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Abstract 

Background Immunotherapy brings new hope to patients with advanced gastric cancer. However, liver metastases 
can reduce the efficacy of immunotherapy in patients. Tumor-associated macrophages (TAMs) may be the cause 
of this reduction in efficacy. SPP1 + TAMs are considered to have immunosuppressive properties. We aimed to investi-
gate the involvement of SPP1 + TAMs in the metastasis of gastric cancer.

Methods The single-cell transcriptome was combined with batched BULK datasets for analysis. Animal models were 
used to verify the analysis results.

Results We reveal the interaction of SPP1 + TAMs with CD8 + exhausted T cells in metastatic cancer. Among these 
interactions, GDF15-TGFBR2 may play a key immunosuppressive role. We constructed an LR score to quantify inter-
actions based on ligands and receptors. The LR score is highly correlated with various immune features and clinical 
molecular subtypes. The LR score may also guide the prediction of the efficacy of immunotherapy and prognosis.

Conclusions The crosstalk between SPP1 + TAMs and CD8 + exhausted T cells plays a key immunosuppressive role 
in the gastric metastatic cancer microenvironment.
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Introduction
Gastric cancer poses a significant threat to the well-
being of the worldwide populace. Its morbidity and 
mortality rank among the top five of all malignant 
tumors [1–3]. Gastric cancer has the second high-
est incidence and death rate among malignant tumors 
in China. The death rate of gastric cancer in China is 
significantly greater than that of the majority of devel-
oped nations [4]. The situation in China is concerning. 
Some progress has been made in the etiology, diagnosis 
and treatment of gastric cancer in recent years. How-
ever, the prognosis for these patients remains poor. 
Sixty percent of patients still have recurrence and liver 
metastasis after treatment [5, 6]. Patients diagnosed 
with advanced gastric cancer typically have a median 
overall survival rate of merely 1 year, as reported in 
studies [7, 8]. Therefore, exploring new mechanisms 
affecting liver metastasis of gastric cancer is an impor-
tant strategy for improving the prognosis of gastric 
cancer patients.

In recent years, it has been discovered that the tumor 
microenvironment is widely involved in the mechanism 
of tumor metastasis. Tumor-infiltrating CD8 + T cells 
recognize and kill tumor cells and are soldiers of immu-
notherapy [9, 10]. However, tumor cells may inhibit 
the killing ability of CD8 + T cells through the immune 
checkpoint (PD-1/PD-L1) signaling pathway, thereby 
inducing immune escape. Therefore, the emergence 
of immune checkpoint blockade (ICB) drugs based on 
tumor microenvironment characteristics has brought 
new benefits to patients with advanced gastric cancer 
[11]. The REGONIVO trial and ATT RAC TION-2 trial 
show the efficacy of PD-1 drugs plus targeted therapy 
in chemotherapy-refractory patients [12, 13]. The ORI-
ENT-16 and CheckMate-649 trials demonstrated that 
the combination of PD-1 drugs and chemotherapy is an 
effective initial treatment option for patients who are 
not eligible for surgery [14]. The KEYNOTE-811 study 
demonstrated that the combination of PD-1 drugs, tar-
geted therapy, and chemotherapy can greatly enhance the 
objective response rate in individuals with HER2-positive 
gastric cancer [15]. Nevertheless, only a limited propor-
tion of individuals diagnosed with gastric cancer can reap 
benefits of immunotherapy. In some cases, immunother-
apy may even accelerate tumor progression [16]. This is 
mainly due to the high heterogeneity of the tumor and 
its surrounding complex ecosystem [17]. Through a wide 
range of cancer and noncancer cell interactions. Cancer 
cells can form an active immunosuppressive microenvi-
ronment [18]. Hence, high-resolution characterization of 
the microenvironment of tumor remodeling and interac-
tions between cells is of great significance for revealing 
the characteristics of the tumor microenvironment that 

cause metastasis in gastric cancer patients and improving 
the efficacy of immunotherapy.

Furthermore, several research studies have indicated 
that liver metastasis can greatly diminish the effective-
ness of immunotherapy in individuals [19–21]. Never-
theless, studies conducted on animals before clinical 
trials have discovered that liver metastases can siphon 
activated CD8 + T cells into the systemic circulation. 
This siphoning function leads to the emergence of 
‘‘immune deserts’’ [19]. More tumor-associated mac-
rophages (TAMs) are found in liver metastases and may 
be the cause [19]. TAMs may inhibit the killing ability of 
CD8 + T cells by secreting a variety of cytokines, lead-
ing to immune suppression. There are extensive research 
reports suggesting that macrophages exist in an M1/
M2 dual polarization state in  vitro [22]. However, M1 
and M2 signature genes can be coexpressed in almost all 
TAMs [23]. Furthermore, M1 and M2 features in TAMs 
are not mutually exclusive [24]. Therefore, the intrinsic 
mechanism may not be resolved based on traditional 
macrophage classification. The development of single-cell 
transcriptome sequencing provides favorable conditions 
for comprehensively revealing the characteristics of cell 
subpopulations in the tumor microenvironment. It was 
recently reported that based on single-cell transcriptome 
sequencing, TAMs contain a uniquely characterized sub-
population called SPP1 + TAMs. This subpopulation has 
immunosuppressive properties [25]. The study found 
that the immunosuppressive microenvironment of gas-
tric cancer is dynamically related to the emergence of 
SPP1 + TAMs during anti-PD-1 immunotherapy [17]. 
Other studies have found that SPP1 + TAMs can interact 
with tumor-associated fibroblasts and prevent lympho-
cytes from infiltrating the tumor core [26]. Nonetheless, 
the involvement of SPP1 + TAMs in the metastasis of 
gastric cancer remains unclear.

During our investigation, we collected single-cell tran-
scriptome data from healthy stomachs, primary gastric 
cancers, and gastric metastases. Five common gastric 
cancer BULK datasets were integrated. Our study con-
tains the National Cancer Institute (TCGA-STAD) and 
Asian Cancer Research Group (ACRG, GSE62254) 
datasets. We first characterized CD8 + T cells and mac-
rophages in different disease states. The interactions 
between SPP1 + TAM cells and CD8 + exhausted T cells 
was significantly enhanced in metastasis. Among these 
interactions, GDF15-TGFBR2 may play a key immu-
nosuppressive role. It has the potential to improve 
the expression of coinhibitory receptors in exhausted 
CD8 + T cells, leading to eventual apoptosis. This effect 
was verified by immunofluorescence and flow cytometry. 
Moreover, a score was created to measure the interac-
tion between SPP1 + TAMs and CD8 + exhausted T cells. 
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The interaction score is highly correlated with various 
immune characteristics and clinical molecular subtypes. 
The interaction score may guide the prediction of the effi-
cacy of immunotherapy and prognosis.

