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Abstract 

Background The precise prediction of epidermal growth factor receptor (EGFR) mutation status and gross tumor 
volume (GTV) segmentation are crucial goals in computer-aided lung adenocarcinoma brain metastasis diagnosis. 
However, these two tasks present continuous difficulties due to the nonuniform intensity distributions, ambiguous 
boundaries, and variable shapes of brain metastasis (BM) in MR images.The existing approaches for tackling these 
challenges mainly rely on single-task algorithms, which overlook the interdependence between these two tasks.

Methods To comprehensively address these challenges, we propose a multi-task deep learning model that simulta-
neously enables GTV segmentation and EGFR subtype classification. Specifically, a multi-scale self-attention encoder 
that consists of a convolutional self-attention module is designed to extract the shared spatial and global information 
for a GTV segmentation decoder and an EGFR genotype classifier. Then, a hybrid CNN-Transformer classifier consisting 
of a convolutional block and a Transformer block is designed to combine the global and local information. Further-
more, the task correlation and heterogeneity issues are solved with a multi-task loss function, aiming to balance 
the above two tasks by incorporating segmentation and classification loss functions with learnable weights.

Results The experimental results demonstrate that our proposed model achieves excellent performance, surpassing 
that of single-task learning approaches. Our proposed model achieves a mean Dice score of 0.89 for GTV segmenta-
tion and an EGFR genotyping accuracy of 0.88 on an internal testing set, and attains an accuracy of 0.81 in the EGFR 
genotype prediction task and an average Dice score of 0.85 in the GTV segmentation task on the external testing set. 
This shows that our proposed method has outstanding performance and generalization.

Conclusion With the introduction of an efficient feature extraction module, a hybrid CNN-Transformer classifier, 
and a multi-task loss function, the proposed multi-task deep learning network significantly enhances the perfor-
mance achieved in both GTV segmentation and EGFR genotyping tasks. Thus, the model can serve as a noninvasive 
tool for facilitating clinical treatment.
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Introduction
Lung cancer (LC) is one of the most common malig-
nancies and remains the leading cause of cancer-related 
death [1]. Lung adenocarcinoma (LADC) is by far the 
most common subtype, accounting for 50% of all LC 
cases, and its incidence is on the rise [2]. As a result of 
late diagnosis and high heterogeneity, many LADC 
patients may develop brain metastasis (BM). This seri-
ous complication may cause issues ranging from mild 
headaches and cognitive impairments to seizures, focal 
neurological deficits, and even comas. Furthermore, 
patients who have untreated BM may die within one to 
three months [3, 4]. Thus, timely and effective treatment 
could have a positive impact on the physical conditions 
and quality of life of such patients. During the treatment 
process, brain radiotherapy combined with targeted drug 
therapy can effectively enhance the resulting therapeutic 
effect [5, 6].

Clinical studies have found that the epidermal growth 
factor receptor (EGFR) genotype (wild-type or mutation) 
has a significant impact on the treatment and progno-
sis of LADC BM patients because EGFR tyrosine kinase 
inhibitors (TKIs) can significantly improve LADC patients’ 
progression-free survival odds [7, 8]. Additionally, third-
generation EGFR-TKIs were proven to have high blood-
brain barrier permeability [9], which is necessary for 
LADC BM treatment. Some studies revealed that BM 
patients treated simultaneously with stereotactic radio-
surgery (SRS) and EGFR-TKIs may have prolonged over-
all survival [10–12]. This makes EGFR mutation genotype 
sequencing as important as medical brain image testing. 
However, identifying EGFR genotypes through a biopsy 
is an invasive and costly procedure. In addition, magnetic 
resonance imaging (MRI) offers better soft tissue contrast 
than other imaging modalities, resulting in clearer visu-
alizations of tumor characteristics [13]. In recent years, 
multiple studies have proven that BM MRI features are 
associated with EGFR genotype information [14–16]. 
Wang et  al. [14] developed a radiomics model to predict 
EGFR mutation statuses for BM patients, and the model 
attained a classification accuracy of 0.845 on an independ-
ent testing dataset. Ye et al. [15] used a radiomics model 
to predict EGFR mutation statuses from T2-Flair and 
T1-weighted construct-enhanced (T1-CE) images and 
abtained effective prediction results (0.95 accuracy versus 
0.867). While radiomics can improve the accuracy and 
efficiency of EGFR genotype prediction, it also has some 
structural limitations such as overfitting and underfit-
ting caused by inappropriate feature dimensions and high 
model complexity. Haim et  al. [16] used a convolutional 
neural network (CNN) to predict EGFR mutation statuses, 
achieving a mean accuracy of 0.898, a sensitivity of 0.687, 

and a specificity of 0.977. This research demonstrated the 
great potential of deep learning models.

