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Abstract 

CRISPR/Cas9, a highly versatile genome-editing tool, has garnered significant attention in recent years. Despite 
the unique characteristics of oocytes and early embryos compared to other cell types, this technology has been 
increasing used in mammalian reproduction. In this comprehensive review, we elucidate the fundamental principles 
of CRISPR/Cas9-related methodologies and explore their wide-ranging applications in deciphering molecular intrica‑
cies during oocyte and early embryo development as well as in addressing associated diseases. However, it is impera‑
tive to acknowledge the limitations inherent to these technologies, including the potential for off-target effects, 
as well as the ethical concerns surrounding the manipulation of human embryos. Thus, a judicious and thoughtful 
approach is warranted. Regardless of these challenges, CRISPR/Cas9 technology undeniably represents a formidable 
tool for genome and epigenome manipulation within oocytes and early embryos. Continuous refinements in this 
field are poised to fortify its future prospects and applications.
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Introduction
The precise editing of mammalian genome lays the foun-
dation for genetic studies and investigations on germ 
cells [1]. Clustered regularly interspaced short palin-
dromic repeats (CRISPR), uncovered from the immune 
system of bacterial and archaea in response to foreign 
phage invasion [2], is a highly efficient DNA editing tool 
(Fig. 1a) [3–5]. This mechanism relies on the help of the 
small guide RNA (sgRNA), which combines crRNA and 
tracrRNA for targeting genes, as well as the Cas protein 
for cleavage [6–8]. The dsDNA of 3 bp upstream of the 

protospacer adjacent motif (PAM) is cleaved by HNH 
and RuvC nuclease domains [3, 6, 7], generating a site-
specific blunt-ended double-strand break (DSB) [6, 9, 10]. 
Moreover, both HNH and RuvC nuclease domains can be 
inactivated through mutagenesis [3], causing the devel-
opment of nuclease dead Cas9 (dCas9) that can be fused 
to transcriptional activators or repressors for regulation 
of the target gene expression [11]. DSBs can be repaired 
via homology-directed repair (HDR), non-homologous 
end joining (NHEJ), or microhomology-mediated end 
joining (MMEJ) processes, but the repaired DSB may 
harbor random insertions and/or deletions at the cleav-
age site [12–14]. Notably, this technology performs well 
in the manipulation of the mammalian germline genome 
despite the challenges and ethical considerations it has 
faced [1].

Several critical biological events accompany the early 
embryonic development process (Fig.  1b) [15–17]. 
Fertilization of oocyte by sperm causes the maternal-
to-zygotic transition (MZT), encompassing maternal 
mRNA elimination and zygotic genome activation (ZGA) 
[15, 17–19]. Multiple epigenetic modifications take place 
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in early embryos and are critical in pre-implantation 
development [20–23]. DNA methylation and dynamic 
histone modifications such as trimethylation of histone 3 

lysine 4 (H3K4me3) and histone 3 lysine 27 acetylation 
(H3K27ac) often arise across diverse genomic regions 
and are essential for specific developmental processes 

Fig. 1  Schematic of CRISPR system and early embryo development. a Schematic of the CRISPR system structure and gene repair mechanism. 
The crRNA (blue) and tracrRNA (orange) direct the Cas9 protein to target the gene of interest, and two nuclease domains (HNH and RuvC) 
cut the corresponding gene sites to generate DSB. HDR and NHEJ mechanisms repair DNA sequences, and the different outcome is shown 
in the diagram. b Schematic of early embryo development and a series of epigenetic events, including maternal RNA/protein elimination (red 
curve), zygotic genome activation (ZGA, green curve), and the changes of DNA methylation and chromatin structures, are also shown
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through transcriptional regulation [24–28]. Notably, the 
chromatin structure of embryos during cleavage stages 
is in a uniquely relaxed state featuring totipotency, and 
the single-cell chromatin overall omic-scale landscape 
sequencing (scCOOL-seq) technique demonstrated that 
the most dramatic chromosome reprogramming events 
in mammals took place in cleavage-stage embryos [18, 
29–33]. However, many of the linked studies are descrip-
tive, and regulatory networks, as well as related mecha-
nisms remain largely undefined.

