than those obtained by performing random grouping 
experiments based on the same numerical complexity, 
thus similar group sizes (Additional file  1: Figure S4.), 
highlighting the validity of our biological-based grouping 
strategy.

Furthermore, in all experiments described, the addi-
tional evaluated metrics (sensitivity, specificity, F1-score 
and MCC) showed consistent results, highlighting the 
robustness of the models (Additional file 1: Table S5).

Knowledge extraction phase
XGBoost automatically produces, during the training, a 
feature ranking of impact on the predicted output, pro-
viding a benefit.

Bar chart in Fig.  4A shows the most relevant fea-
tures using the feature importance functionality of the 
XGBoost. Among these, alterations in chromosomes 1, 3 
and 10 displayed considerable relevance.

We reported feature ranking of cut-off threshold exper-
iment on the top 16 tumor types, chosen as the most rep-
resentative and, therefore, more interesting as it includes 
the largest number of different tumor types analyzed. In 
general, results of feature ranking obtained are basically 
the same for all trained models (data not shown).

Overall, regardless of the model used, blca, hnsc, lihc 
and stad represent the tumors with the worst perfor-
mance, leading to an accuracy always lower than 70%. 
Furthermore, most errors in the identification of a spe-
cific cancer type were observed in tumor pairs such as 
hnsc and lusc, hnsc and blca, brca and ov, coadread and 

stad and this may be due to cross-cancer similarities at 
the molecular level (Fig. 4B).

On the other hand, several tumor types were often mis-
classified as brca, probably because this represents the 
tumor characterized by the largest size (994 samples).

Discussion
Large chromosomal events, such as losses and gains of 
entire chromosomes, alterations of chromosome arms, 
copy number variations and rearrangements as well as 
changes at nucleotide level, including single nucleotide 
variants and small insertions/deletions, are observed in 
nearly all cancer genomes [41].

High-throughput sequencing technologies and the 
resulting increasing number of cancer genome stud-
ies have provided an unprecedented opportunity for the 
understanding of human cancer biology, leading to the 
identification of genomic features of clinical utility as 
molecular targets for cancer therapy [42].

In current clinical practice, immunohistochemical 
analyses are widely used to determine histological type 
of cancers in both primary and metastatic tumors [43]. 
However, some tumors are so poorly differentiated that 
unambiguous immunohistochemical classification is dif-
ficult to achieve. Patients with cancer of unknown pri-
mary account for about 3–5% of all cases and are typically 
characterized by poor survival. To date, it is well estab-
lished that site-specific therapeutic approaches, based 
on the identification of tumor cells of origin, are more 
effective than broad-spectrum chemotherapy [44]; thus, 
determining the cancer type and site of origin is essential 
to establish the most appropriate treatment strategy [13, 
45].

Over the last years, several studies have focused on 
building mathematical models able to predict cancer 
type based on molecular characteristics, including gene 
expression [46–48] and DNA methylation [49, 50] pro-
files as well as somatic alteration analysis [9, 13, 51].

In this context, ML techniques, lately successfully 
applied in many fields [52–54], represent a practical 
instrument to capture complex relationship between 
molecular alterations and cancer types to build accu-
rate and automated easy-to-use diagnostic tools, and to 
extract information of biological relevance.

In this study, a new feature extraction method inspired 
by VSM Computer Science approaches was devised to 
transform uniformly processed data from TCGA Pan-
Cancer Atlas project into a structured dataset for devel-
oping a ML model aimed at distinguishing cancer types 
based on genetic lesions. The method was based on 
counting the occurrences of molecular alterations (SPMs 
and CNVs) at chromosome arm-level and at different res-
olution levels. As previously reported, the combination 
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of SPMs and CNVs can significantly improve the per-
formance of cancer diagnostic tools based on ML 
approaches [13].

In addition to the heterogeneity of sequencing methods 
and bioinformatics analysis pipelines, one of the main 
issues in discriminating multiple cancer types concerns 
the imbalance in the number of available samples [55].

In our dataset, not all the 32 considered cancer types 
were equally represented, thus, proper pre-processing 
techniques were devised to cope with imbalanced data 
and provide accurate models for as many cancer types as 
possible.

Overall, by setting a percentage cut-off threshold (top 
16 and top 10 tumor types) and grouping the first 18 

tumor types based on biological criteria, we obtained 
models characterized by high reliability and remark-
able level of accuracy, ranging from 71 to 86% (AUC 
0.94–0.97).

The diagnostic potential of our model (in terms of per-
formance and number of different tumors predicted) is 
like or higher than models reported in previous studies 
using ML approaches and based on somatic alterations 
from whole exome sequencing (WES) data.