Radiation therapy is one of the main treatments for 
BM patients to prolong their survival and improve their 
quality of life [17]. Patients with limited BMs can be 
treated with SRS instead of whole-brain radiation ther-
apy [17, 18]. SRS utilizes three-dimensional image guid-
ance and high conformal treatment planning to deliver a 
high radiation dose to the tumor area and a small dose 
to the adjacent normal tissue, achieving lasting BM con-
trol with minor side effects [19]. Before planning an SRS 
treatment, it is imperative to meticulously delineate the 
gross target volume (GTV). Although unified principles 
and consensuses are available for the delineation of the 
GTV, the delineation process is still mainly based on 
the radiation oncologist’s experience [20]. This process 
requires a high degree of concentration and is time-
consuming. Currently, the applications of artificial intel-
ligence (AI) are increasing in the field of radiotherapy for 
malignant brain tumors [21]. Li et  al. [22] developed a 
two-stage deep learning model for the automatic detec-
tion and segmentation of BMs in MR images, yielding a 
segmentation Dice score of 0.81 and a detection preci-
sion of 0.56. Yu et al. [23] proposed a novel deep learn-
ing model to incorporate object-level detection into 
pixel-wise segmentation to simultaneously localize BMs 
and delineate contours, achieving a detection sensitivity 
of 0.91 and a detection precision of 0.77 on a small BM 
group and a segmentation Dice score of 0.86 on a large 
BM group. Hsu et al. [24] used 3D V-Net to segment BMs 
on MR and CT images. The experimental results showed 
that 3D V-Net achieved an overall sensitivity of 0.9 and 
a segmentation Dice score of 0.76. These existing works 
mainly focused on automatic BM detection, sacrificing 
detection precision and producing many false-positive 
results. Thus, these methods are more suitable for early 
brain metastasis detection than for auxiliary delineation 
after the diagnosis process.

In addition, deep learning networks can achieve multi-
task collaboration using features extracted from MR 
image slices containing BM, which emphasizes the con-
nections between the BM region and EGFR mutation 
statuses. Therefore, utilizing the BM GTV segmentation 
task as a constraint, the encoder of a deep learning net-
work can directly focus on BM regions, thereby enhanc-
ing the accuracy of EGFR mutation status prediction in 
the network.

In this study, we employ MR image slices that have 
been diagnosed as having brain metastases by radiolo-
gists as the input images and propose a multi-task deep 
learning network to achieve EGFR mutation status pre-
diction under the constraint of GTV segmentation. First, 
a multi-scale self-attention encoder is used to extract 
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feature maps for the GTV segmentation decoder and 
EGFR status classifier. Second, we introduce a hybrid 
CNN-Transformer classifier to combine the feature 
maps and predict the EGFR status. Third, a multi-task 
loss function is employed to balance the performance 
attained in the segmentation and classification tasks. Our 
proposed model achieves state-of-the-art performance 
in a comparison with several existing single-task deep 
learning models.

Materials and methods
Network architecture design
As illustrated in Fig.  1, the main architecture of the 
multi-task self-attention network (MTSA-Net), includ-
ing a backbone, an EGFR genotyping classifier, and a 
GTV segmentation decoder, is implemented by using 
PyTorch (https://pytorch.io) [25]. MTSA-Net is a deep 
learning model designed for multi-task learning, where 
two tasks share a common feature space. Figure 1 shows 
that the output module of MTSA-Net is bifurcated into 
two components: a segmentation decoder and a genotyp-
ing classifier. The segmentation decoder is responsible 
for generating BM GTV prediction results that main-
tain the same size as the input image. These predictions 

effectively segment the image into the BM region and 
the background region. The genotyping classifier takes 
the high-dimensional feature map from the shared fea-
ture space as its input. It utilizes a Transformer module 
for feature fusion, followed by multi-layer dimensional-
ity reduction operations. Finally, the classifier employs a 
softmax layer to predict the probability of the patient’s 
EGFR mutation status. Simultaneously, based on the 
multi-task approach, the loss function of the MTSA-Net 
encompasses both two tasks’ loss function. The GTV 
segmentation loss function serves to guide the network, 
directing attention to the BM region and enhancing the 
EGFR genotyping accuracy. The detailed descriptions of 
the specific implementation of each structure and loss 
function are provided below.

