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Abstract 

COVID‑19 continues to affect an unprecedented number of people with the emergence of new variants pos‑
ing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis 
of Coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), 
and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact 
of COVID‑19 on different organs persists long after the recovery phase of the disease, leading to long‑term con‑
sequences of COVID‑19. These long‑term consequences involve pulmonary as well as extra‑pulmonary seque‑
lae of the disease. Noteably, recent research has shown a potential association between COVID‑19 and change 
in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role 
in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link 
between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses 
on current knowledge about EVs and their potential role in COVID‑19 pathogenesis, their current and future 
implications as tools for biomarker and therapeutic development and their possible effects on long‑term impact 
of COVID‑19.
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Introduction
Extracellular vesicles (EVs) are stable lipid bilayer nan-
ovesicles released by cells and encapsulate cell specific 
signalling molecules, which once delivered at proxi-
mal or distal target cells, are capable of regulating their 
function [1]. EVs are attractive liquid biopsy tool as 
they are packaged with tissue specific signalling mole-
cules including protein, lipids and nucleic acids derived 
from their parental cell [2]. EVs are a unique source of 
biomarkers, and potential therapeutics, as their content 
is stabilised and protected against enzymatic degrada-
tion [3, 4]. Since EVs are key regulators of physiological 
processes in health and disease [5, 6] the role of EVs in 
regulating the common physiological processes that are 
dysregulated in acute and long COVID and its utility 
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as diagnostic and therapeutic tools in COVID-19 is an 
attractive area of discussion.

EVs is an umbrella term and covers a heterogenous 
population of vesicles of different sizes from around 
30  nm to 10  uM, originating from discrete biologi-
cal pathways [7]. Among these, exosomes (around 
30–150  nm) are EVs, which originate from the endo-
somal pathway through invagination of the plasma 
membrane to form endosomes. Maturation of late 
endosomes results in multi-vesicular bodies (MVBs) 
containing intraluminal vesicles (ILVs), and release of 
ILVs into the extracellular space results in exosomes 
[2]. Microvesicles/ectosomes (around 50  nm–1  µm) 
are formed from external budding of the plasma 
membrane. Apoptotic bodies (around 50  nm–5  µm) 
are released by activation of apoptotic signalling [2]. 
Other types of vesicles include migrasomes (around 
500  nm–3  µm), released by migratory cells and large 
oncosomes (around 1–10 µm), secreted by some cancer 
cells [7]. With regard to COVID-19, growing evidence 
suggests the key roles of EVs, including circulating lev-
els of EVs and its cargo in disease pathogenesis [8–12], 
potential utility for the development of biomarkers [13, 
14], treatment options [15–21], and in vaccination and 
immunity [22–26].

Coronavirus disease 2019 (COVID-19) caused by 
the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), was first reported in Wuhan, China, in 
December 2019. Due to the rapid spread, COVID-19 was 
declared a pandemic by the World Health Organization 
(WHO) in March 2020, as it posed an unprecedented 
challenge to public health, and the global economy [27]. 
The clinical characteristics of COVID-19 can range from 
asymptomatic infection to fatal or life-threatening con-
ditions. Available epidemiological data has shown that 
the features of the acute disease is a strong predictor of 
long term effects of COVID [28, 29]. There is a critical 
need to develop a comprehensive understanding of the 
long-term impact of SARS-CoV-2 infection on multiple 
organs in recovered patients, and identify the features of 
acute disease which can predict long-term consequences. 
This will provide opportunities to identify people who 
may develop long-term sequelae, including the type of 
sequelae, and allow introduction of therapeutic or man-
agement strategies in the acute disease which can prevent 
the long-term consequences of COVID-19.

EVs have shown relevance in COVID-19 pathogen-
esis, biomarker development, treatment strategies, 
and immune responses. In the context of COVID-19, 
understanding the acute disease’s impact on long-term 
consequences is vital for identifying individuals at risk 
and implementing preventive measures. In this review, 
we will provide an overview of the patophisiology of 

SARS-CoV-2 infection, the development of COVID-19 
and the potential roles of EVs in this phenomenon.