As an efficient and inexpensive genome editing tool, 
the CRISPR/Cas9 system has received increased atten-
tion in recent years. In this review, we primarily focus 
on the current use of CRISPR/Cas9 in oocytes or early 
embryos, as well as the limitation of this technology. 
With the assistance of this technology, it is possible to 
fix gene mutations, modify gene expression levels by 
epigenetic manipulation, and visualize proteins directly, 
to answer important scientific questions and treat dis-
eases in human and other species [34–40]. However, it is 
a considerable challenge to overcome the limitations of 
the CRISPR/Cas9 technique, including on-target effects, 
off-target effects, and HDR rate [41–44] (Additional 
file  1: Table  S1). While CRISPR systems are gradually 
improved, previously unrecognized errors in gene edit-
ing are continuously revealed [45, 46], and genome edit-
ing oversights may introduce uncertainty into the health 
of offspring. These limitations and linked ethical issues 
should be addressed before this technology is applied 
further in mammalian oocytes and embryos.

Application of CRISPR in mammalian cells
Gene editing
CRISPR/Cas9 has been used to generate DNA mutations 
to produce homozygous loss-of-function animals. For 
example, the specific domain within the Astl gene encod-
ing Ovastacin was removed using CRISPR to identify the 
role of Ovastacin in preventing sperm binding at zona 
pellucida following fertilization [47, 48]. In general, the 
CRISPR system, including sgRNA and HDR oligonucleo-
tide, was introduced into mouse zygotes to remove the 
seven amino acids of the Ovastacin gene using microin-
jection (Fig.  2a) [48, 49]. Loss of Crygc gene resulted in 
cataracts in mice, and it has been reported that Crygc 
gene deletion could be fixed using the CRISPR system 
in mice (Fig. 2b) [50]. The founders were able to encode 
the Crygc gene and transmit it to offspring successfully 
[50]. Moreover, genetic correction of Duchenne muscu-
lar dystrophy (DMD) mutations by using CRISPR/Cas9-
mediated techniques was recently reported [51–54]. For 
instance, CRISPR in mouse zygotes was validated to cor-
rect DMD mutations in a mouse model [52].

Moreover, CRISPR has also been introduced to modify 
porcine genes and has been instrumental in developing 
xenotransplantation. Encouragingly, it has been used to 
inactivate porcine endogenous retroviruses (PERVs) by 
repressing PERV reverse transcriptase (pol) gene and 
to enhance compatibility with the human immune sys-
tem by editing immune-related genes in pigs (Fig.  2c). 

Fig. 2  Diagram of genome editing in mammals. a Diagram 
summarizing the processes for gene editing of Astl in mice using 
the CRISPR/Cas9 system, including microinjection, embryo transfer, 
identification of founders, obtaining homozygous mutants 
through breeding, and performing phenotype examination 
and mechanism investigation. b Diagram summarizing the correction 
progression of a genetic defect in a cataract mouse model. The 
zygotes from wild-type mice crossed with Crygc−/− mice were 
used. Some offspring embryos showed normal phenotypes 
following microinjection of Cas9 mRNA, sgRNA and exogenous DNA 
oligos into heterogeneous zygotes. c The processes to generate 
PERVKO·3KO·9TG pigs. In the first round of engineering, 3KO·9TG pigs 
were obtained by SCNT using CRISPR/Cas9-edited porcine fibroblasts. 
In the next round of engineering, the candidate fibroblasts 
from 3KO·9TG pigs were isolated and further edited by the CRISPR/
Cas9 system, and PERVKO·3KO·9TG pigs were obtained using SCNT.
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Somatic genes were successfully manipulated using 
CRISPR/Cas9 to generate heritable pigs via somatic cell 
nuclear transfer (SCNT) [55]. Notably, the researchers 
combined CRISPR and transposon technologies to mod-
ify 13 genes in the large animal model, demonstrating the 
engineering power of CRISPR/Cas9 in the mammalian 
germline [55].

