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Integrated machine learning identifies 
epithelial cell marker genes for improving 
outcomes and immunotherapy in prostate 
cancer
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Yun Luo1*   and Wenjie Lai1,2*   

Abstract 

Background Prostate cancer (PCa), a globally prevalent malignancy, displays intricate heterogeneity within its 
epithelial cells, closely linked with disease progression and immune modulation. However, the clinical significance 
of genes and biomarkers associated with these cells remains inadequately explored. To address this gap, this study 
aimed to comprehensively investigate the roles and clinical value of epithelial cell-related genes in PCa.

Methods Leveraging single-cell sequencing data from GSE176031, we conducted an extensive analysis to iden-
tify epithelial cell marker genes (ECMGs). Employing consensus clustering analysis, we evaluated the correlations 
between ECMGs, prognosis, and immune responses in PCa. Subsequently, we developed and validated an optimal 
prognostic signature, termed the epithelial cell marker gene prognostic signature (ECMGPS), through synergistic 
analysis from 101 models employing 10 machine learning algorithms across five independent cohorts. Additionally, 
we collected clinical features and previously published signatures from the literature for comparative analysis. Fur-
thermore, we explored the clinical utility of ECMGPS in immunotherapy and drug selection using multi-omics analysis 
and the IMvigor cohort. Finally, we investigated the biological functions of the hub gene, transmembrane p24 traffick-
ing protein 3 (TMED3), in PCa using public databases and experiments.

Results We identified a comprehensive set of 543 ECMGs and established a strong correlation between ECMGs 
and both the prognostic evaluation and immune classification in PCa. Notably, ECMGPS exhibited robust predic-
tive capability, surpassing traditional clinical features and 80 published signatures in terms of both independence 
and accuracy across five cohorts. Significantly, ECMGPS demonstrated significant promise in identifying potential PCa 
patients who might benefit from immunotherapy and personalized medicine, thereby moving us nearer to tailored 
therapeutic approaches for individuals. Moreover, the role of TMED3 in promoting malignant proliferation of PCa cells 
was validated.
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Introduction
Prostate cancer (PCa) is a highly prevalent malignancy 
affecting males globally, with an alarming increase in 
incidence [1]. Current management options encom-
pass various treatments like surgery, chemotherapy, 
radiotherapy, endocrine therapy, and prognostic testing 
methods like PSA [2]. Simultaneously, the emergence of 
nanomaterials and nanoparticles as promising platforms 
presents a new frontier in the fields of cancer therapy 
and regenerative medicine [3, 4]. However, due to the 
stark heterogeneity of PCa and the lack of effective early 
detection tools, more than 30% of treated patients expe-
rience biochemical recurrence (BCR) [5]. Hence, there is 
an emerging need for novel biomarkers capable of accu-
rately predicting prognosis and guiding treatment deci-
sions in precision medicine, ultimately improving patient 
outcomes.

In recent years, immunotherapy has made significant 
strides in treating solid tumors, promising enhanced 
patient outcomes. Numerous studies are in progress 
to understand tumor immune mechanisms and devise 
diverse treatment strategies, such as CAR T-cell therapy, 
immune checkpoint inhibitors, and adoptive cellular 
therapy [6]. However, despite the established association 
between immunity and the occurrence and progression 
of PCa [7], PCa heterogeneity poses significant challenges 
in identifying patients best suited for immunotherapy, 
resulting in limited benefits from such treatments.

PCa is believed to originate from basal or luminal epi-
thelial cells within the prostate gland [2, 8]. The patho-
genesis of PCa involves complex interactions between 
neighboring epithelial and stromal cells, contributing 
to both inter- and intra-tumoral heterogeneity [9, 10]. 
Addressing this heterogeneity represents a promising 
avenue of research, and multi-gene signatures have dem-
onstrated potential in this context [11]. Notably, previous 
research has revealed heterogeneous cellular states in 
prostate epithelial cells characterized by elevated andro-
gen signaling statuses that are enriched in PCa [12]. 
Recent advancements in sequencing technology, particu-
larly single-cell sequencing, in combination with machine 
learning methods, have provided valuable insights into 
the complex landscape of various multi-gene panels and 
their roles in cancer progression [13]. Research teams 
have developed diverse signatures for predicting the effi-
cacy of treatments and the prognosis of PCa, including 

fibroblast-derived genes signature for predicting radio-
therapeutic survival [14], as well as chemokine-related 
prognostic genes signature relevant to anti-androgen and 
immunotherapies [15], among others. Still, while various 
prognostic models have emerged, their clinical applica-
bility remains limited due to inadequate incorporation 
of machine learning algorithms, lack of model validation, 
and underutilization of existing data [16, 17]. Thus, the 
comprehensive integration of sequencing technology and 
machine learning methods could prove instrumental in 
elucidating the role of epithelial cell-related genes in PCa, 
driving stringent prognostic models applicable in clinical 
settings.

Our study endeavored to identify epithelial cell marker 
genes (ECMGs) through single-cell RNA sequencing 
(scRNA-seq). By thoroughly analyzing the prognosis, 
immune and clinical characteristics, and utilizing 101 
machine learning-based models, we developed and vali-
dated an epithelial cell marker gene prognostic signature 
(ECMGPS) across several cohorts, aiming to enhance 
outcomes and predict therapy responses.