Pathophysiology of SARS‑COV‑2 infection
SARS-CoV-2 is an enveloped, positive-sense, single-
stranded RNA virus belonging to the Coronaviridae fam-
ily and with sequence similarity to the SARS-CoV-1 and 
MERS-CoV (Middle East respiratory syndrome) virus 
[27]. The structural spike (S) protein in the SARS-CoV-2 
viral capsid is responsible for virus-receptor binding [30]. 
The SARS-CoV-2 S protein binds to the human angioten-
sin-converting enzyme 2 (ACE2) receptor in cells and the 
cellular serine protease TMPRSS2 primes the S protein 
for this interaction. This event triggers a cascade of reac-
tions which facilitates the entry of the virus into the cells, 
followed by viral transcription and replication [31].

After entry into the cells virus undergoes active rep-
lication and release leading to pyroptosis of the cell 
and release of damage-associated molecular patterns 
(DAMPs). DAMPs are recognized by neighbouring cells 
including immune cells such as macrophages triggering 
pro-inflammatory response. Monocytes, macrophages 
and T cells are recruited to the site of inflammation pro-
moting further inflammation [32]. In the lungs, accelerat-
ing viral infection damages epithelial-endothelial barrier 
integrity, triggering the influx of inflammatory cells and 
an acute inflammatory response. This leads to the devel-
opment of pulmonary oedema and impaired alveolar-
capillary oxygen transmission and diffusion capacity, 
which can often become fatal, causing acute respira-
tory distress syndrome (ARDS), and multiple organ fail-
ure. Most importantly, SARS-CoV-2 infection can cause 
overactivation of innate immunity and increased secre-
tion of cytokines. This hyperactive immune response 
characterized by the release of interferons, interleukins, 
tumour-necrosis factors, chemokines, and several other 
inflammatory mediators is termed a “cytokine storm”, 
which is a major complication of COVID-19 [33]. Stud-
ies show that rapid clinical deterioration and mortal-
ity in COVID-19 patients could be linked to the high 
blood concentrations of inflammatory biomarkers of the 
cytokine storm [34–36].

SARS-CoV-2 infection reprograms the proteome and 
transcriptome in host cells to promote viral life cycle 
and sustenance in host [37, 38]. Mitochondrial proteins 
are primary targets for SARS-CoV-2 virus. Mitochon-
drial apoptosis proteins are upregulated by SARS-CoV-2 
in infected cells leading to cell death and organ damage 
[39, 40]. The viral life cycle in the host cell is intimately 
associated with the lipid and glucose metabolic path-
ways [41]. SARS-CoV-2 utilizes the cellular lipid and 
glucose metabolic pathways for viral entry, replication 
and egress leading to altered serum lipid and aminoacid 
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profile with abnormal glucose homeostasis [42]. In this 
way, SARS-CoV-2 reprograms the host system by alter-
ing the protemic, transcriptomic, lipidomic and meta-
bolic landscape favouring rapid spread and perpetuation 
of virus. In most individuals, the host immune response 
counteracts the SARS-CoV-2 infection and the disease 
manifests as a mild infection confined to the upper res-
piratory tract, but in some individuals various immune-
pathological factors lead to severe disease characterized 
by multi-organ damage [43].