Methods
Data retrieval and sources
The GEO database (GSE163558) [27] provided single-cell 
transcriptome data. Multiple sets of BULK transcrip-
tome data were derived from TCGA-STAD, GSE15459, 
GSE57303, GSE62254 (ACRG), and GSE84437. TCGA-
STAD data convert expression data to FPKM. The BULK 
dataset was normalized using the ‘‘AFFY’’ and ‘‘SIM-
PLEAFFY’’ R packages. The BULK dataset underwent 
batch correction using the R package ‘‘SVA’’. The clinical 
data were acquired from the corresponding cohorts.

Processing of single‑cell data
The ‘‘SEURAT’’ R package [28] was utilized to process 
and visualize the single-cell data. First, the samples with a 
COUNT number greater than 100,000, a gene expression 
number less than 200 or greater than 8000, and a mito-
chondrial gene proportion greater than 20% were filtered 
(Additional file  1: Fig. S1A). Next, the data underwent 
normalization using the ‘‘NORMALIZEDATA’’ func-
tion and the ‘‘SCALEDAT’’ function. Data were found 
for hypervariable genes using the ‘‘FINDVARIABLEFEA-
TURES’’ function. The data were subjected to principal 
component analysis based on hypervariable genes to 
determine the dimensionality reduction. Finally, cluster-
ing, projection (UMAP) and annotation of cell clusters 
are performed.

Gene signature score
The ‘‘ADDMODULESCORE’’ function in the ‘‘SEURAT’’ R 
package was used to calculate the ‘‘Gastric Cancer’’ score, 
‘‘Epithelial Mesenchymal Transition’’ score, ‘‘Cell Motil-
ity’’ score, ‘‘Cell Cycle’’ score, ‘‘M1’’ score, ‘‘M2’’ score, 
‘‘Phagocytosis’’ score, and ‘‘Angiogenesis’’ score on single-
cell data [23, 29] (Additional file 2: Tables S1, S2, S3). The 
‘‘ssGSEA’’ function in the ‘‘GSVA’’ R package was used to 
calculate the ‘‘GDF15 + SPP1 + TAM’’ score, ‘‘CD8 + T 
exhausted cell’’ score, ‘‘PDCD1 + CD8 + T-cell’’ score, 
‘‘TIGIT + CD8 + T-cell’’ score, ‘‘CTLA4 + CD8 + T’’ score, 
‘‘HAVCR2 + CD8 + T-cell’’ score, ‘‘LAG3 + CD8 + T-cell’’ 
and ‘‘CXCL13 + CD8 + T-cell’’ on BULK data (Additional 
file 2: Table S4).

Trajectory analysis
We assessed the developmental trajectories of different 
subsets of CD8 + T cells [30] by using the ‘‘MONOCLE’’ 
R package.

Analysis of cell‒cell interactions
We used the ‘‘CELLPHONEDB’’ [31] and ‘‘CELLCHAT’’ 
[32] R packages for high-resolution characterization of 
cell‒cell interactions. According to the official workflow. 
The ‘‘CELLPHONEDB’’ R package calculates the poten-
tial interaction strength between cells. The ‘‘CELLCHA’’ 
R package calculates the contribution of different cells to 
the interaction strength. It visualizes detailed signaling 
pathways, interaction patterns and each ligand‒receptor 
pair [32].

Cell culture
MCF cells were purchased from (Procell, China). MFC 
cells were cultured in RPMI 1640 medium (Gibco, USA) 
supplemented with 10% fetal bovine serum (Gibco, USA) 
at 37 °C and a  CO2 concentration of 5%.

Mouse liver metastasis model
In this study, the animal of origin of MFC cells was used: 
mouse (615 Mouse). The mouse (615 Mouse) was pur-
chased from (Wukong Biotechnology, China). Eight mice 
(615 Mouse) were fed and managed according to SPF 
level. When the MFC cells were grown in an incubator 
to 80% confluence, the cells were digested using pancre-
atic enzymes (Gibco, USA) and finally resuspended in 
phosphate-buffered saline (PBS). Six-week-old 8 mice 
(615 Mouse) were anesthetized with 1.5% pentobarbital 
sodium, disinfected with 75% alcohol, and then the left 
abdominal cavity of the mice was cut open with ster-
ile surgical scissors. A total of 5 ×  105 cells (50  µl) were 
injected under the spleen capsule. A 75% alcohol cotton 
ball was used to gently press the injection site. The abdo-
men and the incision were closed with surgical sutures. 
During recovery from anesthesia, mice were placed under 
a warming lamp. Mice were monitored weekly by in vitro 
live imaging. Before monitoring, 200 µl of D-fluorescein 
potassium salt (MEILUN Cell, China) was injected intra-
peritoneally, and after 10 min, the sample was placed in 
an imager (IVIS Spectrum, USA) to observe liver metas-
tasis. Following a three-week period of tumor develop-
ment, 8 mice (615 Mouse) were euthanized, and liver 
metastases were obtained. All animal experimental pro-
tocols were approved by the Ethics Committee of Peking 
University People’s Hospital.

GDF15 inhibitor therapy
The mouse gastric cancer liver metastasis model was pre-
pared as described above. There were 4 mice in the con-
trol group and 4 mice in the experimental group. On the 
seventh day after tumor growth, a GDF15 inhibitor (HY-
P99241, MCE) was injected intraperitoneally for treat-
ment (10 mg/kg) in the experimental group, and the same 
volume of PBS was used for the control group. Afterward, 
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injections were administered every 72  h, resulting in a 
total of 6 shots. Mice were monitored weekly by in vitro 
live imaging. Before monitoring, 200 µl of D-fluorescein 
potassium salt was injected intraperitoneally, and after 
10  min, the sample was placed in an imager to observe 
liver metastasis. After the final treatment, the mice were 
euthanized on the following day, and liver metastases 
were gathered. Finally, the number of metastases in each 
liver was counted. Student’s t test was used for statistical 
analysis, and P < 0.05 was considered significant.

H&E staining
Paraffin-embedded liver metastases were sectioned into 
3  µm slices and then placed on glass slides. The slides 
were baked in a 60  °C oven for one hour. The sections 
were dewaxed, dehydrated, and stained with aqueous 
hematoxylin and alcohol. After dehydration with abso-
lute alcohol, the sections were cleared with xylene. Gum 
was dripped onto the transparent sections, and then the 
slices were placed under a scanner for panoramic imag-
ing (PANORAMIC MIDI, 3DHISTECH, Hungary).