Recently, maternal mutant embryos were acquired 
rapidly through microinjection of multiple sgRNAs and 
other CRISPR components to eliminate corresponding 
maternal products in zebrafish [56]. Crispants, a new 
technology derived from CRISPR/Cas9, is helpful for 
investigating maternal-effect genes [57]. To date, crispant 
has been shown to be successful in identifying maternal-
effect genes such as kpna7 in zebrafish by inducing high-
frequency biallelic editing of the germ line [57].

Mitochondria, as the energy-producing organelles of 
eukaryotic cells, contain unique mitochondrial DNA 
(mtDNA), which contributes to maternally inherited 
genetic disorders. The mitochondrially targeted engi-
neered nucleases such as mitochondrially targeted 
TALENs (mitoTALENs) and mitochondrially targeted 
zinc finger nucleases (mtZFNs) have been reported to 
limit pathogenic mtDNA mutations in mouse oocytes 
and improve the quality of aged eggs [58, 59]. Using the 
CRISPR/Cas9 system, it is gradually applied in treating 
mitochondrial diseases. Jo et al. reported the manipula-
tion of mtDNA using the CRISPR/Cas9 system through 
the creation of a mitochondria-targeted Cas9 (mitoCas9) 
localized to mitochondria together with the specific 
gRNA to cleave mtDNA without affecting genomic DNA 
[60].

Collectively, the CRISPR/Cas9 system has been suc-
cessfully applied in mammalian oocytes and embryos 
across various animal models including mice and pigs, 
and previously confronted difficulties in the treatment of 
some diseases may be addressed by directly altering the 
genomic sequences. Moreover, the application of genome 
editing techniques in mammalian oocytes and embryos 
will significantly enable the mechanistic study of devel-
opmental events at these stages, and a complete under-
standing of molecular mechanisms will provide valuable 
information for technical advancement.

Transcriptional regulation
CRISPR is a flexible tool, particularly catalytically inac-
tivated dCas9, which has been developed as a DNA-
targeting module for epigenome engineering [9, 36, 61, 
62]. With the successful application of novel gene edit-
ing tools such as dCas9-v64 in the early stage, the fusion 
of dCas9 to various transcription regulators or modify-
ing enzymes has gradually been shown to be effective in 
regulating gene expression, including P300, VPR, KRAB, 

MECP2, TET, and DNMT [37, 62–66]. For example, stud-
ies have shown that the fusion of dCas9 with DNMT3a or 
TET1 allows for the silencing or activating of endogenous 
reporters respectively, by targeting promoter sequences 
[61] (Fig. 3a). The application of dCas9-DNMT genome 
editing has been demonstrated to reduce PLPP3 expres-
sion by increasing 5-methylcytosine (5mC) [67]. There is 
also ample literature demonstrating the effectiveness of 
this type of editing [39, 67–69]. Individual mammalian 
oocytes and embryos can be used to edit the methyla-
tion status of target genomic regions through microinjec-
tion of specific methylation editing systems, such as the 
dCas9-TET/DNMT complex, which can correct familial 
Angelman syndrome in a mouse model [70]. Addition-
ally, an improved CRISPR system, which includes sgRNA 
and dCas9-Dnmt3a, was applied to edit seven genomic 
imprinting regions simultaneously in single unfertilized 
oocytes, and these oocytes produced offspring suc-
cessfully following fertilization [38]. The investigation 
of oocyte methylation has been promoted, bringing a 
unique strategy to inhibit or correct maternally transmit-
ted nongenetic diseases or disorders.