Materials and methods
Data sources and preprocessing
A total of 10 independent public datasets were employed 
in this research, sourced from multiple repositories 
including The Cancer Genome Atlas (TCGA, https:// 
portal. gdc. cancer. gov/), Deutsches Krebsforschungszen-
trum (DKFZ, https:// www. cbiop ortal. org/ study/ summa 
ry? id= prost ate_ dkfz_ 2018/), Memorial Sloan Ketter-
ing Cancer Center (MSKCC, https:// www. mskcc. org/), 
Gene Expression Omnibus (GEO, https:// www. ncbi. 
nlm. nih/), IMvigor 210 (https:// resea rch- pub. gene. com/ 
IMvig or210 CoreB iolog ies/), and Cancer Cell Line Ency-
clopedia (CCLE, https:// porta ls. broad insti tute. org/ ccle/ 
about/): (1)GSE176031, containing 27 PCa samples with 
scRNA-seq data, was utilized to identify ECMGs. (2) Five 
datasets of TCGA-PRAD (n = 346), MSKCC (n = 134), 
GSE70768 (n = 110), DKFZ (n = 105), and GSE70769 
(n = 92), containing complete BCR information (Addi-
tional file  2: Table  S1), were employed to construct and 
verify our signature. (3) Two datasets of bladder cancer 
(TCGA-BLCA, n = 406) and renal clear cell carcinoma 
(TCGA-KIRC, n = 530), containing complete OS infor-
mation, were used to assess the applicability of our sig-
nature in other epithelial urinary tumors. (4) The IMvigor 

Conclusions Our findings highlight ECMGPS as a powerful tool for improving PCa patient outcomes and sup-
ply a robust conceptual framework for in-depth examination of PCa complexities. Simultaneously, our study 
has the potential to develop a novel alternative for PCa diagnosis and prognostication.
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210 cohort, comprising 298 patients with urothelial car-
cinoma treated with anti-PD-L1 therapy, was used to 
evaluate the performance of our signature in predicting 
immunotherapy. (5) The CCLE dataset, with the gene 
expression matrix of PCa cell lines (n = 6), was employed 
to select suitable cell lines for subsequent experiments. 
Among them, the RNA-seq data was transformed into 
TPM and log2.

Identification of ECMGs
ECMGs were identified using the Seurat package in R for 
object creation and cell filtration to ensure high-quality 
cells. Filters were applied to exclude genes detected in 
fewer than three cells, cells with fewer than 50 detectable 
genes, or cells with over 5% mitochondrial genes. The 
gene profiles were then normalized, and principal com-
ponent analysis (PCA) was performed on the 1500 most 
variable genes identified through JackStraw analysis. 
Afterward, the data was clustered using the FindClusters 
function in R, with a resolution parameter of 0.5. Visu-
alization employed the t-distributed stochastic neighbor 
embedding (t-SNE) algorithm. Marker genes (adjusted P 
value < 0.05 and |log FC|> 1) for each cluster were iden-
tified using the FindAllMarkers function in conjunction 
with the Wilcoxon-Mann–Whitney test, which compared 
the differences in gene expression between a cluster and 
all other clusters. Additionally, the SingleR package was 
utilized to annotate and visualize the cell types.

Consensus clustering analysis
Agglomerative pam clustering, along with a 1-Pearson 
correlation distance metric and 80% sample resampling 
for 1000 repetitions, was employed to classify patients in 
the TCGA cohort into distinct clusters based on ECMGs 
expression profiles. The optimal number of clusters 
was established using the cumulative distribution func-
tion (CDF), the relative change in the area under the 
CDF curve, and the consistency matrix. To assess the 
differences and biochemical recurrence-free survival 
(bRFS) rates between the different clusters, the PCA and 
Kaplan–Meier method were employed. Additionally, 
the association between the clusters and clinicopatho-
logical features such as age, Gleason score, pathological 
N (pN) stage, PSA levels, and pathological T (pT) stage 
were examined using the chi-square test. Moreover, the 
presence of copy number variation (CNV) was com-
pared between the clusters to explore potential genomic 
differences.

Gene set variation analysis (GSVA)
The gene expression profile of ECMGs in the TCGA 
cohort was estimated through the implementation of 
the GSVA package in R, using the single-sample gene 

set enrichment analysis (ssGSEA) algorithm. The gene 
sets utilized in this estimation were obtained from the 
Gene Ontology and the Kyoto Encyclopedia of Genes and 
Genomes. Subsequently, the enrichment score for each 
pathway within the gene sets was computed. Differential 
enrichment scores of pathways between the clusters were 
determined, and the top 15 pathways with statistical sig-
nificance (adjusted P value < 0.05) for each cluster were 
used to generate heatmaps.

Tumor immune microenvironment analysis
First, the tumor purity, stromal score, immune score, and 
ESTIMATE score of the two clusters were estimated and 
subsequently compared [18]. Second, the ssGSEA algo-
rithm and the Mann–Whitney test were employed to cal-
culate the scores of immune infiltrations for 29 immune 
cell types or pathways, which were obtained from a previ-
ous study [19] (Additional file 2: Table S2). To ensure the 
robustness and stability of the results of ssGSEA, seven 
other algorithms including TIMER [20], CIBERSORT, 
CIBERSORT-ABS [21], QUANTISEQ [22], MCPCOUN-
TER [23], XCell [24], and EPIC [25] were also used. Fur-
thermore, the scores of the steps in the cancer-immunity 
cycle, based on ECMGs, were analyzed using Tracking 
Tumor Immunophenotype (https:// biocc. hrbmu. edu. cn/ 
TIP/), following the approach employed in a previous 
study [26]. Third, the differences between the two clusters 
were compared for 145 marker genes of immune modu-
lators, including immunostimulators (n = 42), immunoin-
hibitors (n = 23), MHC (n = 21), receptors (n = 18), and 
chemokines (n = 41), obtained from a previous study [27].