Multiplex immunofluorescence staining
Paraffin sections of liver metastases were dewaxed, and 
the tissue sections were then placed in EDTA-filled anti-
gen repair buffer (Servicebio, China) for antigen repair in 
a microwave oven. After antigen repair was completed, 
a circle was drawn, and sealing was continued with 3% 
BSA after hydrogen peroxide sealing. Next, the sealing 
liquid was shaken off, the prepared primary antibody was 
added to the slices, and the slices were incubated at 4 °C 
overnight. After washing, TSA dye was added in drops 
(Servicebio, China) and incubated for 10  min at room 
temperature in the dark. Then, the tissue sections were 
placed in the repair solution and heated in a microwave 
oven for approximately 10  min to remove the primary 
and secondary antibodies that had bound to the tissue. 
The above steps were repeated to add the second, third 
primary antibody and second antibody, and staining was 
continued with TSA dye. After antibody staining, DAPI 
was added to the cell nucleus. Finally, the slices were 
sealed with a self-fluorescence quencher and placed 

under a slide digital scanner for panoramic imaging 
(PANORAMIC MIDI, 3DHISTECH, Hungary). Infor-
mation about the primary antibodies included CD8 + α 
(29,896-1-AP, Proteintech), Spp1 (YT3467, Immunoway), 
Cd68 (28,058-1-AP, Proteintech), and Gdf15 (27,455–1-
AP, Proteintech).

Flow cytometry
The liver metastases were gathered and then fragmented 
into small fragments measuring 1–2 mm3 using eye scis-
sors. The tissue was treated with a protease solution con-
taining collagenase D (1  mg/ml, CAS-COLLD-RO) and 
DNase I (0.1  mg/ml, CAS-10104159001) from Merck. 
The tissue was then incubated at 37 °C for 30 min to facil-
itate digestion. Following digestion, the cells underwent 
filtration using a cell strainer with a pore size of 70 μm. 
The cells were washed once with dye buffer. Staining was 
performed on cells using anti-CD45 (103138, Biolegend) 
and anti-CD8 + α (100712, Biolegend). Flow cytometry 
(CytoFLEX, USA) was used to determine the percentage 
of CD8 + T cells. Student’s t test was used for statistical 
analysis, and P < 0.05 was considered significant.

Interaction‑based scoring model building and grouping
We constructed an LR score to quantify interactions 
based on ligands and receptors. CELLCHAT recognizes 
all ligands and receptors between the two groups of cells. 
All ligands and receptors were subjected to Cox regres-
sion analysis. The LR score was constructed using the 
LASSO method. The LR score formula: LR score = ∑i 
Expression (LR)i *  coefi.

Cell infiltration type and correlation analysis
Immune cell infiltration and immune function activity 
were scored using CIBERSORT and ssGSEA. Spearman 
was used to assess the correlation with LR scores. You 
can download TIDE [33] from http:// tide. dfci. harva rd. 
edu/.

Illustration production
All illustrations were created with BioRender.com.

(See figure on next page.)
Fig. 1 Single-cell landscape of healthy stomach, gastric primary and metastatic cancers. A. UMAP diagram showing the 20 major cell typesB 
. Bubble heatmap showing the expression of benign/malignant epithelium-specific markers in six epithelial cell subpopulations. CHIEF cells 
and endocrine cells are normal gastric epithelial cells. C. Boxplot showing benign/malignant epithelium-specific functional scores in six epithelial 
cell subpopulations. D. UMAP diagram colored by different disease states. PT1, PT2, and PT3 are derived from gastric primary tumors. NT1 is derived 
from adjacent nontumors. LN1 and LN2 are derived from lymph node metastases. L1 and L2 are derived from liver metastases. O1 is derived 
from metastases. P1 is derived from peritoneal metastases. E. Scale diagram showing cellular composition in different disease states. EpiC1-C4 
was named GC-C1-C4. EpiC5 is named EPI-CHIEF. EpiC6 is named EPI-ECDOCRINE. F. Violin plot showing the expression of marker genes for each 
cell type. Wilcoxon test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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Fig. 1 (See legend on previous page.)
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Statistical analysis
Statistical analyses were performed using R (ver-
sion 4.1.2), Python (version 3.10) and GraphPad Prism 

(version 9.2.0). Nonnormally distributed data were ana-
lyzed using the Wilcoxon test. Three or more sets of data 
were analyzed using the Kruskal‒Wallis test. The number 

Fig. 2 Inferring the cellular state of patient CD8 + T cells. A. UMAP diagram showing the 7 major CD8 + T-cell subsets B. Heatmap showing 
the expression of classic CD8 + T-cell function markers for different CD8 + T-cell subsets. CD8T-C4 was defined as an exhausted CD8 + T state. C. 
UMAP diagram showing each CD8 + T-cell subset major type-specific marker. D. Trajectory distribution diagram showing the position of each 
CD8 + T-cell subset in the differentiation process. The color changes from dark to light to simulate the start to end of the pseudotime process. E. 
Scale diagram showing T-cell types and CD8 + T-cell subset cellular composition in different disease states.
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of liver metastases and flow analysis were performed by 
Student’s t test, and P < 0.05 was considered statistically 
significant.

Results
Heterogeneous single‑cell landscape in healthy stomach\
gastric cancer\metastasis
To characterize the heterogeneous single-cell landscape 
of healthy stomachs, gastric primary cancers, and meta-
static cancers at high resolution, we used a previously 
published gastric cancer single-cell dataset. Includ-
ing gastric primary tumors (PT1, PT2, PT3), adjacent 
nontumors (NT1), and gastric metastases: lymph node 
metastases (LN1, LN2), liver metastases (L1, L2), ovar-
ian metastases (O1) and peritoneal metastases (P1). 
After quality control and screening (Additional file  1: 
Fig. S1A), 44,234 cells were obtained. Cell clusters were 
defined as 20 independent types via data normalization, 
principal component analysis, clustering, and cell type 
identification (Fig.  1A, Additional file  1: Fig. S1B). The 
high expression of KRT8, KRT18, and EPCAM identified 
epithelial cells EpiC1-C6. High expression of PECAM1 
and COL1A2 identified a stromal cell population, which 
was further subdivided into endothelial cells (CDH5, 
VWF, and PLVAP), fibroblasts (FGF7, DCN, and LUM), 
and pericytes (RGS5 and NOTCH3). High expression 
of CD45 was identified as immune cell clusters, further 
subdivided into neutrophils (CD66b, S100A8, S100A9), 
mast cells (KIT, TPSAB1, CPA3), dendritic cells (PLD4, 
LILRA4, FCER1A), monocytes (CD14, CD16), mac-
rophages (CD68, CD163, CSF1R), CD4 + T (CD4), 
CD8 + T (CD8A, CD8B), DNT (CD2, CD3D, CD4-/CD8-
), NK (FGFBP2, CX3CR1, KLRD1), B (CD19, CD79A, 
MS4A1) and plasma cells (IGHG1, CD79A, TNFRSF17).