Moreover, alterations in chromatin looping can also 
modulate gene expression [61]. Topologically associating 
domains and gene loops governed by architecture pro-
teins like CTCF (CCCTC-binding factor) and cohesion 
complex are important chromatin elements [71]. When 
DNA methylation of CpGs was introduced via the target-
ing of dCas9-DNMT3a to two CTCF binding sites, the 
interaction between enhancers and nearby gene loops 
was identified to be increased, facilitating gene activation 
[61].

Collectively, the CRISPR/Cas9 system can tune gene 
expression at the transcriptional level through epige-
netic editing of chromatin modifications without altering 
genomic sequences.

Protein‑targeted regulation and visualization
Endogenous target proteins may be degraded through 
the CRISPR/Cas9-introduced auxin-inducible degrada-
tion (AID) system. For instance, degradation of maternal 
proteins may be efficiently induced using the AID system 
in the ovary and early embryo of Drosophila [72].

CRISPR/Cas9 technology enables systematic studies 
of protein localization and protein-protein interactions 
with the assistance of tag-based proteomics [73–75]. The 
Pax6-IRES-EGFP knock-in mouse lines have been estab-
lished to express endogenous EGFP in the Pax6 locus, 
and the visualization of endogenous PAX6 dynamics was 
obtained using an optimized CRISPR/Cas9-mediated 
technique (Fig.  3b) [76, 77]. Additionally, the complex 
system containing EGFP-tagged dCas9 and site-spe-
cific sgRNAs allows for the visualization of repetitive 
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element-containing chromatin regions such as telomeres, 
centromeres, and satellite DNAs in the genome [40]. In 
this way, CRISPR imaging was successfully employed to 
assess the dynamics of telomeres during telomere elonga-
tion and the dynamic behaviors of the MUC4 loci during 
mitosis [40].

Overall, the CRIPSR/Cas9 system can label endogenous 
proteins to tailor their stabilities and demonstrate their 
characteristics, including localization and dynamics.

Application of CRISPR in human cells
Outside of mice and pigs, CRISPR/Cas9 technology is 
also widely employed in human cells. To conduct large-
scale, loss-of-function screens, CRISPR/Cas-based 
knockout libraries were generated by delivering diverse 
sgRNAs into HeLaoc-SC cells, and the essential host 
genes for cell intoxication were identified through 
anthrax and diphtheria toxin selection (Fig. 4a) [78, 79].

Due to the particularity of human samples, sev-
eral studies on CRISPR/Cas9 in human stem cells are 
also meaningful, laying the foundation for subsequent 
research on oocytes and embryos [80, 81]. Previous 
investigations have demonstrated that the dCas9-
VP64 editing tools targeted by sgRNA can increase 

the expression of certain genes in human cells [62]. 
For DNA methylation regulation, DNMT3A could be 
knocked out by CRISPR/Cas9 in human induced pluri-
potent stem cells (iPSCs) to determine the impact of 
DNA methylation in cardiomyocytes [39]. Notably, the 
methylation of the FMR1 promoter was altered by the 
dCas9-Tet1/sgRNA editing tool to restore the expres-
sion of FMR1 in human iPSCs [68]. In addition, endog-
enous proteins in human iPSCs were systematically 
tagged using fluorescent markers through the CRISPR/
Cas9 system using a genome-editing strategy (Fig.  4b) 
[82]. With the development of CRISPR/Cas9, it can be 
applied to study various diseases. It was reported that 
iPSCs from DMD patients could be corrected to exhibit 
them as an adequate model for studying disease-related 
mechanisms [52]. The application in hematopoietic 
stem and progenitor cells (HSPCs) has been widely 
demonstrated, indicating precise induction and repair 
mechanisms for genome editing in human cell lines [83, 
84]. Human iPSCs derived from Wolfram syndrome 1 
(WFS1) patients were collected, and disease-causing 
mutations were successfully corrected using CRISPR/
Cas9 technology [85]. Several other diseases, includ-
ing amyotrophic lateral sclerosis (ALS), sickle cell 