Machine learning‑based signature construction 
and validation
A comprehensive approach was employed, which 
involved the integration of 101 different combinations of 
10 distinct machine learning algorithms. The objective 
was to construct a prognostic signature with remarkable 
accuracy and stability. The 10 original machine learning 
algorithms utilized in this study were CoxBoost, elastic 
network (Enet), survival support vector machine (sur-
vival-SVM), Lasso, partial least squares regression for 
Cox (plsRcox), Ridge, random survival forest (RSF), step-
wise Cox, supervised principal components (SuperPC), 
and generalized boosted regression modeling (GBM). 
Notably, some of these algorithms, including CoxBoost, 
Lasso, RSF, and stepwise Cox, possessed feature selection 
capabilities.

The specific machine learning process employed in 
this study was summarized as follows: (1) Initial Identi-
fication of Prognostic ECMGs: We identified ECMGs 
with prognostic potential in the TCGA cohort through 
univariate Cox regression analysis. (2) Leave-One-Out 
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Cross-Validation Framework: Subsequently, we imple-
mented a leave-one-out cross-validation framework 
within the TCGA cohort, executing 101 models on the 
candidate prognostic ECMGs. The aim was to develop 
a prediction signature that exhibits robustness and reli-
ability. (3) Rigorous Testing in Independent Validation 
Cohorts: To evaluate the performance of the constructed 
signatures, we subjected them to rigorous testing in four 
independent validation cohorts. (4) Selection of Optimal 
Model: For each model, we calculated Harrell’s concord-
ance index (C-index) across all cohorts. The model with 
the highest mean C-index was identified as the optimal 
model.

Using the optimal model, patients were stratified into 
either high-risk or low-risk groups based on the median 
risk scores derived from both the TCGA cohort and 
the four independent validation cohorts. Subsequently, 
t-SNE and PCA methods were used to assess the distri-
bution of the optimal model in the training cohort and 
validation cohorts, respectively, across these two groups. 
The prognostic value and predictive accuracy of the opti-
mal model were evaluated using receiver operating char-
acteristic (ROC) curves and Kaplan–Meier curves.

Evaluation of the clinical significance of ECMGPS
The distinctions between ECMGPS risk scores and clin-
icopathological characteristics were evaluated using the 
chi-square test. Subsequently, stratified survival analysis 
was conducted for the subgroups. To identify independ-
ent prognostic factors, both univariate and multivariate 
Cox regression analyses were performed. Additionally, to 
investigate the applicability of ECMGPS in other urothe-
lial tumors, we obtained mRNA expression and survival 
data from the TCGA database for bladder cancer and 
renal clear cell carcinoma. These datasets were further 
analyzed using Kaplan–Meier curves.

Comparison of published signatures in PCa
By conducting a comprehensive literature search on Pub-
Med (https:// pubmed. ncbi. nlm. nih. gov/) on published 
model articles predicting PCa outcomes up until June 1, 
2023, we gathered published signatures for performance 
comparison with ECMGPS (excluding miRNA signa-
tures due to limited miRNA information in the valida-
tion cohorts). These collected signatures were fitted using 
various algorithms, such as Lasso and RSF, and encom-
passed diverse biological significance. Subsequently, 
risk scores were calculated for the five cohorts using the 
genes or RNA and coefficients provided in the respective 
articles. The performance in predicting BCR of PCa was 
then compared using the C-index.

Immunotherapy response and drug sensitivity
Initially, somatic mutation data from TCGA, which were 
processed using the VarScan platform, were analyzed to 
compare the mutation profiles between the two groups. 
Subsequently, the IMvigor 210 cohort, which received 
anti-PD-L1 treatment, was used to evaluate the dif-
ferences in response to immunotherapy and survival 
outcomes between the low-risk and high-risk groups 
classified by ECMGPS. Additionally, the tumor immune 
dysfunction and exclusion (TIDE) algorithm was utilized 
to predict the responsiveness of ECMGPS to immune 
checkpoint inhibitors. Finally, the efficacy of 10 com-
monly used anticancer drugs between the two subgroups 
was determined based on the IC50 values obtained from 
the Genomics of Drug Sensitivity in Cancer database 
(https:// www. cance rrxge ne. org/) [28].

Cell culture and immunohistochemistry (IHC)
PCa cells of LNCaP and VCaP were procured from the 
American Type Culture Collection (Manassas, VA, USA). 
The cells were cultured in RPMI medium (HyClone, 
USA) or DMEM medium (HyClone, USA), both of which 
were supplemented with 10% fetal bovine serum (Bovo-
gen, Australia). The cells were incubated in a humidified 
atmosphere at 37  °C with 5%  CO2. Regular passage of 
cells was performed, and routine checks were conducted 
to ensure the absence of mycoplasma contamination.

To assess the protein expression levels of transmem-
brane p24 trafficking protein 3 (TMED3) between PCa 
and normal samples, IHC data and images obtained from 
the Human Protein Atlas (HPA, https:// www. prote inatl 
as. org/) were utilized for analysis and comparison.

RNA interference
The lentivirus containing the TMED3-knockdown 
sequence and the control lentivirus were designed and 
synthesized by GenePharm Company (Shanghai, China). 
Following the instructions provided in the virus manual, 
lentivirus transfection was performed on LNCaP and 
VCaP cells separately. The target sequences of TMED3-
RNAi were TMED3-RNAi1: 5ʹ-CAC CAT CTA CAG AGA 
AAC GAA-3ʹ, and TMED3-RNAi2: 5ʹ-TAC GAT GTT 
GAC TGC TAT GTA-3ʹ.