Only approximately 25% of malignant gastric epithe-
lial cells exhibit high levels of copy number variation 
(CNV) [34, 35]. The approach of using CNVs to identify 
malignant cells was not applicable to gastric cancer. To 
distinguish between malignant and nonmalignant epi-
thelium, we first used a panel of genes specific for gas-
tric malignant and nonmalignant epithelium. Malignant 
epithelial genes include TFF3, CLDN7, and CLDN4. 
These genes were confirmed to be highly expressed in 

gastric cancer tissues (p < 2 ×  10–16) [27]. Nonmalignant 
epithelial genes included chief cell markers (PGA4, 
PGA3, LIPF) and endocrine cell markers (PROX1, 
CHGA). These genes are mainly related to gastric 
digestive enzymes and mucus secretion. Malignant 
epithelial genes were highly expressed in EpiC1-C4 
(Fig. 1B). Endocrine cell markers were highly expressed 
in EpiC6 cells (Fig. 1B). Chief cell markers were highly 
expressed in EpiC5 cells (Fig. 1B). This result is further 
supported by the gene signature set score [29]. EpiC1-
C4 showed higher gastric cancer scores (Fig. 1C). Inter-
estingly, EpiC4 exhibited lower EMT and cell motility 
and a slower cell cycle than EpiC1-C3 (Fig.  1C, Addi-
tional file 2: Table S1). We named EpiC1-C4 GC-C1-C4. 
EpiC5 was named EPI-CHIEF. EpiC6 was named EPI-
ECDOCRINE. GC-C1 and GC-C3 were mainly pre-
sent in the primary tumor (Fig.  1D, E). GC-C4 was 
mainly present in metastases (Fig. 1D, E). Immune cells 
accounted for the highest proportion in normal tis-
sue (92.01%), primary tumor (77.37%) and metastatic 
tumor (95.37%) samples (Fig. 1D, E). The percentage of 
cancer cells in the primary tumor (16.26%) was signifi-
cantly greater than that in the metastatic tumor (2.06%) 
(Fig.  1D, E). Nonetheless, this variation may also be 
attributed to the relatively small size of metastatic 
tumors and limited clinical materials. Marker genes of 
different cell types (Fig. 1F).

The above analysis focuses on the study of tumor cells. 
However, CD8 + T cells are immune cells that directly 
kill tumors and play an important role in the process of 
liver metastasis. Cell clusters were divided into 7 types 
of CD8TC1-C7 cells by graphical clustering of 9591 
CD8 + T cells (Fig.  2A). Classical cell markers indicated 
the cell status of CD8 + T cells (Fig. 2B). Clusters C1 and 
C2 enriched for naive-associated genes (CCR7, TCF7, 
LEF1, SELL) were defined as naive-like CD8 + T status 
(Fig.  2B). Cluster C3 exhibits resident-associated genes 
(CD69, RUNX3, NR4A1) defined as the tissue resident 
memory CD8 + T state (Fig.  2B). Cluster C4, exhibiting 
inhibitory-associated genes (TIGIT, CTLA4, PDCD1, 
HAVCR2, CXCL13, LAG3), was defined as an exhausted 
CD8 + T state (Fig.  2B). Cluster C5 has an intermedi-
ate state between the effector CD8 + T state and the 

(See figure on next page.)
Fig. 3 Subclustering and annotation of macrophages. A. UMAP diagram showing 5 major macrophage subsets. Based on their type-specific 
markers, we named them MACRO-C1QC, MACRO-SPP1, MACRO-FCN1, MACRO-GBP1, and MACRO-INHBA. B. UMAP diagram showing classic 
characteristic marker gene expression of 5 major macrophage subsets. C. Bubble heatmap showing the expression of major type-specific markers 
in different macrophage subsets. D. Line graph showing disease state preference for different macrophage subsets. MACRO-SPP1, MACRO-INHBA, 
and MACRO-GBP1 subgroups were not found in normal gastric tissue. These 3 cell types displayed tumor-associated macrophages. MACRO-SPP1 
cells were defined as SPP1 + TAMs. E. Boxplot showing the functional characteristic scores of different tumor-associated macrophage subsets. F. 
Heatmap showing M1/M2 signature scores and expression of M1/M2 signature genes for different macrophage subsets. G. Scale diagram showing 
different macrophage subset cellular compositions in different disease states. Wilcoxon test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Fig. 3 (See legend on previous page.)
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exhausted CD8 + T state due to moderate expression of 
inhibitory-related genes and high expression of cytotox-
icity-related genes (Fig. 2B). Clusters C6 and C7, exhibit-
ing cytotoxicity-related genes (GZMA, GZMB, GZMK, 
NKG7, and IFNG), were defined as effector CD8 + T cells 
(Fig. 2B). Marker genes of different cell clusters (Fig. 2C). 
The cells mentioned above, in various states, align with 
the ongoing progression process in the trajectory analy-
sis (Fig. 2D). The proportion of CD8 + T cells in metasta-
ses was the lowest (39.98%), followed by primary tumors 
(43.75%) and normal gastric tissues (48.40%) (Fig.  2E). 
The proportion of CD8T-C4 cells in the exhausted state 
was much higher in metastases (6.48%) than in primary 
tumors (0.59%) (Fig. 2E).

It has been found that tumor-associated macrophages 
may affect tumor cells and CD8 + T cells. Therefore, a 
more detailed subgroup of macrophages in this sample 
was constructed. Cell clusters were classified into 5 types 
by clustering and identifying 1168 macrophages (Fig. 3A). 
The classical macrophage genes CD68, CD163, CD14, 
and CSF1R were all specifically expressed in the five cell 
subsets (Fig. 3B). Gastric cancer was previously reported 
to contain two distinct macrophage subsets (C1QC/
INHBA) [23]. Other studies have reported that SPP1 + /
C1QC + and SPP1 + /C1QC-, SPP1-/C1QC + mac-
rophage subtypes coexist in gastric cancer [36]. Our find-
ings are consistent with these results (Fig.  3C). The five 
types of macrophage subset marker genes are shown 
in Fig.  3C. The MACRO-SPP1, MACRO-INHBA, and 
MACRO-GBP1 subgroups were not found in normal gas-
tric tissue (Fig. 3D). These 3 cell types displayed tumor-
associated properties. We assessed the phagocytic and 
angiogenic capabilities of these 3 cell types. The results 
showed that SPP1 + TAM had stronger phagocytic abil-
ity (Fig. 3E, Additional file 2: Table S2). INHBA + TAMs 
had stronger angiogenic ability (Fig. 3E, Additional file 2: 
Table S2). Macrophages fall into a “classically activated” 
M1/ “alternatively activated” M2 binary polarization state 
in vitro [37]. However, macrophages are more complex in 
the in  vivo system, which contradicts the binary polari-
zation classification in vitro [38]. Our results are consist-
ent with previous studies. M1 and M2 gene signatures 

were coexpressed in all 5 macrophage subtypes (Fig. 3F, 
Additional file 2: Table S3). MACRO-INHBA, MACRO-
GBP1, and MACRO-FCN1 exhibited higher M1 features 
(Fig.  3F). MACRO-SPP1 and MACRO-C1QC exhib-
ited higher M2 signatures (Fig.  3F). The proportion of 
MACRO-SPP1 in metastatic tumors (31.82%) was sig-
nificantly greater than that in primary tumors (14.44%) 
(Fig. 3G).