Extracellular vesicles and COVID‑19
Extracellular vesicles and SARS‑CoV‑2 infection
EVs are released from all cell types including SARS-
CoV-2 infected cells, and both EVs and the virus share 
similarities in terms of size, cellular pathways of bio-
genesis/infection, cellular release, and uptake by target 
cells [44, 45]. Many viruses hijack the exosome biogen-
esis pathway for viral assembly, maturation, trafficking 
and release, and EVs released from virus infected cells 
are enriched in viral proteins and nucleic acids [46–49]. 
During viral replication in host cell, the viral proteins 
and nucleic acids can be incorporated into the ILVs in 
MVBs of endosomal compartments and consequently 
delivered via exosomes [50–52]. In the context of SARS-
CoV-2, direct evidence showing the crosstalk between 
EV biogenesis and viral infectious cycle is not available. 
However, EVs carrying viral S protein were isolated from 
blood samples of SARS-CoV-2 infected patients [53]. 
Cells expressing SARS-CoV-2 S protein releases EVs with 
surface expression of full-length S protein indicating that 
S protein can be incorporated in EVs [54]. Interestingly, 
this study showed that viral S protein in EVs is functional 
and can act as targets for neutralizing antibodies from 
commercial and convalescent patient sera in  vitro. This 
suggests that presence of EVs carrying S protein could act 
as decoys of viral neutralizing antibodies which in turn 
promote viral entry in cells [54]. However, comparative 
proteomic characterization of EVs isolated from plasma 
of patients with mild and severe disease reported higher 
expression of viral S protein in EVs from mild patients 
than severe patients [53]. In addition, mild COVID-19 
EVs activated CD4+ T helper cells and enhanced immune 
response against SARS-CoV-2 antigen compared to EVs 
from severe patients in vitro [53]. Another study identi-
fied that S protein carrying EVs were induced following 
mRNA-based vaccine administration [55]. Furthermore, 
EVs containing viral S protein elicited S protein specific 
antibody response following vaccination [55]. This rein-
forces the ability of EVs to present the viral S protein to 
antigen processing cells and activate immune response. 
Hence, the presence of viral S protein in EVs might be a 
mediator of immune activation or antibody inactivation 

depending on the complex interplay between EVs, SARS-
CoV-2 and the immune system.

Whilst studies have reported the presence of S pro-
tein in EVs, it is unclear whether EVs acquire the viral 
S protein from cells during active viral replication. In 
addition, EVs in patient plasma might acquire the viral 
components in extracellular environment or the viral 
particle contaminants might be copurified with EV isola-
tions. Interestingly, whole SARS-CoV-2 can be packaged 
into EVs released from cells undergoing virus induced 
apoptosis [56]. Electron microscopy analysis revealed 
SARS-CoV-2 induce apoptotic changes in infected cells 
releasing larger EVs approximately 1–10 µm in diameter 
containing large numbers of live viral particles [56]. The 
EVs carrying viral particles protect the virus from neu-
tralizing antibodies and mediate viral entry in target cells 
by receptor-independent uptake mechanism [56]. Hence 
EVs can act as vehicles for SARS-CoV-2 to circulate in 
the system evading immune response and promotes a 
universal delivery of viruses bypassing specific receptor 
mediated viral entry. On the other hand, ACE-2 postive 
EVs were reported to be released by cell and identified to 
act as decoys for removal of SARS-CoV-2 by binding to 
the S protein [18, 54, 57]. In this way, heterogenity in the 
molecular composition of EVs might impart contradic-
tory effects on viral propagation and disease progression.

Extracellular vesicles as mediators of acute inflammation 
in COVID‑19
Inflammation is a key feature of COVID-19 and severe 
disease is associated with sudden release of pro-inflam-
matory cytokines such as IL-1, IL-6, TNF-α and inter-
feron, called ‘cytokine storm’, leading to the migration of 
immune cells into the infection site, capillary damage, 
and multi-organ failure [58]. Differential expression of 
inflammatory and cardiovascular disease related pro-
teins in circulating EVs in COVID-19 has been reported 
and expression levels of pro-inflammatory proteins, 
EN-RAGE (extracellular newly identified receptor for 
advanced glycation and end products binding protein), 
TF (tissue factor), and IL-18R1 in EVs were correlated 
to disease severity [59]. The EVs carrying differential 
expression of inflammatory proteins induced apopto-
sis in pulmonary endothelial cells in the order of the 
disease severity of patients [59]. Another study showed 
an increase in anti-inflammatory metabolites such as 
LysoPS, 7-α,25-Dihydroxycholesterol, and 15-d-PGJ2 
and decrease in coagulation related metabolites such as 
thromboxane and elaidic acid in EVs from COVID-19 
patients [60]. The altered profile of inflammatory proteins 
in EVs could be an effect of the inflammatory pathology 
in the cells reflected in the EVs. On the other hand, EVs 
can play a role in mediating the immune-pathological 
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effects of SARS-CoV-2 in distant cells. This has been 
shown in  vitro by exposing target cells to EVs derived 
from patients from different severity groups versus 
healthy controls and identifying an altered inflamma-
tory response in target cells [59, 61]. It was reported 
that tenascin-C and fibrinogen-β are highly abundant in 
circulating small EVs from COVID-19 patients in com-
parison to healthy controls, and that exposure of human 
hepatocytes to these EVs triggers proinflammatory 
cytokines, evidenced by an increased expression of TNF-
α, IL-6, and CCL5 [61]. Further EVs from severe patients 
induced NLRP3, IL-1β, and caspase-1, in microvascular 
and liver endothelial cells [62], and triggered apoptosis 
and cell death in pulmonary microvascular endothelial 
cells [59] compared to EVs from patients with mild dis-
ease and healthy controls. Also, it has been described 
that SARS-CoV-2 S protein transfected HEK-293  T 
cells release EVs with miR-148a and miR-590, which 
when internalised by human microglial cells, targets the 
USP33-IRF9 pathway, suggesting an important role as 
effectors in neuroinflammatory damage [12]. Hence EVs 
could be mediators of inflammation by transfer of inflam-
matory molecules such as cytokines [63, 64], as well as 
specific moieties that can regulate the inflammatory 
pathways in target cells [65–67]. COVID-19 is character-
ized by altered profile of pro or anti-infammatory mol-
ecules in EVs derived from patient plasma compared to 
healthy controls [59–61]. Interestingly, these EVs carry-
ing proinflammtory mediators when delivered on target 
cells in vitro act as propagators of inflammation [12, 59, 
61, 62]. However, knowledge regarding the impact of 
inflammatory EVs on systemic inflammation using ani-
mal models is limited. Additionally, studies analysing the 
mechanism of loading of the inflammatory protein in EVs 
combined with their specific cell of origin might shed 
light on the immunomodulatory role of EVs in COVID-
19 and their translation into therapeutic vehicles/targets.