Backbone
As shown in Fig. 1, the architecture of the encoder con-
sists of multi-scale attention (MSA) blocks and down-
sampling operations. Each MSA block employs a series of 
convolutional blocks and MSA modules, inspired by [26], 
to extract semantic features from the input with a 2D spa-
tial resolution of 384 × 384 . As depicted in Fig. 2 (a), we 
adopt a pyramid structure and depth-wise convolution 

Fig. 1 The architecture of MTSA-Net. The structure of the Transformer block is depicted in the lower-left corner. MLP denotes a multilayer 
perceptron. The MSA block is a multi-scale attention block
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in the MSA module to obtain a multi-scale structure and 
a self-attention mechanism. The MSA module contains 
two parts: a 3× 3 convolution is used to obtain local 
information, and multi-branch depth-wise convolutions 
are used to capture the multi-scale context of the input 
feature map. In the depth-wise convolution operations, 
we only need a pair of k × 1 and 1× k convolutions [27]. 
The output of the 1× 1 convolution after performing ele-
ment-wise addition is employed as an attention weight to 
reweight the input feature map within the MSA module. 
The formula is as follows:

where F, Att, and Out represent the input feature 
map, attention map and output feature map, respec-
tively. ⊗ is the element-wise matrix multiplication 
operation. DWConv denotes depth-wise convolution. 
Branchi, i ∈ {0, 1, 2, 3} denotes the ith branch in Fig. 2 (a) 
from left to right. As illustrated in [28], the kernel sizes of 
the different branches are set to 5, 7, and 11.

As shown in Fig. 2 (b), the MSA block contains a 3× 3 
convolution, batch normalization, a rectified linear unit 
(ReLU) [29] activation function, and a MSA module.

Classifier for EGFR genotyping
To refine the feature map output by the MSA block and 
improve the combination of global and local information, 
we employ multi-head self-attention mechanisms in the 
classifier by using transformer blocks. The decoder consists 
of transformer blocks, convolutional blocks, a multilayer 
perceptron (MLP), and a softmax layer. Figure  1 shows 
the transformer block architecture containing multi-head 

(1)

Att = Conv1×1

(

Conv3×3(F)+
3
∑

i=1

Branchi(DWConv(F))

)

Out = Att ⊗ F

attention and a feed-forward network. The multi-head 
attention is an essential part of the transformer layer, as it 
plays a crucial role in enabling the model to capture spa-
tial relationships and dependencies across different regions 
within the input feature map. As shown in Fig.  3, the 
multi-head attention mechanism consists of multiple self-
attention layers. The functionality of multi-head attention 
involves dividing the feature map of the transformer layer 
into multiple separate segments. Each segment is then 
subjected to self-attention operations performed indepen-
dently and in parallel. The self-attention layer is illustrated 
in Fig. 4, and is computed as follows:

(2)
Q = X ·WQ

K = X ·WK

V = X ·WV

(3)Attention(Q,K ,V ) = Softmax(
QKT

√
d

)V

Fig. 2 (a) represents the multi-scale attention layer and (b) is the multi-scale attention block

Fig. 3 The architecture of the multi-head attention mechanism
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where X denotes the feature maps; Q, K and V denote the 
query, key and value of the input feature maps, respec-
tively; WQ , WK  and WV  are the trainable transforma-
tion matrices corresponding to the query, key and value, 
respectively; and d represents the dimensionality of the 
key vector.

In the multi-head attention mechanism, the outputs 
of the self-attention layers are concatenated and passed 
through a linear projection layer for further processing. 
This step can be computed as follows:

where Concat is the concatenation operation layer; WO is 
the linear projection layer; headi is the ith self-attention 
head in the multi-head attention mechanism; and Qi , Ki , 
Vi represent the query, key and value in the ith self-atten-
tion head, respectively.

In our proposed model, the transformer block divides 
the input 24 × 24 feature map into 16 patches and 
reshapes each patch into a 62 length sequence as a token 
input. Global average pooling with a kernel size of 4 is 
used to flatten the feature map output by the transformer 
block into a one-dimensional vector. An MLP is used to 
reduce the dimensionality of the feature map. Then, we 
employ a softmax layer to quantify the confidence index 
of the EGFR subtype as the final score.

Decoder for GTV segmentation
To obtain GTV segmentation results from T1-CE MR 
images, we design a 2D CNN decoder to implement 
voxel-level segmentation. The decoder comprises multiple 

(4)

Multi Head(Q,K ,V ) = Concat(head1, · · ·, headh)W
O

headi = Attention(Qi,Ki,Vi)

cascaded convolutional blocks and skip connections, which 
merge the high-level and low-level feature maps and out-
put the final segmentation result. Each convolutional block 
consists of a transposed convolution with a stride of 2 and 
a convolutional block. Transposed convolution is employed 
to achieve the upsampling operation. After completing the 
upsampling step, the feature map goes through a convolu-
tional block consists of a 3× 3 convolution, batch normali-
zation, and a ReLU activation function. To predict precise 
GTV segmentation results with richer spatial details, skip 
connections are used to fuse the high-level feature maps 
and their low-level counterparts. Finally, a 1× 1 convolu-
tion is applied to adjust the number of channels and pro-
duce the ultimate GTV segmentation result.