Detection of specific signaling pathways in metastatic 
cancer based on the CD8 + T‑cell‑macrophage regulatory 
network
However, the mechanism of action between CD8 + T 
cells and tumor-associated macrophages during liver 
metastasis of gastric cancer remains unclear. To examine 
the crosstalk between macrophages and CD8 + T cells in 
different disease states. We first assessed the strength of 
cellular interactions. The results showed that the strength 
of the crosstalk between CD8 + exhausted T cells and 
SPP1 + TAMs was significantly enhanced in the meta-
static state (Fig. 4A). The outgoing interaction strength of 
SPP1 + TAMs was significantly higher than the incoming 
interaction strength in metastatic carcinoma (Fig.  4B). 
The incoming interaction strength of CD8 + T exhausted 
cells was significantly higher than the outgoing inter-
action strength in metastatic carcinoma (Fig.  4B). We 
speculate that CD8 + T exhausted cells may be regulated 
by SPP1 + TAMs in metastatic cancer. To further under-
stand which signaling pathways are involved in regula-
tion, we investigated the detailed signaling pathways 
between macrophages and CD8 + T cells in different 
states (Fig. 4C). The VCAM pathway, GDF pathway, MIF 
pathway, TNF pathway, CD137 pathway and ITGB2 path-
way specifically appeared in metastatic cancer (Fig. 4D). 
We visualized the interactions and networks of the above 
signaling pathways in metastatic cancer. The GDF sign-
aling pathway was only specifically sent by SPP1 + TAMs 
(Fig. 4E).

Upon further analysis of the ligand/receptor, we found 
that the alteration of the GDF pathway was mainly 
caused by the interaction of GDF15/TGFBR2 (Fig.  5A). 
GDF15 was highly expressed in SPP1 + TAMs in the 

Fig. 4 Interaction between macrophages and CD8 + T cells A. Heatmap showing the strength of intercellular communication in different disease 
states. The redder the color is, the stronger the communication between cells. The strength of the crosstalk between CD8T-C4 (exhausted CD8 + T 
state) and MACRO-SPP1 (SPP1 + TAMs) was significantly enhanced in the metastatic state. B. Incoming and outgoing communication strength 
of each cell subset in different disease states. The outgoing strength of MACRO-SPP1 (SPP1 + TAMs) was higher than the incoming strength. The 
incoming strength of CD8T-C4 (exhausted CD8 + T state) was higher than the outgoing strength. MACRO-SPP1 (SPP1 + TAMs) are more likely to be 
outcoming cells. CD8T-C4 cells (exhausted CD8 + T cells) are more likely to be incoming cells. C. Heatmap showing detailed intercellular signaling 
pathways between macrophages and CD8 + T cells in different states. D. Histograms showing signaling pathway changes from output MACRO-SPP1 
(SPP1 + TAMs) to input CD8T-C4 (exhausted CD8 + T state) in different disease states. The VCAM, GDF, MIF, TNF, CD137 and ITGB2 pathways 
significantly appear in metastasis. E. Hierarchical diagram visually showing the interaction of the above signaling pathways in metastasis. The GDF 
signaling pathway was only specifically sent by MACRO-SPP1 (SPP1 + TAMs)

(See figure on next page.)
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metastatic state (Fig.  5B). GDF15 expression was high-
est in liver metastasis samples (L2) (Fig.  5C). GDF15 is 
also known as macrophage inhibitory cytokine 1 (MIC-
1). First found in activated macrophages [39]. This 
belongs to the superfamily of transforming growth factor 
β (TGFβ), which is a member of the TGFβ superfamily. 
Previous studies have shown that GDF15 can be highly 
expressed in the environment of liver tumors [40]. Other 
studies found that GDF15 can reduce T-cell infiltration 
and inhibit T-cell stimulation and effector T-cell acti-
vation. Therefore, GDF15 promotes the occurrence of 
immune escape and tumor proliferation [41, 42]. To fur-
ther analyze the inhibitory effect of GDF15 on T cells in 
gastric cancer, we used multigroup gastric cancer BULK 
datasets. The CD8 + T exhausted cell signature genes and 
the GDF15 + SPP1 + TAM signature genes were scored 
using ssGSEA (Additional file  2: Table  S4). We found 
that the infiltration of GDF15 + SPP1 + TAMs was posi-
tively correlated with the infiltration of CD8 + exhausted 
T cells in all datasets (Fig.  5D). Among them, TCGA-
STAD exhibited the highest correlation value (Spearman 
R = 0.46, p = 2.2e−16). According to the median value, 
we divided the TCGA-STAD GDF15 + SPP1 + TAM 
score into two groups. The results showed that the score 
of CD8 + exhausted cells was also increased under high 
GDF15 + SPP1 + TAM scores (Fig. 5E).

Ongoing studies indicate that CD8 + T exhausted 
cells exist along a developmental spectrum [43]. PD-
1Lo CD8 + T exhausted cells, accompanied by elevated 
expression of PD-1 and coinhibitory receptors, includ-
ing TIM3, LAG3, TIGIT and CTLA4, continue to differ-
entiate into loss-of-function PD-1hi CD8 + T exhausted 
cells [44]. Once CD8 + T exhausted cells enter the 
PD-1hi state, epigenetic enforcement prevents dedif-
ferentiation back to the effector or PD-1Lo state. Simul-
taneously, resistance to ICB therapy is produced, and 
apoptosis is eventually induced [44]. Our results show 
that PD-1, TIGIT, CTLA4, LAG3, and CXCL13 expres-
sion is elevated in CD8 + T exhausted cells in the 

metastatic state (Fig. 5F). Simultaneously, BULK verified 
that the GDF15 + SPP1 + TAM score exhibited a posi-
tive correlation with the score of coinhibitory receptors 
of CD8 + T cells (Fig.  5G, Additional file  2: Table  S4). 
Among them, TCGA-STAD had the highest correla-
tion value (PD-1 + CD8 + T cells: Spearman R = 0.47, 
p = 2.2e−16; CTLA4 + CD8 + T cells: Spearman R = 0.49, 
p = 2.2e−16; HAVCR2 + CD8 + T cells: Spearman 
R = 0.67, p = 2.2e−16; LAG3 + CD8 + T cells: Spearman 
R = 0.46, p = 2.2e−16; TIGIT + CD8 + T cells: Spearman 
R = 0.47, p = 2.2e−16; CXCL13 + CD8 + T cells: Spear-
man R = 0.43, p = 2.2e−16). Figure  5G, Additional file  2: 
Table S4).