In particular, Marquard et al. [56] were able to discrim-
inate among 10 cancer types with 69% accuracy and 6 
cancer types with 85% accuracy when only somatic muta-
tions or somatic mutations and copy number alterations 
were considered, respectively.

Fig. 4 A Bar chart showing the complete overview and detail of the features with the greatest importance based on features ranking of impact 
on the predicted output, automatically produced by XGBoost during the training of the top 16 tumor types. Abbreviations: Single Nucleotide 
Polymorphisms (SNPs), Deletions (DELs), Insertions (INSs), CNV Deletions (DLTs), Shallow-Deletions (SHDs), Gains (GANs) and Amplifications (AMPs). 
B Comparison of SPMs patterns, thus distribution of alterations at chromosome arm-level, between colorectal adenocarcinoma and stomach 
adenocarcinoma reported as an example of similarity between tumors at molecular level (cross-cancer similarity) and a possible cause 
of misclassification errors
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By focusing on somatic mutation data, Chen et al. [57] 
achieved a classification accuracy of 62% in identifying 17 
different tumors.

Soh et al. [13], based on the presence of somatic point 
mutations and copy number alterations in 50 genes as 
predictive features, achieved approximately 77% accuracy 
in 28 different cancers.

Compared to WES-based approaches, whole genome 
sequencing (WGS)-based tumor-type classification 
showed higher accuracy scores [9, 51, 58]. Jiao et al. [9], 
achieved an overall accuracy of 91% in discriminating 
among 24 tumors based on somatic passenger mutations 
patterns and deep learning approach.

With a similar feature extraction strategy, the model 
trained by Salvadores et al. [58], distinguished 18 cancer 
types with 92% accuracy.

By adding driver gene mutations and complex struc-
tural variant-related features, Nguyen et  al. [51], were 
able to predict 35 different cancer (sub)types with around 
90% accuracy.

Overall, consistent with our findings, all studies of 
WES and WGS-based classifiers highlighted that model 
built on multiple features (e.g. point mutations and copy 
number alterations) outperformed those built on single-
type of feature.

To date, although the performance of our model is 
lower than that obtained by WGS-based studies, the 
potential use of WGS in clinical practice is still limited 
due to costs, timing and, most importantly, higher com-
plexity of data analysis.

Furthermore, our classifier offers the great advantage 
of using a simple preprocessing system; here, a specific 
feature extraction methodology has been developed to 
transform the unstructured raw data into a dataset suit-
able for supervised learning classification tasks, whose 
simple structure does not necessarily require the adop-
tion of complicated deep learning architectures. As a 
byproduct, the final dataset has a high level of interpret-
ability with respect to the original data, allowing many 
statistical analyses.

From a clinical point of view, a practical cancer diag-
nostic tool should ideally be easy to use in terms of 
both model building and dataset construction, so that it 
remains accessible.

Here, we built a simple, accurate and robust model to 
distinguish tumors, with a large potential clinical appli-
cability related to the model (machine learning vs deep 
learning) and input data (reduced features and simple 
feature extraction methodology from WES analysis vs 
other WES studies and WGS analysis).

This ML approach could greatly contribute to accu-
rately classifying cancer types, thus enabling per-
sonalized treatment strategies. In combination with 

histopathological examinations, it could potentially 
address a major challenge in cancer diagnosis and 
therapy, represented by the classification of tumors of 
unknown origin.

Moreover, in the scenario of strategies’ integration 
based on multi-omics data [59, 60], we can also hypoth-
esize that adding different omics datasets as well as merg-
ing molecular and pathological data may further improve 
the performance of our ML model.

The TCGA dataset used in this study contained almost 
exclusively primary tumor samples, not allowing perfor-
mance evaluation of our models on metastatic samples of 
the different cancer types. The only exception was repre-
sented by skcm, for which more than 80% of the samples 
were metastases and the remaining 20% were primary 
tumors. Interestingly, this cancer type was among the 
tumors with the highest accuracy scores in all models 
used.

Therefore, results obtained on skcm suggest that our 
methodology is experimentally robust and promising 
in identifying the site of origin starting from metastatic 
samples, despite the need to test an independent set of 
metastases.

At the biological level, regardless of strategy used 
(threshold or grouping models), we observed more eas-
ily predictable tumors (such as thca, skcm and ov) and 
low-performing tumors (such as hnsc, blca, lihc). For 
example, in both models, skcm and thca maintained high 
accuracy scores (> 80%), suggesting that the dataset thus 
constructed is very useful for predicting certain cancer 
types, while for tumors with lower performance, addi-
tional information (features) may be needed to improve 
the discrimination ability of the model.

As already discussed, previous WES and WGS-based 
studies [9, 13, 51] as well as our cut-off experiments, have 
shown that the accuracy on each tumor has a close rela-
tionship with the corresponding size and that an imbal-
ance in the dataset makes more difficult to achieve high 
performance.