Multi‑task loss function
Since most of the regions in MR images do not contain 
BMs, segmentation bias may arise due to the imbalance 
between the foreground and background. To solve this 
problem, the Dice coefficient-based loss function and focal 
loss function [30] are employed as the segmentation losses 
for the GTV segmentation process, and they are defined as 
follows:

where LDice is the Dice coefficient-based loss function, 
and LFocal is the focal loss function. Since there is an 
enormous difference between the numerical values of 
LDice and LFocal , β = 1

25,000 is used to proportionally scale 
LFocal to reach the same level as LDice.

The Dice coefficient highlights the shape similarity 
between the predicted results and the ground truth, and 
is defined as:

(5)LGTV = LDice + βLFocal

Fig. 4 The architecture of the self-attention layer
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where S denotes the number of pixels, pi is the predicted 
probability of the proposed segmentation network, yi is 
the ground truth label, and ε is a smoothing factor for 
avoiding division by 0.

The focal loss is a variant of the cross-entropy loss 
function that aims to balance the positive and negative 
samples. By adjusting the balancing parameter α and tun-
ing parameter γ , the loss can better focus on hard sam-
ples and avoid the overwhelming the gradient with the 
larger number of false negatives. As mentioned in [30], 
it is preferable to set γ to 2 in order to facilitate conver-
gence while increasing the weights of hard samples. The 
loss function is defined as:

where S denotes the number of pixels and pi is the prob-
ability that the prediction is positive. αi is the balancing 
parameter, and γ is the tuning parameter. After perform-
ing parameter sweeping, αi is set to 0.8, and γ is set to 2.

The cross-entropy loss is used as the classification loss 
function to measure the difference between the model’s 
prediction and the ground truth. The classification loss 
function is defined as:

where K represents the number of samples. pn and qn 
denote the ground truth of EGFR mutation status and the 
predicted result for sample n, respectively.

In our study, we utilize a multi-task loss function that 
optimizes the model by combining the segmentation loss 
and classification loss. The task weights setting are cru-
cial for training multi-task models. To better adjust the 
task weights , we employ an uncertainty-based method 
that automatically weights the GTV segmentation and 
EGFR genotyping losses [31]. The multi-task loss is 
defined as follows:

where σGTV  and σEGFR represent the learnable param-
eters for multi-task learning. They are initially set to two 
tensors with values of 1.

(6)

LDice = 1− Dice = 1−
2|X ∩ Y |
|X | + |Y |

= 1−
2

S
∑

i=1

piyi

S
∑

i=1

(pi + yi)+ ε

(7)LFocal = −
S

∑

i=1

αi(1− pi)
γ log(pi)

(8)LEGFR = −
K
∑

n=1

pn log(qn)

(9)

Ljoint =
1

2σ 2
GTV

LGTV +
1

2σ 2
EGFR

LEGFR + log σGTV σEGFR

Experiment and analysis
Datasets
The internal dataset, which includes T1-CE MR images 
and EGFR statuses of LADC BM patients, was derived 
from Shandong Cancer Hospital and Institute. A total 
of 188 patients diagnosed with LADC BM from August 
2018 to October 2021 were enrolled. Institutional review 
board approval was received (SDTHEC2023007020), and 
the requirement to obtain written informed consent was 
waived due to the nature of the retrospective study. All 
MR images related to this study were anonymized. All 
patients in the internal dataset were imaged using a GE 
Discovery MR 750W scanner with six head coil chan-
nels in the same posture. The patients’ characteristics 
are summarized in Table  1. All patients were ordered 
according to the times at which they were diagnosed at 
Shandong Cancer Hospital and Institute. We removed 
33 patients diagnosed after a cutoff date of May 1st, 2021 
from the whole dataset into the internal testing set, and 
the rest patients were divided into the training group. 
Subsequently, a validation set comprising 10 patients was 
randomly selected from the training group to determine 
the optimal model weights during the training process. 
Therefore, this approach produced a testing environment 
closer to the real clinical situation, which was more con-
sistent with the grouping specification in the TRIPOD 
statement [32].