We prepared a mouse model of gastric cancer liver 
metastasis to further verify our above findings (Fig. 6A). 
Specifically, we injected gastric cancer cells under the 
splenic capsule. Mice were monitored weekly by fluo-
rescence intravital imaging to observe the prepara-
tion of the liver metastasis model (Fig.  6B). After three 
weeks of tumor growth, the mice were sacrificed, and 
liver metastases were collected. Multiplex immunofluo-
rescence results confirmed the colocalization of a mac-
rophage marker (Cd68), an SPP1 + TAM marker (Spp1) 
and Gdf15 protein (Fig.  6C). Next, to further verify the 
immunosuppressive effect produced by GDF15, we used 
a GDF15 inhibitor in gastric cancer liver metastasis 
model mice (Fig.  6A). Specifically, we used mice as the 
dosing group/control group. A GDF15 inhibitor (10 mg/
kg) and the same volume of PBS were injected intraperi-
toneally into mice. The spraying time was 2 weeks, with 
a total of 6 injections. The results of the study showed 
that GDF15 inhibitors could effectively reduce the num-
ber of liver metastases (Fig. 6B, D–E). At the same time, 
the results verified that the GDF15 inhibitor reversed the 
immunosuppressive effect and increased the infiltration 
of CD8 + T cells (Fig.  6F–G). These results suggest that 
GDF15 inhibitors may help to relieve the inhibitory effect 
of SPP1 + TAMs on CD8 + T cells, thereby improving the 
killing ability of CD8 + T cells and inhibiting liver metas-
tasis of gastric cancer.

(See figure on next page.)
Fig. 5 Potential ligand and receptor interactions A. Bubble heatmap showing ligands and receptors of cell‒cell interactions in different disease 
states. The GDF signaling pathway consists of GDF15-TGFBR2 (ligand receptor). B. Bubble heatmap showing GDF15 expression of MACRO-SPP1 
(SPP1 + TAMs) in different disease states. GDF15 expression in MACRO-SPP1 (SPP1 + TAMs) is increased in metastasis. C. UMAP diagram showing 
the expression of GDF15 in different metastasis samples. GDF15 is mainly expressed in liver metastasis samples (L2). D. The correlation 
between GDF15 + SPP1 + TAM infiltration and CD8 + T exhausted cell infiltration was analyzed in the gastric cancer BULK datasets. The dotted-line 
plot shows a positive correlation between the GDF15 + SPP1 + TAM ssGSEA score and the CD8T-C4 (exhausted CD8 + T state) ssGSEA score. E. 
Comparison of CD8T-C4 (exhausted CD8 + T state) ssGSEA score between high- and low-expressed groups defined by the median expression level 
of GDF15 + SPP1 + TAM ssGSEA score in the TCGA-STAD cohort. F. Violin plot showing exhaustion gene expression of CD8T-C4 (exhausted CD8 + T 
state) in different disease states. PDCD1 and CXCL13 expression in CD8T-C4 cells (exhausted CD8 + T cells) is increased in metastasis. G. Dot-line plot 
showing a positive correlation between GDF15 + SPP1 + TAM ssGSEA score and exhaustion gene expression of CD8T-C4 (exhausted CD8 + T state) 
in the Gastric Cancer BULK Datasets. Wilcoxon test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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CD8 + T exhausted and SPP1 + TAM interaction score 
generation
These results suggest that the intensity of the interac-
tion between SPP1 + TAMs and CD8 + exhausted T cells 
in gastric cancer patients may be an important factor 
in evaluating the prognosis of patients. To quantify the 
crosstalk of CD8 + T exhausted cells with SPP1 + TAMs, 
we first visualized the network of SPP1 + TAMs inter-
acting with CD8 + T exhausted cells (Fig.  7A). The lev-
els of expression for 53 pairs of ligand/receptor (L/R) in 
the conduction network were measured. In the TCGA-
STAD cohort, 86% of L/R were found to be upregulated 
in gastric cancer samples. L/R (14%) was downregulated 
in gastric cancer samples (Fig. 7B). Thirty-four L/R were 
differentially expressed between normal and gastric can-
cer samples (FDR < 0.05, Fig.  7C). COX regression was 
performed on all ligands and receptors. The LR score was 
built based on LASSO (Fig.  7D). The LR score had the 
highest multivariate and univariate HR values (Fig.  7E). 
Gastric cancer patients with high LR scores had worse 
OS (p < 0.001, Fig.  7F), PFS (p = 0.002, Fig.  7G), DFS 
(p = 0.05, Fig.  7H) and DSS (p < 0.001, Fig.  7I). The LR 
score was more effective in evaluating prognosis than 
the AJCC-TNM stage, pathological grade, sex, and age 
(Fig. 7J). The consistency of the evaluation performance 
at 1-, 3-, and 5 year intervals was satisfactory (Fig. 7J).

Afterward, we investigated the correlation of the LR 
score with immune characteristics as well as clinical 
molecular subtypes. The LR score was negatively cor-
related with most T-cell types (Fig.  8A). The LR score 
was positively correlated with the M2 macrophage frac-
tion (Fig.  8A). In addition, a high LR score was associ-
ated with lower CD8 + T-cell infiltration and higher 
macrophage infiltration (Fig.  8B). A low LR score had 
higher cell cytolytic activity and pro-inflammatory abil-
ity (Fig. 8C). These results are consistent with the results 
of the single-cell analysis. More importantly, a high LR 
score was associated with a higher TIDE score (Fig. 8D). 
It is evident that gastric cancer patients who have high 
LR scores are more susceptible to immune evasion. 

Furthermore, individuals with a low LR score in gas-
tric cancer might exhibit heightened responsiveness to 
ICB (Fig. 8D). TMB is considered to predict the efficacy 
of ICB drugs and functions as a biomarker in a variety 
of tumors. Immunotherapy often yields more favora-
ble outcomes for malignancies exhibiting elevated TMB 
[45]. Our results show that patients with a low LR score 
have a higher TMB score (Fig.  8E). The National Can-
cer Institute released the TCGA Subtypes for Gastric 
Cancer in 2014 [34]. Gastric cancer is divided into four 
types: MSI (microsatellite instability), GS (genome sta-
ble), EBV (Epstein‒Barr virus infection) and CIN (chro-
mosomal instability). Among these types, EBV and MSI 
may benefit from immunotherapy. However, patients 
with GS and CIN are less likely to benefit from immuno-
therapy. Our results show that CIN and GS have higher 
LR scores (Fig. 8F). However, EBV and MSI had lower LR 
scores (Fig. 8F). Multiple research studies have validated 
that the presence of microsatellite instability in gastric 
cancer can serve as a reliable indicator for determining 
the effectiveness of immunotherapy [46, 47]. Patients 
with MSI-H have better immunotherapy sensitivity. Our 
results showed that MSI-H patients had lower LR scores 
(Fig. 8G). The CIMP (CpG Island Methylator Phenotype) 
is based on subtypes of gastric cancer CpG island meth-
ylation levels [48, 49]. Non-CIMP and CIMP-L have low 
methylation levels. However, CIMP-H and CIMP EBV 
had high methylation levels. High methylation levels are 
associated with greater immune cell infiltration [50]. Our 
results showed that CIMP-H and CIMP-EBV had lower 
LR scores (Fig. 8H). The above results all indicated that 
LR scores were highly correlated with immune features. 
To some degree, the interaction score can help predict 
the effectiveness of immunotherapy.