Fig. 3  Diagram of transcriptional regulation and protein labeling by CRISPR/Cas9 system. a Diagram showing that the inactive Cas9 protein can 
be fused to epigenetic modifiers like DNMT3A and TET1 to alter gene expression by modifying the methylation state of cytosine in the specific 
promoter. b Diagram of pronuclear injection process to generate reporter mice. The RNP complex which contained Cas9 protein, crRNA 
and tracrRNA, and Pax6-IR4ES-EGFP targeting vector was injected into mouse fertilized eggs to obtain knock-in mice
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Fig. 4  Schematic diagram showing application of CRIPSR/Cas9 system in human cells. a Schematic diagram showing the construction of sgRNA 
library and functional screening steps. These sgRNAs were created to target 291 human genes, and the sgRNA library was designed by the assembly 
to the backbone of the virus. Through the lentiviral infection, the sgRNAs were delivered into HeLaoc-SC cells and those cells stably expressing 
sgRNAs were selected by FACS for green fluorescence. After toxin treatment, the resistant cells were selected for PCR and high-throughput 
sequencing analysis. b Schematic depicting the genome-editing process. Human iPSCs were edited using Cas9 complex and donor plasmid 
by electroporation. Details for genome-editing experiments are shown and the GFP+ cells were collected and used for imaging. c Diagram 
of the injection of Cas9 mRNA and sgRNA into human 3PN embryos to edit target genes, and 8–16 cell stage embryos were further collected 
to examine genome editing efficiency
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disease (SCD), and brain tumors, can be treated by the 
CRISPR/Cas9 system [83, 84, 86–90].

The use of CRISPR/Cas9 to human germline genome 
editing (HGGE) has been tested in recent years. At first, 
human tripronuclear (3PN) zygotes which refers to an 
embryo with three pro-nuclei, were employed for gene 
editing (Fig. 4c) [91, 92], and later zygotes were used for 
CRISPR genetic correction of mutations of endogenous 
β-globin gene (HBB) and glucose-6-phosphate dehydro-
genase (G6PD) [93]. With the advancement of microin-
jection technology, MYBPC3 mutation has been fixed 
through co-injection of sperm and CRISPR/Cas9 com-
ponents into human metaphase II (MII) oocytes [35]. 
By utilizing a zygote microinjection technique, authors 
designed an efficient sgRNA and targeted the POU5F1 
(OCT4) gene with high efficiency (Fig. 5) [34, 35]. They 
found that loss of OCT4 led to the failure of blastocyst 
development in humans, suggesting regulatory roles 
of human OCT4 in cleavage stages [34]. We note that 
the editing of human mtDNA has also made progress 
recently [36, 94]. A CRISPR-free editing method called 
DddA-derived cytosine base editors (DdCBEs), which 
catalyze C•G-to-T•A conversion through modified 
DddA deaminase, was reported in 2020 and provided 

the potential to manipulate mtDNA in human cells 
[95]. Chen et al. then used the DdCBE technique to edit 
mtDNA in human 3PN embryos [96]. mtDNA editing 
has attracted increased attention, especially in oocytes 
and early embryos, and may become an active research 
field in the coming years.

Though applying the CRISPR/Cas9 technique in 
human cells is achievable, the genetic editing results are 
still unpredictable. In particular, germline gene editing 
raises a series of social and ethical issues or even laws 
due to the uncertainty of heritable changes in humans 
[45]. Dr. Jiankui He, who claimed that he had edited the 
genome of a human embryo and produced babies suc-
cessfully, has been strongly condemned and arrested 
[97]. So far, human genome editing for reproduction has 
been banned in most countries [46]. The application of 
CRISPR/Cas9 in HGGE is far from clinical application 
due to the technical, safety and ethical issues. Improve-
ment of the technique is still ongoing, but its value in 
evaluating and exploring human early embryogenesis and 
related pathogenesis should not be underestimated [45].