Western blotting
The western blotting procedure was carried out follow-
ing the established protocol as previously described [29]. 
In brief, cells were collected, lysed using lysis buffer, 
and then centrifuged to gather the supernatant. Subse-
quently, proteins were separated via 10% SDS-PAGE and 
transferred onto a 0.45  μm PVDF membrane (Merck 
Millipore, USA). After blocking with 4% BSA at room 
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temperature for 1  h, the membrane was subjected to 
incubation with the primary antibody overnight at 4  °C, 
followed by incubation with HRP-conjugated second-
ary antibody at room temperature for 1  h the next day. 
Finally, signals corresponding to the target proteins were 
detected using the ChemiDoc MP system (Bio-Rad, USA) 
and ECL (Advansta, USA). The primary antibodies used 
were anti-TMED3 (Abcam, ab223175, USA) and anti-α-
Tubulin (Abcam, ab176560, USA).

Cell counting kit‑8 (CCK‑8) assay
The CCK-8 assay (Dojindo, Japan) was conducted follow-
ing the previously described method [29]. Briefly, LNCaP 
and VCaP cells were seeded in 96-well plates (2 ×  103 
cells/per well). After incubation at 37  °C with 5%  CO2, 
the absorbance at 450 nm was measured using a micro-
plate reader (Bio-Rad, USA).

Colony formation assay
LNCaP or VCaP cells and the corresponding nega-
tive control group were inoculated into 6-well plates 
(1 ×  103  cells/per well). After two weeks of culture, cells 
were washed three times with PBS, fixed with 4% para-
formaldehyde for 15  min, and then stained with 0.5% 
crystal violet for 10  min. Visible colonies were counted 
and statistically analyzed under a microscope.

EdU assay
To detect the proliferative ability of PCa cells, an EdU kit 
(RiboBio, China) was used according to the kit instruc-
tions. Subsequently, the visible cells were counted using a 
fluorescence microscope (Olympus Optical).

Flow cytometry
Apoptosis was analyzed by flow cytometry using the pre-
viously described method [30]. PCa cells and the corre-
sponding negative control cell suspension were treated 
with 5 µl FITC Annexin V and 5 µl PI (Becton, Dickinson 
and Company) and incubated at room temperature for 
15 min. Apoptosis was then detected by flow cytometry 
(Calibur, BD Bioscience). FlowJo software (Tree Star) was 
used for result analysis.

Statistical analysis
Data analysis and graphical visualization were con-
ducted using R (version 4.2.1) or SPSS (version 25.0). 
All experiments were repeated at least three times, 
and the results were presented as the mean ± stand-
ard deviation. The Pearson test was used to assess the 
correlation between two continuous variables. Cate-
gorical variables were compared using the chi-squared 
test, while the Wilcoxon rank-sum test or t test was 
employed for comparing continuous variables. P value 

less than 0.05 was considered statistically significant 
(*P < 0.05, **P < 0.01, ***P < 0.001, ns: not significant).

Results
Identification of ECMGs by scRNA‑seq
The research flowchart is presented in Fig. 1. Through 
analysis of scRNA-seq data from GSE176031, we 
reduced dimensionality by running PCA on 1500 vari-
able genes across 27 PCa samples (Fig.  2A). Fifteen 
cell clusters were identified, with clusters 1, 2, 4, 5, 7, 
8, and 10 classified as epithelial cells (Additional file 2: 
Table  S3). Subsequently, 543 marker genes were iden-
tified as differentially expressed in the epithelial cell 
cluster and designated ECMGs for further research 
(Fig. 2B–D).

Establishment of ECMGs consensus clusters and their 
relationship with prognosis
Utilizing the expression profiles of ECMGs in the TCGA 
dataset, PCA successfully distinguished between normal 
and PCa samples (Additional file 1: Figure S1A), suggest-
ing distinct regulatory roles of epithelial cells in PCa and 
normal. Subsequently, we performed clustering analy-
sis on the ECMGs expression levels of patients in the 
TCGA cohort. By evaluating the area under the curve of 
the CDF, the downward trend of CDF delta, and average 
consistency within patient clusters (Additional file 1: Fig-
ure S1B-D), we successfully identified two optimal clus-
ters (k = 2, C1 = 179, C2 = 167) (Fig. 3A). Subsequently, a 
distinct clustering pattern was revealed through further 
PCA (Fig. 3B), indicating a significant differential distri-
bution of ECMGs in the two identified clusters.

The survival analysis revealed that C1 had a poorer 
prognosis than C2 (Fig.  3C). Considering that CNV 
serve as crucial markers of malignant tumor progression 
[31], we investigated the frequency of CNV in both the 
C1 and C2 patient groups. Remarkably, C1 patients dis-
played a significantly higher frequency of CNV than C2 
patients (Fig.  3D), further implying that C1 exhibits a 
more aggressive behavior and worse prognosis in PCa. In 
addition, C1 patients experienced higher Gleason score 
and advanced pN stage (Fig. 3E), further supporting C1 
as a highly malignant subgroup. Our further investiga-
tion using the GSVA algorithm unveiled that several 
signaling pathways, mainly related to tumorigenesis and 
development, were significantly enriched in C1. Notably, 
C1 exhibited a higher abundance of immunomodulatory 
signaling pathways and functions than C2 (Fig.  3F, G). 
Therefore, these results suggest that immune characteris-
tics might exert a substantial influence on the malignancy 
and poor prognosis of ECMGs in PCa.
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Fig. 1 The workflow of this study. Integrating muti-omics analysis and machine learning, an epithelial cell marker gene prognostic signature 
(ECMGPS) was developed and validated from epithelial cell marker genes (ECMGs) to predict prognosis and treatment response
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Immunophenotypic analysis based on ECMGs clusters
C1 and C2 exhibited noteworthy disparities in immune 
infiltration and the various stages of the cancer-immunity 
cycle. Specifically, C1 displayed significantly higher stro-
mal score, immune score, and ESTIMATE score, with 
the exception of tumor purity, than C2 (Fig.  4A). Addi-
tionally, C1 demonstrated markedly enhanced overall 
infiltration abundance of immune-related cells and path-
ways, as well as increased immune activity, encompass-
ing 16 out of 23 steps in the cancer-immunity cycle, in 
comparison to C2 (Fig. 4B–D). To ensure the impartiality 
of our analytical algorithm in producing these two clus-
ters, we employed seven additional algorithms, namely 
CIBERSORT-ABS, CIBERSORT, EPIC, MCPCOUN-
TER, QUANTISEQ, TIMER, and XCell to validate the 
stability and reliability of the ssGSEA results (Fig.  4E). 
Notably, C1 also exhibited higher expression of most 
immune modulators than C2 (Fig.  4F). These findings 
indicate that heightened immune patterns contribute to 