Furthermore, individuals with an advanced clinical 
stage exhibited an elevated LR score (Fig. 8I). Addition-
ally, this result validated the prognostic significance of 
the LR score in patients. The figure illustrates the vary-
ing LR score distributions and clinical molecular subtype 
characteristics among TCGA-STAD patients (Fig. 8J). To 

Fig. 6 Animal Experiment Verification A. Schematic diagram showing the workflow of animal experiments. A total of 5 ×  105 (50 µl) mouse gastric 
cancer cells (MFCs) were injected into the subcapsule of the spleen of 8 mice (615 Mouse). Seven days after tumor development, four mice 
in the experimental group were intraperitoneally injected with a GDF15 inhibitor, and four mice in the control group were intraperitoneally injected 
with an equal volume of PBS. Thereafter, treatments were performed every 3 days for a total of 6 injections. After the last treatment, the mice were 
euthanized the next day, and liver metastases were collected. B. In vivo fluorescence imaging shows the formation of liver metastases from gastric 
cancer in mice. C. Multiplex immunofluorescence image showing the colocalization of macrophage markers (Cd68), SPP1 + TAM markers (Spp1) 
and Gdf15 protein. D. GDF15 inhibitors reduced the number of liver metastases (each group contained 4 mice). E. Immunohistochemical image 
of HE staining showing that GDF15 inhibitors can reduce the number of liver metastases. F. Immunofluorescence image showing that GDF15 
inhibitors increase tumor-infiltrating CD8 + T cells (each group contained 4 mice). G. Flow cytometry showing that GDF15 inhibitors increase 
tumor-infiltrating CD8 + T cells (each group contained 4 mice). The number of liver metastases and flow analysis were performed by Student’s t test, 
and P < 0.05 was considered statistically significant

(See figure on next page.)
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circumvent the constraints of a solitary database. Next, 
we conducted the analysis on the dataset from the Asian 
Cancer Research Group (ACRG, GSE62254). In 2015, the 
ACRG molecular subtype classification was published 
by the Asian Cancer Research Organization [51]. There 
are four categories of gastric cancer: MSI-H (microsatel-
lite unstable), EMT (epithelial-mesenchymal transition), 
MSS (microsatellite stable)/TP53- and MSS (microsat-
ellite stable)/TP53 + . The prognosis for the MSI-H type 
is the most favorable, while the prognosis for the EMT 
type is the worst favorable. According to our findings, 
MSI-H exhibits the lowest LR score (Fig. 8K). The EMT 
type had the highest LR score (Fig. 8K). The classification 
by Lauren categorizes gastric cancer into three types: 
diffuse, intestinal, and mixed. The diffuse type has the 
worst prognosis and is more prone to distant metastasis. 
According to our findings, individuals diagnosed with 
diffuse gastric cancer exhibited the most elevated LR 
score (Fig. 8L). The aforementioned findings once again 
demonstrated a strong correlation between interaction 
scores and clinical molecular subtypes. This illustrates 
the varying LR score distributions and clinical molecular 
subtype characteristics among ACRG patients (Fig. 8M).

Discussion
ICB drugs relieve the inhibitory effect of T cells in tumor 
tissues and reactivate T cells to kill tumor cells, bringing 
new benefits to patients with advanced gastric cancer 
who are undergoing immunotherapy [11–15]. Neverthe-
less, only a limited proportion of individuals diagnosed 
with gastric cancer experience the benefits of immuno-
therapy [16]. Recently, it was found that liver metastasis 
of gastric cancer can significantly reduce the efficacy of 
immunotherapy in patients [19–21]. The high degree of 
heterogeneity of tumors and the surrounding complex 
ecosystem are responsible [17]. Therefore, there is an 
urgent need to explore the immune status in the tumor 
microenvironment of patients with liver metastases and 
reveal the deeper mechanisms affecting CD8 + T cells.

Several recent studies found that TAMs significantly 
affect tumor metastasis and found more TAMs in liver 
metastases [19]. However, the mechanism of TAM 

interaction with CD8 + T cells during the occurrence and 
progression of gastric cancer liver metastasis remains 
unclear. To elucidate this mechanism and understand 
the microenvironment and cell‒cell interactions in dif-
ferent disease states, our study generated a comprehen-
sive single-cell landscape of healthy stomach, gastric 
primary cancer, and metastatic cancer. We found that 
the proportion of SPP1 + TAMs increased in metastasis 
by reclustering TAMs. Relevant research reports have 
shown that SPP1 + TAMs are thought to have immuno-
suppressive properties [25]. However, the involvement 
of SPP1 + TAMs in gastric cancer metastases remains 
unclear.

Our study generated a landscape of healthy stomach, 
primary gastric cancer, and metastatic cancer. These 
results are used to understand the microenvironment 
and cell‒cell interactions in different disease states. Ini-
tially, our attention was directed toward variations in 
macrophage subsets and alterations in CD8 + T-cell sub-
sets in different disease states. In metastasis, there was 
an observed increase in the proportions of exhausted 
CD8 + T cells and SPP1 + TAMs. Concurrently, there 
was a notable increase in the level of interaction between 
exhausted CD8 + T cells and SPP1 + TAMs during the 
process of metastasis. These findings prompted us to 
pay further attention to the differences. SPP1 + TAMs 
showed higher output strength in metastasis. CD8 + T 
exhausted cells showed higher input strength in metasta-
sis. CD8 + T exhausted cells in metastatic cancer may be 
regulated by SPP1 + TAMs. Interestingly, the GDF signal-
ing pathway is highly activated in the metastatic state. It 
is specifically emitted by SPP1 + TAMs. GDF15-TGFBR2 
is the ligand/receptor for GDF pathway changes. GDF15 
is highly expressed in SPP1 + TAMs in liver metastasis 
samples. Previous studies have shown that GDF15 can be 
highly expressed in the environment of liver tumors [40]. 
GDF15 can reduce T-cell infiltration and inhibit T-cell 
stimulation and effector T-cell activation. GDF15 pro-
motes immune escape and tumor proliferation [41, 42]. 
The aforementioned findings indicate that GDF15 might 
play a crucial role in suppressing the immune microenvi-
ronment of liver metastases.