CRISPR/Cas9 technology has been validated to be fea-
sible in human cells, including early embryos. This tech-
nique can be used to explore critical regulatory factors in 

Fig. 5  Diagram summarizing the experimental steps of editing POU5F1 (OCT4) locus in mouse zygote (green) and human zygote (blue) using 
the CRISPR-Cas9 strategy. Different effects on human embryo development were compared in the presence and absence of the OCT4 gene. The 
role of OCT4 was also compared between mouse and human embryo development
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embryonic development and to facilitate the treatment 
of human diseases by editing genomic sequences and 
epigenetic modifications. We note that ethical problems 
inevitably exist in the operation of human embryos. Sub-
sequent research should further explore current knowl-
edge that troubles the public within the scope of ethics to 
promote the development of science and the treatment of 
diseases.

Challenges and improvements of the CRISPR/CAS9 
system
On‑target mutagenesis
With the development of the CRISPR/Cas9 technique, it 
is gradually found that this gene editing tool might lead 
to significant mutagenesis [41, 98, 99]. Many articles have 
shown that applying the CRISPR/Cas9 system caused 
severe DNA repair errors, which induced genomic dam-
age, including deletion and rearrangement [41, 98, 99]. 
Both PCR pairing and terminal whole genome sequenc-
ing (WGS) revealed large gene deletions in the edited 
products, and it has been reported that injection of 
CRISPR/Cas9 components into mouse zygotes even pro-
duced a 293 kb gene deletion [41, 99]. Intriguingly, it has 
been shown that using a single nickase is more effective 
than the nuclease method in this genome editing system 
[100]. However, due to the limitations of current detec-
tion methods, it may not be possible to assess this large 
amount of genetic damage accurately [99].

Off‑target effects
Off-target effect is another foremost challenge, and it 
generates uncertainties including unexpected muta-
tions, deletions, rearrangements, and even cell death 
during genome editing, which affect the general use 
of the CRISPR/Cas9 system [101]. To limit the off-tar-
get efficiency, engineered Cas9 variants have attracted 
increasing interest, including mutants of type II Strep-
tococcus pyogenes Cas9 (spCas9) with enhanced speci-
ficity (eSpCas9) and high-fidelity (SpCas9-HF1) [42, 
102–108]. There is also a new hyper-accurate Cas9 vari-
ant (HypaCas9) which showed high genome-wide spec-
ificity in human cells, and a novel cytosine base editors 
(CBEs) with rAPOBEC1, which reduced the off-target 
effects by changing the structure of Cas9 [42, 102–105].

Additionally, it was determined that the activity of the 
HNH nuclease domain influenced the cleavage of DNA 
strands. The correct on-target DNA ensures proper 
cleavage of the double strand by a signal that causes 
the conformational change of the HNH domain, which 
is not present when off-target [109]. Subsequently, 
methods like CHANGE-seq and DISCOVER-seq 

were reported to be used to inquire about the activity 
of CRISPR/Cas9 nucleases and the off-target activity 
[110, 111]. Typically, high-fidelity Cas9 variants reduce 
the off-target efficiency but the on-target efficiency is 
also significantly reduced [43]. Unexpectedly, a recent 
study suggested an intriguing research direction. The 
Cas9-activated intermediates were investigated and 
the role of the formation of the guide RNA–DNA tar-
get strand duplex and recombination loop in the RuvC 
domain was found in the mismatch situation. And this 
mismatch-stabilization mechanism was employed to 
design SuperFi-Cas9 to reduce the off-target efficiency 
while maintaining the on-target efficiency [43].

The effect of PAM sequences on the CRISPR/Cas9 
system cannot be ignored. A particular Cas9 variant 
known as xCas9 was identified to be more compatible 
with different PAM sequences and could reduce off-tar-
get effects to improve editing efficiency [108, 112].