the malignancy and poor prognosis of ECMGs in PCa. 
Consequently, we classified C1 as immunologically hot 
tumors and C2 as immunologically cold tumors.

Construction of a prognostic signature based on machine 
learning
To develop a prognostic signature using the expression 
profiles of 543 ECMGs, we conducted an initial univar-
iate Cox regression analysis, which identified 51 prog-
nostic ECMGs associated with bRFS (Additional file 2: 
Table S4). Subsequently, we fitted 101 prediction mod-
els using 10 different machine learning algorithms, 
which included CoxBoost, Enet, GBM, Lasso, plsRcox, 
Ridge, RSF, stepwise Cox, SuperPC, and survival-SVM. 
To evaluate the robustness of these models and deter-
mine the most effective prognostic signature with the 
highest mean C-index, we employed a tenfold cross-
validation approach. The evaluation was conducted on 

Fig. 2 Identification of ECMGs through single-cell RNA sequencing analysis. A Principal component analysis (PCA) plot showing 27 samples. 
B t-distributed stochastic neighbor embedding (t-SNE) plot showing 15 clusters of cell types. C Heatmap showing the top 5 marker genes 
within each of the 15 clusters. D t-SNE plot showing 9 cell types
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the TCGA training cohort and four external validation 
cohorts (MSKCC, GSE70768, DKFZ, and GSE70769) 
(Fig. 5A).

Notably, the combination of the CoxBoost and 
SuperPC algorithms exhibited the highest mean 
C-index (0.706) and was selected as the optimal model. 
During the machine learning process, the CoxBoost 
algorithm identified 21 genes of utmost value, and 
these genes were further optimized using the SuperPC 
algorithm, enhancing the model performance and 
resulting in the development of a highly reliable prog-
nostic model known as ECMGPS (Fig. 5B). Out of the 
21 genes, 9 were downregulated, while the remaining 
12 were upregulated (Fig. 5C).

Evaluation of the predictive performance of ECMGPS
To comprehensively assess the robustness of ECMGPS, 
we calculated risk scores for each patient and catego-
rized them into either low-risk or high-risk groups. Both 
PCA and t-SNE analyses demonstrated two distinct 
distribution trends among samples in the low-risk and 
high-risk groups, which consistently held across the four 
independent validation cohorts (Fig.  5D). Additionally, 
Kaplan–Meier analysis demonstrated that the low-risk 
group had significantly better bRFS than the high-risk 
group in the TCGA cohort (P < 0.001), and similar 
results were observed in the MSKCC cohort (P < 0.001), 
GSE70768 cohort (P < 0.01), DKFZ cohort (P < 0.05) and 
GSE70769 cohort (P < 0.001) (Fig.  5E). Consistently, 

Fig. 3 Prognostic association of ECMGs classifications. A Consensus clustering matrix of 543 ECMGs categorized into two clusters (C1 = 179, 
C2 = 167). B 3D-PCA plot showing the distribution between C1 and C2. C Kaplan–Meier curves for biochemical recurrence-free survival (bRFS) in C1 
and C2. D Violin plot comparing the copy number variation (CNV) frequency between C1 and C2. E Composition percentage of the two clusters 
in clinicopathological features, including age, Gleason score, pN stage, PSA, and pT stage. F Gene set variation analysis (GSVA) of the Gene Ontology 
in C1 and C2. G GSVA analysis of the Kyoto Encyclopedia of Genes and Genomes in C1 and C2. ***P < 0.001
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the areas under the ROC curve (AUCs) for 1-, 3-, and 
5-year bRFS were 0.698, 0.706, and 0.788 in the TCGA 
cohort; 0.763, 0.788, and 0.748 in the MSKCC cohort; 
0.686, 0.715, and 0.797 in the GSE70768 cohort; 0.765, 
0.770, and 0.777 in the DKFZ cohort; and 0.742, 0.754, 
and 0.762 in the GSE70769 cohort, respectively (Fig. 5F). 
These results demonstrate that ECMGPS accurately 

predicts the prognosis of PCa patients. Collectively, these 
findings indicate that ECMGPS exhibits stable and robust 
performance across multiple independent cohorts.