(See figure on next page.)
Fig. 7 LR score for quantifying interaction. A. According to the results of the previous single-cell analysis. Schematic diagram showing 
the interaction network of ligands and receptors between MACRO-SPP1 (SPP1 + TAMs) and CD8T-C4 (exhausted CD8 + T cells). B. Pie chart showing 
ligand and receptor expression in tumor/normal tissues (TCGA-STAD) C. Bubble plot showing the differential expression of ligands and receptors 
in tumor/normal tissues (TCGA-STAD). D. Forest plot showing LR scores constructed based on the above ligands and receptors using LASSO 
and Cox regression methods (TCGA-STAD). E. Radar chart showing hazard ratio values based on univariate/multivariate Cox regression. The LR 
score had the highest multivariate and univariate HR value (TCGA-STAD). F–I. Kaplan‒Meier curve showing that the LR score is correlated with OS, 
PFS, DSS, and DFS (TCGA-STAD). J. The receiver operating characteristic (ROC) curve shows that the LR score has good evaluation performance 
(TCGA-STAD).
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To further explore whether GDF15 affects the 
immune status of gastric cancer. We further analyzed 
the inhibitory effect of GDF15 on T cells in gastric can-
cer using multiple gastric cancer BULK datasets. We 
discovered a positive correlation between the infiltra-
tion of GDF15 + SPP1 + TAMs and the infiltration of 
exhausted CD8 + T cells. High expression of GDF15 
can enhance the expression of inhibitory receptors in 
exhausted CD8 + T cells and finally induce the apoptosis 
of exhausted cells [43, 44]. To validate our above analy-
sis, we used a gastric cancer liver metastasis model for 
validation. In the liver metastasis model, we success-
fully observed GDF15 + SPP1 + TAMs and significantly 
inhibited the liver metastasis ability of gastric cancer 
after using GDF15 blockade. We then further confirmed 
through immunofluorescence and flow cytometry analy-
sis that inhibiting GDF15 significantly increased the 
infiltration level of CD8 + T cells in liver metastases and 
successfully reversed the immunosuppressive effect. The 
above results suggest that inhibiting the GDF15 protein 
secreted by SPP1 + TAMs may be an important way to 
improve the efficacy of immunotherapy and improve 
liver metastasis in patients with gastric cancer.

Due to the importance of CD8 + T exhausted cell inter-
actions with SPP1 + TAMs, we generated a score to quan-
tify the crosstalk between SPP1 + TAMs and exhausted 
CD8 + T cells. Our results further confirm that a high 
LR score will lead to a worse prognosis. In addition, 
individuals exhibiting a high LR score demonstrated a 
reduced presence of CD8 + T cells and an increased pres-
ence of M2 macrophages. These results are consistent 
with the results of the single-cell analysis. Furthermore, 

we explored the correlation of this quantitative score 
with clinical molecular subtypes. The LR score showed 
a strong correlation with the existing mainstream TCGA 
subtypes, ACRG subtypes, and MSI subtypes. The LR 
score may also guide the prediction of prognosis and effi-
cacy of immunotherapy.

There is no denying that our research has certain limi-
tations. First, our research relies on public single-cell 
datasets. It lacks a sufficient number of single-cell sam-
ples. This would indicate bias in our results. Second, it is 
very difficult to obtain clinical samples of liver metastases 
from patients with gastric cancer. We could not directly, 
experimentally verify that GDF15 + SPP1 + TAMs are 
highly activated in liver metastases. Finally, our study 
only characterizes the communication potential between 
SPP1 + TAMs and CD8 + T exhausted cells. However, 
why this crosstalk is highly activated in the metastatic 
state and the specific mechanism of the immunosuppres-
sive effect remain unclear. This requires us to conduct 
further in-depth research.

Conclusions
To summarize, our findings indicate that the crosstalk 
between SPP1 + TAMs and CD8 + exhausted T cells has a 
significant immunosuppressive impact within the micro-
environment of gastric metastases. Through GDF15-
TGFBR2, SPP1 + TAMs have the ability to enhance the 
expression of coinhibitory receptors, leading to apoptosis 
in exhausted CD8 + T cells. Drugs that block GDF15 aid 
in reversing the immunosuppressive microenvironment. 
The prognosis and effectiveness of immunotherapy can 
be predicted using a quantified interaction score.

Fig. 8 Correlation between LR score and clinical immune features. A. Bubble plot showing the correlation between the LR score and immune cell 
infiltration. The LR score was negatively correlated with most T-cell types. The LR score was positively correlated with the M2 macrophage fraction. 
B. Boxplot showing the comparison of immune cell ssGSEA scores with high/low LR score groups (TCGA-STAD). A high LR score was associated 
with lower CD8 + T-cell infiltration and higher macrophage infiltration. C. Boxplot showing the comparison of immune function ssGSEA scores 
with high/low LR score groups (TCGA-STAD). A low LR score had higher cell cytolytic activity and pro-inflammatory ability. D. Violin plot showing 
the comparison of TIDE scores between the high/low LR score groups. A high LR score has a higher TIDE score. High LR scores are more susceptible 
to immune evasion. E. Violin plot showing the comparison of TMB between the high/low LR score groups. Immunotherapy often yields more 
favorable outcomes for malignancies exhibiting elevated TMB. Low LR scores have higher TMB scores. F. Violin plot showing the comparison 
of LR scores between different TCGA subtypes. Patients with EBV and MSI may benefit from immunotherapy. GS and CIN are less likely to benefit 
from immunotherapy. CIN and GS had higher LR scores. Patients with EBV and MSI have lower LR scores. G. Violin plot showing the comparison 
of LR scores between different MSI subtypes. Patients with MSI-H have better immunotherapy sensitivity. MSI-H patients had lower LR scores. 
H. Violin plot showing the comparison of LR scores between different CIMP subtypes. CIMP-H and CIMP EBV had high methylation levels. 
High methylation levels are associated with greater immune cell infiltration. CIMP-H and CIMP-EBV had lower LR scores. I. Violin plot showing 
the comparison of LR scores between different TNM stages. Individuals with an advanced clinical stage exhibited an elevated LR score. J. The 
clinical heatmap shows the distribution of the LR score and various molecular subtypes in the TCGA cohort. K. Violin plot showing the comparison 
of LR scores between different ACRG subtypes. The prognosis for the MSI-H type is the most favorable, while the prognosis for the EMT type 
is the worst favorable. MSI-H exhibits the lowest LR score. The EMT type had the highest LR score. L. Violin plot showing the comparison of LR 
scores between different Lauren types. The diffuse type has the worst prognosis and is more prone to distant metastasis. Individuals diagnosed 
with diffuse gastric cancer exhibited the most elevated LR score. M. Clinical heatmap showing the distribution of the LR score and various molecular 
subtypes in the ACRG cohort. Wilcoxon test: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001

(See figure on next page.)
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