Cancer types with the smallest sample size are consist-
ently poorly predicted, thus, in this study we narrowed 
the analysis up to the top 18 different cancer types.

It is therefore expected that with more training samples 
available, the accuracy of ML-based diagnostic tools will 
greatly increase [13].

However, it is evident that some tumors are gener-
ally more difficult to be predicted than others, suggest-
ing that accuracy probably also depends on the intrinsic 
molecular characteristics of the different tumor types, 
some more heterogeneous than others at molecular level; 
regardless of size, the individual accuracy scores of cer-
tain tumors are in fact relatively low (e.g. ucec, 74%) com-
pared to others (e.g. ov, 85%). As previously reported, 
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ov showed homogenous features at genomic level, while 
four transcriptional subtypes, three microRNA subtypes 
and four promoter methylation subtypes were identi-
fied [61]. In contrast, four different subtypes, based on 
genetic mutations and CNVs, have been reported for 
endometrial carcinoma [62]. This type of tumor also 
shares genomic features with serous ovarian cancer, the 
basal-like subtype of breast cancer, and colorectal cancer 
[62], thus making cross-cancer similarities an additional 
challenge for its classification.

Therefore, variability in classification accuracy among 
tumors and misclassification errors could be related to: 
(i) tumor type heterogeneity and thus the presence of dif-
ferent subtypes, as previously reported for endometrial 
carcinoma and lung cancer [9, 51]; (ii) a common devel-
opmental origin, as observed for uterine and ovarian can-
cers [50], being both gynecological cancers [63] and (iii) 
common biological characteristics in tumors of different 
origin due to cross-cancer similarities [2].

Different cancer types can be divided into a wider 
range of subtypes and several studies have already high-
lighted the importance and utility of exploiting molecular 
data to distinguish them [3–7]. In this context, the availa-
bility of more data would allow the training of an updated 
XGBoost model able to classify additional cancer types 
and subtypes.

Finally, XGBoost automatically produces a feature 
ranking of impact on the predicted output, thus provid-
ing a benefit in terms of estimation of feature importance 
from the trained predictive model. One major problem 
when analyzing this kind of massive data consists of their 
high dimensionality in terms of large number of features. 
Feature ranking can both improve data analysis system 
efficiency and reduce the interference of redundant and 
irrelevant features [64].

Therefore, through this functionality, the use of 
XGBoost classifier models also offers the advantage of 
extracting valuable information of biological interest and 
obtaining a deeper insight into the most relevant biologi-
cal processes or characteristics underlying the generated 
data.

These results represent a springboard towards further 
insights into the differences and similarities within and 
between the different cancer types and a deeper interpre-
tation of the biological significance of the most relevant 
features emerged, steps that may contribute to increasing 
our understanding of cancer biology.

Overall, we developed an innovative approach which 
exploits ML techniques for cancer type prediction based 
on genomic alterations, using one of the largest data-
sets currently available. Despite the high levels of per-
formance achieved, this study represents the starting 
point for more advanced analyses. In this context, the 

integration of other genomic data could further improve 
the predictive performance of our model, allowing us to 
classify additional cancer types and subtypes, and shed 
light on the biological significance of these genomic 
features.

Radiology and pathology are the main medical fields 
that extensively tested and used ML-based diagnostic 
systems over the years [65]. To date, the increasing avail-
ability of genomic and epigenomic data represents an 
additional resource: together with information from med-
ical imaging and clinical data, molecular data can indeed 
guide the implementation of personalized medicine and 
improve the prediction performance of ML-based diag-
nostic tools [66]. For global high-impact diseases, such 
as cancer but also cardiovascular and neurological dis-
orders, the complexity of the genomic landscape and the 
underlying molecular mechanisms is a major limitation 
to the development of accurate tools for early diagnosis 
and effective treatment [66]. Overall, we can therefore 
speculate on the potential applicability and utility of 
genomics-based ML approaches like ours, to other mul-
tifactorial diseases as well.

Conclusions
A boosted and accurate ML model able to discriminate 
among different cancer types based on somatic mutations 
and copy number alterations was developed. In combina-
tion with histopathological examinations, this approach 
could have potential clinical application in terms of can-
cer diagnosis improvement. Further analyses, adding 
more features and/or using a larger number of samples 
as well as dividing tumor into the main molecular sub-
types, could increase the performance of the classifier 
and extract information of biological relevance.

An interesting and promising perspective is also repre-
sented by the possibility of accurately determining tumor 
site of origin by analyzing cell-free tumor DNA (cfDNA). 
Given the continuous increase of sensitivity and cost-
effectiveness of next-generation sequencing technologies, 
there are realistic prospects to apply ML approaches to 
cfDNA analysis to early detect cancers [67].
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