Evaluation of the clinical features of ECMGPS
To investigate the association between the prognos-
tic significance of the ECMGPS and clinicopathological 

Fig. 4 Immune association of ECMGs classifications. A Violin plots comparing the ESTIMATE score, stromal score, immune score, and tumor purity 
between C1 and C2. B Box plot comparing the activity scores of the steps in the cancer-immunity cycle between C1 and C2. C Box plot comparing 
scores for 16 immune cell types between C1 and C2. D Box plot comparing scores for 13 immune-related functions between C1 and C2. E 
Verification of ssGSEA results by seven other algorithms, namely TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCell, and EPIC. F 
Heatmap showing the correlation between the two clusters and immune modulators. *P < 0.05, **P < 0.01, ***P < 0.001. ns not significant
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characteristics, we conducted a comparative analysis 
of risk scores across different stratified characteristics. 
Intriguingly, patients with high-risk scores in the TCGA 
cohort exhibited higher Gleason score (P < 0.001), a find-
ing that was consistently confirmed in four independ-
ent validation cohorts: MSKCC cohort (P < 0.05), DKFZ 
cohort (P < 0.001), GSE70768 cohort (P < 0.05), and 
GSE70769 cohort (P < 0.01) (Fig. 6A and Additional file 1: 
Figure S2A, S3A, S4A, S5A). Notably, Gleason score was 
the only clinical feature that displayed statistically signifi-
cant differences across all cohorts. Additionally, stratified 

survival analysis revealed that patients with advanced 
Gleason score experienced worse bRFS in all cohorts 
(TCGA cohort: P < 0.001, MSKCC cohort: P < 0.001, 
DKFZ cohort: P < 0.001, GSE70768 cohort: P < 0.001, 
and GSE70769 cohort: P < 0.001) (Fig. 6B and Additional 
file  1: Figure S2B, S3B, S4B, S5B). These findings shed 
light on the potential underlying factors contributing 
to the unfavorable prognosis observed in the high-risk 
group of ECMGPS.

To assess the independent predictive value of 
ECMGPS, we first conducted univariate Cox regression 

Fig. 5 Construction and validation of ECMGPS based on machine learning. A C-index of 101 prediction models using 10 machine learning 
algorithms across five cohorts. B Coefficients of 21 model genes obtained from 51 prognostic ECMGs using the CoxBoost algorithm. C 
Correlation network among the 21 model genes in PCa. Line thickness represents the strength of association, and color indicates the direction 
of the association. Dot size reflects the effect of each gene on prognosis, while color denotes gene expression. D PCA and t-SNE plots showing 
the distribution of low- and high-risk groups. E Kaplan–Meier curves showing bRFS in the low- and high-risk groups. F Receiver operating 
characteristic (ROC) curves showing 1-, 3-, and 5-year bRFS in the low- and high-risk groups
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analysis (Fig. 6C and Additional file 1: Figure S2C, S3C, 
S4C, S5C). Subsequently, we further included signifi-
cant variables in the multivariate Cox regression analy-
sis (Fig. 6D and Additional file 1: Figure S2D, S3D, S4D, 
S5D). Remarkably, we observed that only ECMGPS-
based risk score consistently exhibited statistical signifi-
cance for predicting bRFS across all cohorts, indicating 
its potential as an independent risk factor for BCR in 
PCa. Moreover, considering the outstanding predictive 
ability of ECMGPS in PCa, we extended our investiga-
tion to evaluate its performance in several other com-
mon epithelial-derived urinary tumors using the TCGA 
database. Surprisingly, the Kaplan–Meier survival curves 
for patients in the high-risk group exhibited significantly 
lower OS in both bladder cancer (P < 0.05) and renal cell 
carcinoma (P < 0.01) (Fig.  6E, F). These findings suggest 
that ECMGPS, originally developed as a biomarker for 
PCa, holds great potential for broader applications in 
diverse tumor types.

Comparison of ECMGPS with 80 previously published 
signatures in PCa
With the rapid advancement of big data technologies, 
such as high-throughput sequencing and machine learn-
ing, an increasing number of prognostic signatures have 
been developed for accurate medical care of cancer 
patients. To comprehensively compare the performance 
of ECMGPS with other signatures in predicting BCR of 
PCa, we meticulously collected and registered a total 
of 80 published signatures (Additional file  2: Table  S5). 
These signatures encompassed various biological pro-
cesses, including inflammation, cell death, fatty acid 
metabolism, glucose metabolism, and others. Remark-
ably, ECMGPS exhibited the highest C-index among the 
remaining cohorts (TCGA, MSKCC, GSE70768, and 
GSE70769), except for ranking third in the DKFZ cohort 
(Fig.  7A–E). These findings underscore the exceptional 
predictive performance of ECMGPS and its potential for 
extrapolation.

Fig. 6 Evaluation of the clinical independence and application value of ECMGPS in the TCGA cohort. A Violin plots comparing the risk scores 
between different subgroups stratified by clinicopathological features. B Kaplan–Meier curves for bRFS stratified by clinicopathological features. C 
Univariate Cox regression analysis of ECMGPS in relation to bRFS. D Multivariate Cox regression analysis of ECMGPS in relation to bRFS. E Kaplan–
Meier curves for overall survival (OS) in bladder cancer. F Kaplan–Meier curves for OS in renal cell carcinoma. *P < 0.05, ***P < 0.001. ns not significant
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Predictive value of ECMGPS in therapy
Based on our previous evidence demonstrating that the 
high immune patterns promoted aggressive and poor 
prognosis in ECMGs in PCa, we sought to explore the 
potential of the ECMGPS in predicting the response 
to immunotherapy and medication, thereby maxi-
mizing its clinical applicability. Initially, we observed 
a higher mutation frequency in the low-risk group in 
contrast to the high-risk group, with SPOP mutations 
detected in 21% of the samples (Fig.  8A, B). Moreo-
ver, by constructing the ECMGPS directly using the 
IMvigor cohort, a dataset focused on immunotherapy, 
we identified prolonged survival in low-risk patients 
with urothelial carcinoma (P < 0.05) (Fig. 8C). Consist-
ently, patients with lower risk scores demonstrated a 
higher likelihood of responding to anti-PD-L1 immu-
notherapy (Fig. 8D). Subsequently, the TIDE algorithm 
validated that higher risk scores were associated with 
an increased probability of immune evasion (Fig.  8E). 