The external testing set was derived from two addi-
tional public hospitals. Twenty-two patients diagnosed 
with LADC BM at Linyi People’s Hospital and 16 patients 
diagnosed with LADC BM at Shanghai Chest Hospital 
were enrolled. All the cases included in the external test-
ing set possessed precise T1-CE MR images and EGFR 
mutation statuses. The T1-CE MR images were obtained 

Table 1 The statistics of the training group and internal testing 
set used in this study

Training 
group (n = 
155)

Internal testing 
set (n = 33)

P‑value

Age 0.425

 Median(range) 57 (46–78) 56 (48–72)

Sex 0.276

 Male 90 (58.06%) 20 (60.61%)

 Female 65 (41.94%) 13 (39.39%)

Smoking 0.135

 Yes 61 (39.35%) 10 (30.30%)

 No 94 (60.65%) 23 (69.70%)

EGFR Status 0.149

 Mutant 83 (53.55%) 19 (57.58%)

 Wild 72 (46.45%) 14 (42.42%)
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using Siemens MAGNETOM Lumina, Siemens MAG-
NETOM Prisma, Siemens MAGNETOM Verio, Philips 
Achieva and Philips Ingenia. There were 21 patients with 
EGFR mutation and 17 patients with wild-type EGFR in 
the whole external testing set. The statistics of the exter-
nal testing set are shown in Table 2.

The GTV contours of the BMs were manually outlined 
by two oncologists (with five and six years of experience, 
respectively) utilizing MIM Maestro 6.8.2 software. Each 
oncologist annotated all images, while another oncolo-
gist (with 15 years of experience) modified the masks and 
confirmed the inconsistent areas. The mask for training, 
validation and testing were transferred to binary images 
based on the ground truth. To make the proposed net-
work focus on the characteristics of BM regions, the MR 
images without BM regions were eliminated from the 
dataset.

Experimental design
Experiments are designed to demonstrate the effective-
ness of the multi-task deep learning model proposed in 
this study. The ResNet [33], DeSeg [23], UNet3+ [34], 
radiomics model [14], RN-GAP [35], DenseNet [36], 
SE-Net [37], UNet [38], RA-UNet [39], Swin-UNet [40], 
TransUNet [41] deep learning models are set to imple-
ment separate single-task training for the classification 
and segmentation tasks.

Implementation details
The multi-task loss function is selected as the error meas-
urement index. The adaptive moment estimation (Adam) 
optimizer [42] is used to train the network, and the initial 
learning rate is set to 3e-4. The training procedure will be 
terminated if the validation loss does not improve within 
20 epochs. The model is trained on a GeForce-GTX-
1080-Ti GPU with 11 GB memory (NVIDIA, Santa Clara, 
Calif ).

Evaluation metrics
To evaluate the performance of the models, the Dice 
similarity score (Dice), 95th-percentile Hausdorff dis-
tance ( HD95 ), precision, and recall metrics are employed 
to evaluate the BM GTV segmentation results, and the 
accuracy, recall, precision, and F1-score are employed to 
evaluate the EGFR genotype prediction results. The Dice 
score is the most commonly used metric for validating 
medical image segmentation results, and it can directly 
show the difference between automatic and ground truth 
segmentation outputs. HD95 is based on calculating the 
95th-percentile of the distances between the boundary 
points in the predicted results and the ground truth. The 
utilization of the 95th-percentile serves the purpose of 
mitigating the influence exerted by a small subset of pos-
sible outliers. The F1-score, serving as a metric for clas-
sification tasks, represents the harmonic mean of recall 
and precision. For the GTV segmentation evaluation, 
the precision and recall metrics are calculated in pixels. 
However, the accuracy, recall, precision, and F1-score are 
calculated on a per-patient basis for EGFR genotype pre-
diction. The associated functions are shown as follows:

where X and Y represent the ground truth set and the set 
of predicted results , respectively. TP, FP, and FN denote 
the numbers of true positives, false positives, and false 
negatives, respectively.

where SA and SB represent the ground truth of the GTV 
and the network prediction results , respectively. X and 
Y denote the ground truth set and predicted results set. 
K95 indicates the 95th-percentile. d(m, SA) is the distance 

(10)Dice =
2|X ∩ Y |
|X | + |Y |

=
2× TP

2× TP + FN + FP

(11)

HD95 = K95 max
SA∈X
SB∈Y

[min(d(m, SA)), min(d(n, SB))]

Table 2 The statistics of the training group and external testing set used in this study

a 22 patients diagnosed with LADC BM in Linyi People’s Hospital.
b 16 patients diagnosed with LADC BM in Shanghai Chest Hospital

Training group (n = 155) External testing seta (n 
= 22)

External testing setb (n 
= 16)

Age

 Median(range) 57 (46–78) 56 (43-77) 58 (48–81)

Sex

 Male 90 (58.06%) 10 (45.45%) 8 (50.00%)

 Female 65 (41.94%) 12 (54.55%) 8 (50.00%)

EGFR Status

 Mutant 83 (53.55%) 12 (54.55%) 9 (56.25%)

 Wild 72 (46.45%) 10 (45.45%) 7 (43.75%)
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from the surface voxel m of the predicted results to the 
surface of the ground truth. d(n, SB) is the distance from 
the surface voxel n of the ground truth to the predicted 
output results.

where TP, FP, and FN denote the number of true posi-
tives, false positives, and false negatives, respectively.