Other effects
After CRISPR/Cas9 takes action, DSB is produced and 
repaired by HDR, NHEJ or MMEJ [14]. Usually, the effi-
ciency of desired gene repair by HDR is low, and NHEJ 
which mediated small indels can occur faster and more 
efficiently, while it usually causes uncontrollable genetic 
damages [14, 113]. Hence, many methods have been 
presented to increase the rate of HDR by adjusting the 
size of the insert/donor, modifying DNA donors with 
phosphorothioation and inhibiting NHEJ activity [114]. 
For instance, it was reported that a longer homologous 
arm and single-stranded oligonucleotide DNA tem-
plate increased the HDR rate [115]. Inhibiting specific 
DSB repair pathway regulators like 53BP1 or fusion of 
Cas9-guide RNA ribonucleoprotein (RNP) complex 
and a single-stranded oligodeoxynucleotide (ssODN) 
have been proven to be helpful in improving HDR rate 
[114, 116]. Moreover, the HDR rate could be increased 
if CRIPSR/Cas9 is used during HDR-preferred phases 
(S/G2) in human hematopoietic stem cells [117].

Another challenge using the CRISPR/Cas9 system to 
edit is high mosaicism, which results in various muta-
tions at the target locus and induces uncontrollable 
effects on subsequent development [118]. Changing the 
timing of gene editing has been proven to reduce mosa-
icism, such as when sperm and CRISPR components 
are co-injected into MII human oocytes for editing 
[35]. In addition, the authors indicated that except for 
the CRISPR/Cas9’s innate separate or enzymatic modi-
fication mechanism, the frequent retroelement inser-
tions exacerbate the diversity of alleles and mosaicism 
in early mouse embryos [44].
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Conclusion and discussion
CRISPR/Cas9 system with simple components has 
recently been widely applied to mammalian oocytes 
and embryos, providing great convenience for sci-
entific research and the exploration of disease treat-
ment [34–40]. As an editing technology, the CRISPR 
system can act on mammalian genomes in cell lines, 
oocytes, and embryos to correct gene mutations and 
produce offspring with normal gene expression, which 
is beneficial for treating related diseases [34–40]. The 
improved CRISPR technology contains a dCas9 with 
transcriptional regulators or modifying enzymes, mak-
ing it possible to regulate the expression of endogenous 
genes [37, 61–66]. In addition, this technique has been 
applied in protein visualization, protein-protein inter-
action and performing large-scale loss/gain of func-
tion screening [73, 75, 78]. Even though the CRISPR/
Cas9 technology is convenient, there are many limita-
tions and challenges, including on-target mutagenesis, 
off-target effects and other effects like high mosaicism 
rate [41–44]. To improve this technology, research-
ers attempted to design a more efficient editing system 
by modifying the Cas9 enzyme, studying the nuclease 
working domain, changing the PAM sequence, improv-
ing the HDR rate, and reducing the mosaicism rate [42, 
43, 108].

In recent years, CRISPR/Cas9 has been widely used 
in animal models such as mice, and its application in 
humans has attracted more attention. Some studies 
have successfully used this technology to answer sci-
entific questions and tackle disease treatment difficul-
ties [91, 92], but potentially subsequent adverse effects 
seriously limit its application [41–44]. Editing human 
embryos involves ethical concerns that make it diffi-
cult to advance further, and it may take years to refine 
the technology and successfully apply it to the editing 
of the human genome [45, 46]. Particularly, maternal 
mtDNA is essential for embryonic development. With 
its excellent targeting performance, CRISPR/Cas9 has 
successfully edited mtDNA in mice and humans, pro-
viding new ideas for studying mitochondrial functions 
and mitochondria-related diseases [60, 95, 96].

Related mechanisms remain largely unexplored 
because of the lack of cell models and paucity of study-
ing materials. Subsequent studies of this technique 
should focus more on limitations and ethical issues, 
and with the improvement of detection technology, 
the application will be broader and deeper in mam-
mals. CRISPR/Cas9 system has been regarded excel-
lent genome editing tool and has proven to work well 
in oocytes and embryos. We believe further improve-
ments will expand its application and minimize its 
unexpected consequences.
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