These collective findings strongly suggest that the 
low-risk group identified by ECMGPS is more likely to 
derive benefits from immunotherapy.

Lastly, to explore the potential application of 
ECMGPS in precise and personalized drug selection 
for PCa, we compared the sensitivity differences to 
ten commonly used chemotherapeutic and targeted 
drugs based on IC50 values between the low-risk and 
high-risk groups. Surprisingly, we observed signifi-
cant differences in sensitivity to seven commonly used 
anti-PCa drugs. Specifically, patients in the high-risk 
group exhibited higher sensitivity to bicalutamide, doc-
etaxel, and vinblastine, while patients in the low-risk 
group showed greater sensitivity to cisplatin, gemcit-
abine, methotrexate, and paclitaxel (Fig.  8F). Overall, 
these findings suggest that ECMGPS can aid clinicians 
in selecting personalized drugs and devising tailored 
treatment strategies for individual patients.

Fig. 7 Comparison between ECMGPS and 80 previously published signatures. A C-index comparison of ECMGPS and 80 previously published 
signatures in the TCGA cohort. B C-index comparison of ECMGPS and 80 previously published signatures in the MSKCC cohort. C C-index 
comparison of ECMGPS and 80 previously published signatures in the GSE70768 cohort. D C-index comparison of ECMGPS and 80 previously 
published signatures in the DKFZ cohort. E C-index comparison of ECMGPS and 80 previously published signatures in the GSE70769 cohort
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TMED3 promotes malignant proliferation of PCa cells
PCa is a malignancy characterized by the abnormal 
proliferation of epithelial cells in the prostate gland of 
males [2]. Therefore, we postulated that the upregu-
lated genes comprising our model hold significant 
research value in comprehending the malignant pro-
gression of PCa cells. Consistent with our expecta-
tions, an extensive literature review revealed that the 

majority of upregulated genes had been unequivocally 
associated with critical roles in the malignant progres-
sion and prognosis of PCa. Unfortunately, although 
studies have indicated that TMED3 is a biomarker that 
promotes malignant progression in various malignan-
cies and exhibits heightened expression in PCa, its pre-
cise functions in PCa remain elusive. To address this 
knowledge gap, we utilized the CCLE dataset to acquire 

Fig. 8 Predictive value of ECMGPS in therapy. A Waterfall map displaying somatic mutations in the low-risk group. B Waterfall map displaying 
somatic mutations in the high-risk group. C Kaplan–Meier curves for OS between patients with different risk scores of ECMGPS in the IMvigor 
cohort. D Violin plot comparing the risk scores of ECMGPS between patients with different immunotherapy responses in the IMvigor cohort. E 
Violin plot comparing tumor immune dysfunction and exclusion (TIDE) scores between the low- and high-risk groups. F Box plots comparing 
the sensitivity (IC50) of 10 anti-PCa drugs between the low- and high-risk groups. **P < 0.01, ***P < 0.001. ns not significant
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a gene expression matrix of PCa cell lines (Fig.  9A). 
This analysis confirmed substantially elevated expres-
sion levels of TMED3 in tumor tissues relative to nor-
mal tissues, particularly in the VCaP and LNCaP cell 
lines. Additionally, IHC results from the HPA database 
revealed a significant upregulation of TMED3 protein 
levels in PCa (Fig. 9B).

To delve further into the impact of TMED3 on PCa 
cell proliferation, we established TMED3 knockdown 
models using VCaP and LNCaP cells (Fig.  9C). The 
results from CCK-8, colony formation, and EdU assays 
collectively demonstrated a significant reduction in 
cell viability, colony-forming ability, and proliferative 
capacity following TMED3 knockdown in PCa cells 
(Fig.  9D–F). Moreover, decreased TMED3 expression 
led to a notable increase in the apoptotic rate, exhibit-
ing a more pronounced effect compared to the control 
group (Fig. 9G). Taken together, these findings provide 
compelling evidence that TMED3 actively promotes the 
malignant progression of PCa cells.

Discussion
As primary components of natural defense mechanisms 
and immune system sentinels, epithelial cells are criti-
cal in human tissue [32, 33]. They translate information 
from microenvironments to the immune system, facili-
tating effective stress responses [34]. Immunotherapy has 
emerged as a promising approach for the treatment of 
drug-resistant tumors, revolutionizing the management 
of various solid malignancies [35]. Given the unique 
immunostimulatory characteristics of PCa, there is grow-
ing interest in exploring immunotherapy as a potential 
treatment option [36–38]. However, despite the success 
of drugs such as sipuleucel-T and pembrolizumab, sev-
eral other immunotherapeutic agents have shown 
unsatisfactory results in clinical trials due to the lack of 
personalized evaluation methods and optimal timing for 
treatment [39, 40]. To address this limitation, our study 
is the first to investigate the relationship between epithe-
lial cell-related gene profiles, prognosis, recurrence, and 
therapeutic response in PCa.