Statistical analysis
The GTV segmentation and EGFR classification results 
are evaluated on the testing set using the Dice score, 
HD95 , accuracy, precision, recall, and F1-score metrics 
separately. As illustrated in Fig. 5, because the proposed 
network is a two-dimensional algorithm, each predicted 
EGFR status pertains to a single MR slice of the corre-
sponding patient. However, certain MR slices, particu-
larly those at the starting or ending slices of the tumor, 
may contain smaller tumor regions, leading to less tumor 
information. A post-processing process is introduced to 
select MR slices with more tumor regions and calculate 
the mean EGFR mutation probability of these slices. First, 
for each MR slice, the area of the BM regions output by 
the GTV segmentation decoder is calculated using the 
opencv_python (version 4.2.0) software package. Second, 
the MR slices are arranged in descending order based 
on their area of the BM region in terms of each patient. 
Third, for each patient, we select the upper 50% of these 

(12)Accuracy =
TP + TN

TP + FP + TN + FN

(13)Precision =
TP

TP + FP

(14)Recall =
TP

TP + FN

(15)F1− score =
2× Precision× Recall

Precision+ Recall

slices and compute the arithmetic mean using the pre-
dicted EGFR mutation probability of each selected slice. 
A patient is predicted to have an EGFR mutation status if 
the mean EGFR mutation probabilities exceeds 0.5, and 
vice versa.

Results
Comparison with the existing algorithms
To demonstrate the effectiveness of the proposed net-
work, we compare it with multiple existing single-task 
methods. The performances of these algorithms are 
presented in Table  3. Our proposed method achieves 
remarkable performance in both the EGFR genotyping 
and GTV segmentation tasks. Specifically, our proposed 
MTSA-Net achieves an accuracy of 87.88%, a precision 
of 94.12%, a recall of 84.21% and an F1-score of 0.8889. 
Compared with single-task classification algorithms such 
as SE-Net, ResNet, and DenseNet, our proposed method 
performs better in terms of the four evaluation indices. 
Significantly, the precision of our proposed model is dra-
matically improved due to the reduced generation of false 
EGFR-mutation predictions. The architectures of these 
single-task classification networks allow them to obtain 
feature maps that are related to EGFR genotyping from 
the whole input images, which may capture some unre-
liable features, especially when the BM area occupies 
a small proportion of the entire image. In contrast, our 
proposed MTSA-Net includes a GTV decoding branch, 
allowing the encoder to derive EGFR genotype-related 
feature maps from the BM regions to the greatest extent 
possible. Therefore, our proposed MTSA-Net shows bet-
ter predictive performance, demonstrating the efficacy of 
the multi-branch structure and the hybrid CNN-Trans-
former fusion layer for predicting EGFR mutations.

The experimental results also show that our pro-
posed network outperforms these single-task methods 
in GTV segmentation tasks. Specifically, our proposed 
MTSA-Net achieves an average Dice score of 89.14% 
and an HD95 of 3.58  mm. Most of the measurements 

Fig. 5 The predicted probabilities of the slice images
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obtained by our method are the best among all the 
compared segmentation methods. It is worth mention-
ing that Swin-UNet is based on a pure transformer 
architecture as its encoder, which achieves inferior 
segmentation performance compared with that of the 
rest of the comparison models. For the characteris-
tics of BM MR images, the U-shaped structure based 
on convolutional blocks is more suitable. This also 
illustrates that our proposed MTSA-Net enhances the 
representations of features by combining convolution 
operations and Transformer.

As Fig.  6 displays the original 2D slices of two dis-
tinct cases and the segmentation results obtained 
using different methods. The results indicate that one 
case has the EGFR-mutation subtype, while the other 
case has the EGFR-wild subtype. In the EGFR-muta-
tion case, three small-size BM lesions are contained in 
the original slice image. Some GTV delineation results 
are omitted by all four single-task segmentation algo-
rithms. In the EGFR-wild case, the performance of 
our proposed model and UNet are quite perfect; their 
results only require a radiologist to fine-tune the GTV, 
while the outputs of the other models deviate greatly 
from the ground truth.

Model performance achieved on the external testing set
To evaluate the performance and effectiveness of the 
proposed model, we conduct an assessment using the 
external testing set obtained from two additional pub-
lic hospitals. The T1-CE MR images of these cases were 
acquired using five different MRI scanners to exam-
ine the effects of different machines, operators, and 
other objective factors on model performance. Our 
proposed method exhibits outstanding performance, 
achieving an accuracy of 81.58%, a precision of 81.82%, 
a recall of 85.71% in the EGFR genotyping prediction 
task and an average Dice score of 85.37% and an HD95 
of 3.87 mm in the GTV segmentation task. After con-
ducting the comparative analysis, it is found that the 
variance between the MRI scanner and operator does 
have some impact on the model’s efficacy. Nevertheless, 
our proposed model consistently demonstrates favora-
ble performance in terms of robustness. Fig.  7 shows 
the results output for four distinct patients. The area of 
the BM region exhibits a positive correlation with the 
EGFR status predictive capability. A larger BM region 
provides more lesion information, thereby enhancing 
the model’s prediction accuracy.

Table 3 The comparison between our proposed model and other algorithms on the internal testing set

The figures enclosed in parentheses indicate the 95% confidence intervals

 Model GTV segmentation EGFR genotyping

Dice HD95 (mm) Precision Recall Accuracy Precision Recall F1‑score

RA-Uent [43] 0.8729 (0.85, 
0.90)

3.67 0.9128 (0.90, 
0.93)

0.8697 (0.85, 
0.89)

– – – –

Swin Unet [40] 0.6395 (0.61, 
0.67)

6.51 0.7143 (0.69, 
0.74)

0.6574 (0.62, 
0.69)

– – – –

TransUnet [41] 0.8565 (0.84, 
0.88)

3.78 0.8794 (0.84, 
0.89)

0.8631 (0.85, 
0.88)

– – – –

Unet [38] 0.8888 (0.86, 
0.90)

3.63 0.9031 (0.87, 
0.91)

0.9011 (0.89, 
0.92)

– – – –

DeSeg [23] 0.8566 (0.83, 
0.87)

4.13 0.8890 (0.86, 
0.91)

0.8789 (0.85, 
0.89)

– – – –

Unet3+ [34] 0.7946 (0.77, 
0.82)

4.63 0.7205 (0.70, 
0.74)

0.9412 (0.92, 
0.96)

– – – –

ResNet-50 [16] – – – – 0.7879 (0.65, 
0.93)

0.8333 (0.71, 
0.96)

0.7895 (0.65, 
0.93)

0.8108

Radiomics 
Model [14]

– – – – 0.6061 (0.44, 
0.77)

0.6667 (0.51, 
0.83)

0.6316 (0.47, 
0.80)

0.6486

RN-GAP [35] – – – – 0.7273 (0.58, 
0.88)

0.7778 (0.64, 
0.92)

0.7368 (0.59, 
0.89)

0.7568

SE-Net [37] – – – – 0.8182 (0.69, 
0.95)

0.8824 (0.77, 
0.99)

0.7895 (0.65, 
0.93)

0.8333

DenseNet [36] – – – – 0.7879 (0.65, 
0.93)

0.8000 (0.66, 
0.94)

0.8421 (0.72, 
0.97)

0.8205

MTSA-Net (ours) 0.8914 (0.88, 
0.91)

3.58 0.9063 (0.88, 
0.92)

0.9035 (0.89, 
0.92)

0.8788 (0.77, 
0.99)

0.9412 (0.86, 
1.00)

0.8421 (0.72, 
0.97)

0.8889
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Ablation experiment
Effectiveness of the multi‑Task loss function
To demonstrate the effectiveness of the hyperparam-
eters in the focal loss, we compare different combina-
tions. The comparison results are shown in Table  4. 
Following [30], the preferable approach is to set γ to 
2 to ensure the ease of the convergence process while 
increasing the weights of hard samples. α is employed 

to address the imbalance between positive and negative 
samples. By definition, the value of α can be set to 0.5 
when the numbers of positive and negative examples 
are approximately equal. When the number of positive 
examples is lower than the number of negative exam-
ples, α can range between 0.5 and 1. After perform-
ing parameter sweeping, we set γ and α to 2 and 0.8, 
respectively .

Fig. 6 The original slices and GTV segmentation results of two distinct cases. The yellow outline represents the ground truth, and the green outline 
represents the predicted results
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As shown in Table  5, we confirm the superiority of 
uncertain weights in the multi-task loss function over 
certain weights. The results demonstrate that our 
proposed algorithm, employing uncertain weights, 
outperforms the network utilizing certain weight 
combinations in the BM GTV segmentation task. 

Furthermore, the proposed method also has better sen-
sitivity to EGFR mutations and achieves better accuracy 
in the EGFR genotyping task. The uncertain weights are 
helpful for balancing the BM GTV segmentation and 
EGFR genotyping tasks, thereby preventing any single 
task from dominating the training process.