Fig. 9 TMED3 promotes malignant proliferation of PCa cells. A Distribution of mRNA expression across different cell lines. B Distribution of protein 
expression in normal prostate and PCa tissues obtained from the HPA database. C Efficiency of TMED3 knockdown in LNCaP and VCaP cells. D CCK-8 
assay measuring cell viability in LNCaP and VCaP cells. E Colony formation assay assessing the colony-forming ability of LNCaP and VCaP cells. F EdU 
assay evaluating cell proliferation in LNCaP and VCaP cells. G Apoptosis analysis of LNCaP and VCaP cells using flow cytometry. *P < 0.05, **P < 0.01, 
***P < 0.001
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In this study, we performed systematic scRNA-seq 
analysis to identify 543 ECMGs. Subsequently, our con-
sensus cluster analysis of ECMGs in PCa patients from 
the TCGA cohort indicated that subgroups with a strong 
immunophenotype had worse prognoses and higher 
malignancy. Contrary to the conventional understand-
ing, this observation can be reasonably attributed to the 
immunosuppressive role of Treg cells or the quiescent or 
exhausted state of memory T cells [41, 42]. The exhaus-
tion of memory T cells or the presence of Treg cells con-
tributes to immune evasion by tumor cells and resistance 
to immune checkpoint blockade therapy [43, 44]. In 
addition, the high expression levels of LAG-3, VISTA, 
TIM-3, and TIGIT in PCa patients have been confirmed 
to be associated with poor prognosis and closely linked 
to immunotherapy resistance [45], consistent with our 
study results.

In the era of precision medicine, relying solely on the 
TNM staging system, PSA levels, and other indicators is 
insufficient for evaluating the prognosis of PCa patients 
and determining the optimal timing for anti-PCa drug 
administration [46]. Existing PCa prognosis models 
often rely on individual preferences for selecting mod-
eling algorithms or lack validation using multiple data-
sets, leading to poor performance or overfitting of the 
model [47]. To address these limitations, we collected 
a comprehensive set of 10 widely used machine learn-
ing algorithms and constructed 101 models. After care-
ful evaluation, we identified the CoxBoost and SuperPC 
combination as the best-performing model for PCa prog-
nosis. The resulting ECMGPS significantly reduced the 
dimensionality of variables, simplifying the model and 
enhancing its generalizability. ECMGPS demonstrated 
excellent prediction performance across multiple data-
sets and outperformed 80 published signatures in pre-
dicting BCR in PCa patients. Importantly, ECMGPS 
emerged as the only independent and prognostic indica-
tor across all cohorts, surpassing clinical indicators such 
as PSA and the TNM staging system. Therefore, our sig-
nature offers value as an adjunct to evaluate PCa progno-
sis and stratify patients as high or low-risk of aggressive 
disease. Additionally, ECMGPS showed accurate stratifi-
cation of patients with bladder cancer and renal clear cell 
cancer, both of which originate from malignant prolifera-
tion of epithelial cells in the urinary system, suggesting 
its wide application prospects.

Building upon the close association between ECMGs, 
prognosis, and immunity, we additionally observed a 
higher mutation frequency in the low-risk group. Con-
versely, TP53 and TTN mutations were more prevalent in 
the high-risk group. Previous studies have suggested that 
mutations in TP53 and TTN contribute to the prolifera-
tion and metastasis of PCa [48, 49], which substantiates 

the poorer prognosis observed in the high-risk group. 
These findings provide valuable insights into the poten-
tial use of ECMGPS in immunotherapy. As expected, 
both TIDE analysis and examination of the IMvigor 
cohort, along with drug sensitivity assessments, consist-
ently indicated that ECMGPS could serve as a reference 
for the early identification of PCa patients who exhibit 
sensitivity to immunotherapy and drugs. In this way, our 
work could pave the way for biomarker-directed, person-
alized therapeutic regimens that combine the optimal 
drugs and treatment intensities for each patient.

In addition, our study revealed a significant biological 
correlation among the model genes. Moreover, through 
an extensive review of the literature on these genes in 
PCa, we found compelling evidence confirming the close 
association of most genes, particularly the upregulated 
genes, with malignant proliferation, poor prognosis, and 
the tumor immune microenvironment of PCa [50–56]. 
Our previous basic research on CDKN1A also supports 
this finding [30]. These results strongly support the sub-
stantial impact of ECMGPS on prognosis, the tumor 
immune microenvironment, and its role in the clinical 
management and precise treatment of PCa. It is note-
worthy that our study delved into the potential physi-
ological functions of TMED3, a member of the TMED 
family implicated in protein vesicle transport and innate 
immune signal transmission [57], in the onset and pro-
gression of PCa. This underscores the viability of TMED3 
as a therapeutic target for PCa. We intend to pursue fur-
ther research to elucidate its molecular mechanism in 
upcoming studies.

Although the ECMGPS is clinically significant in pre-
dicting the prognosis of PCa, there are several limita-
tions to acknowledge in this study. Firstly, all the included 
datasets were derived from retrospective studies in 
public databases, and future verification of the ECMGS 
should be conducted in prospective multi-center stud-
ies. Additionally, some clinical and molecular features 
in public databases are insufficient, which may conceal 
potential associations between ECMGS and certain vari-
ables. Finally, to validate the predictive role of ECMGPS 
in immunotherapy response, additional immunotherapy 
cohorts comprising PCa patients are of utmost impor-
tance and urgently needed.

Conclusions
Our integrated prognostic signature represents a sig-
nificant advancement over previous models, as it 
meticulously combines machine learning algorithms 
with multiple independent validation cohorts. The 
remarkable performance and applicability of our sig-
nature across diverse datasets underscore its strength 
and dependability as a clinical tool. Once clinically 
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validated, ECMGPS has the potential to enhance deci-
sion-making by identifying patients who are likely 
to face aggressive disease and poorer outcomes with 
standard treatments. Furthermore, our signature shows 
promise in predicting immunotherapy response, ena-
bling a more personalized and timely application of 
immune-based treatments. Overall, ECMGPS provides 
a versatile platform that has the potential to greatly 
enhance risk assessment, prognosis prediction, and 
immunotherapy selection for the improved clinical 
management of PCa patients.
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