Fig. 7 The original slices and prediction results of four distinct patients in the external testing set. The yellow outline represents the BM GTV ground 
truth, and the green outline represents the predicted BM GTV results. The EGFR-Mutation Probability denotes the mean probability after performing 
post-processing. A patient is considered to have an EGFR mutation status when the EGFR-Mutation Probability is larger than 0.5, and vice versa

Table 4 Performance of our proposed method using different hyperparameters for the focal loss

 Model GTV segmentation EGFR genotyping

Dice HD95 (mm) Precision Recall Accuracy Precision Recall

γ = 2,α = 0.7 0.8773 3.71 0.8911 0.8932 0.8485 0.8889 0.8421

γ = 2,α = 0.8 0.8914 3.58 0.9063 0.9035 0.8788 0.9412 0.8421

γ = 2,α = 0.9 0.8827 3.66 0.9047 0.8922 0.8788 0.8947 0.8947

Table 5 Performance achieved by our proposed method using different weighting methods

1The equal weights was 0.5: Ljoint = 0.5LGTV + 0.5LEGFR

 Model GTV segmentation EGFR genotyping

Dice HD95 (mm) Precision Recall Accuracy Precision Recall

Equal weights1 0.8656 3.83 0.9190 0.8626 0.8485 0.8500 0.8947

Ucertain weights (Ours) 0.8914 3.58 0.9063 0.9035 0.8788 0.9412 0.8421
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Discussion
In the field of cancer research, an increasing number of 
machine learning algorithms have been proposed for 
automated analysis in various clinical application sce-
narios. A promising area known as radiogenomics has 
emerged as the state-of-the-art approach in precision 
medicine; it is a combination of imaging and genomic 
information implemented using artificial intelligence 
[44, 45]. Recently, since attention-based neural networks 
have been demonstrated to be very powerful extractors 
of shared features for multi-task deep learning models, 
we are inspired to design a multi-scale attention network 
to tackle multiple tasks in advanced LADC diagnosis 
scenarios. This approach presents a potential noninva-
sive alternative to biopsy procedures for determining the 
EGFR statuses in advanced LADC cases using brain MR 
images. Our study introduces a novel multi-task deep 
learning network called MTSA-Net, which is specifically 
designed to achieve multi-task collaboration by using 
features extracted from MR images and emphasizing the 
connection between GTV and EGFR. This network is 
designed to predict EGFR mutations for guiding targeted 
drug treatment plans while automatically and accurately 
performing GTV segmentation to reduce the intensity of 
repetitive tasks for radiologists.

We validate the effectiveness of the proposed multi-
task deep learning network in terms of improving both 
the GTV segmentation and EGFR genotyping prediction 
outcomes. Compared to single-task algorithms, MTSA-
Net significantly improves the EGFR genotyping predic-
tion results while achieving better GTV segmentation 
results. The segmentation task focuses on localizing BM 
regions, whereas the classification task aims to distin-
guish EGFR genotypes based on BM imaging features at 
the volume level. Consequently, the EGFR genotyping 
classification task is strongly correlated with BM locali-
zation and representation, and EGFR genotypes also 
contribute to the GTV segmentation task. The encoder 
of the multi-task model underscores its ability to enable 
shared representations that facilitate accurate BM region 
localization and significant feature extraction. The MSA 
block can enhance important information at each scale 
and adaptively refine tumor boundaries. It can also fur-
ther improve the specificity of the predicted EGFR sta-
tuses by fully exploiting the context information between 
BMs and the background. We also demonstrate that the 
proposed multi-task loss function can further improve 
segmentation and prediction performance of the model 
by using a learnable weighted matrix.

Our study also has some limitations. First, accurate 
EGFR genotyping is difficult to achieve in patients with 
small BMs. From a technical perspective, the main rea-
son for this may be that it is extremely difficult for the 

encoder to extract effective features from extremely 
small lesions. Second, the data scale and multi-institu-
tion sources remain constrained, making it infeasible to 
develop a multi-center model based on extensive data. 
We will continue to expand the dataset and achieve 
the model’s practical promotion and clinical applica-
bility. Third, this study focuses solely on predicting 
EGFR mutation statuses, which results in the omis-
sion of more specific mutant genotypes and genotypes 
that exhibit resistance to targeted agents. Future work 
will be dedicated to predicting more pathological mol-
ecules, such as mutations in EGFR exon 19del and 
21L858R, and EGFR T790m. Therefore, our future work 
will not only focus on the design of more advanced 
algorithms, but also concentrate on collecting a wide 
range of data to make the model more general.

Conclusion
In conclusion, we propose MTSA-Net, a multi-task 
learning network designed for simultaneous EGFR 
genotype prediction and GTV segmentation. The effec-
tiveness of our proposed framework is assessed on an 
independent testing set divided by patients’ admis-
sion times, and comparative experiments demonstrate 
its superior performance to that of the existing state-
of-the-art methods. Our proposed framework is to be 
used as a reliable computer-aided system for EGFR 
genotype prediction and GTV segmentation, enabling 
the use of a noninvasive method.
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