Extracellular vesicles in COVID‑19 associated coagulopathy
An interplay between inflammation and coagulation 
leading to thrombo-inflammation is critical in the patho-
genesis of COVID-19 and helps determine the severity 
and mortality of the disease [68]. Thrombo-inflammation 
is characterized by activation of platelets and formation 
of activated complexes with neutrophils and monocytes. 
These complexes trigger activation of endothelium, and 
dysregulation of coagulation, complement and inflam-
matory response, and activate recruitment of leuko-
cytes [69, 70]. COVID-19 patients displayed higher EV 
levels derived from different sources such as platelets, 
endothelial cells, leukocytes, neutrophils, and alveolar 
macrophages, than controls [8, 14, 71–74]. SARS-CoV-2 
can be taken up by platelets in an ACE2 dependent or 

independent manner [75]. Using transmission electron 
microscopy macroparticle mediated internalization of 
SARS-CoV-2 in platelets in an ACE-2 independent man-
ner has been reported [75]. Further, SARS-CoV-2 infec-
tion leads to platelet apoptosis and necroptosis and 
associated morphological changes causing the release of 
heterogenous population of EVs such as microparticles 
of different sizes, migrasomes originating form migrating 
cells, small EVs and large vacuoles [75]. Phosphatidyl ser-
ine is a marker of dying cells and activated platelets and 
an indication of platelet function during COVID-19 [76]. 
Phosphatidyl serine positive platelet EVs were elevated 
in COVID-19 patients compared to healthy controls, 
and strongly correlated with disease severity [74]. The 
phosphatidyl serine positive platelet-EVs carrying PD-L1 
(Programmed death- ligand 1) were shown to preferen-
tially bind to  CD8+ T cells, [74]. Hence, phosphatidyl 
serine expressing platelet derived EVs might reprogram 
the T cell response in COVID19 contributing to disease 
severity [74]. In contrast, another study reported that 
total EVs from platelets increase in severe and nonsevere 
disease compared to healthy controls, but phosphatidyl-
serine-exposing platelet EVs were significantly increased 
only in non-severe patients [8].

Activated platelets stimulate the surface expression of 
tissue factor (TF) in monocytes and activated monoc-
tyes release TF in free form and associated with EVs 
[77]. Furthermore, the assembly of TF with factor VIIa 
leads to formation of prothrombinase complex in acti-
vated platelets promoting thrombin formation and fur-
ther platelet activation [70]. Several studies reported 
that circulating EVs TF activity was higher in COVID-19 
patients compared to healthy controls and was associ-
ated with the severity and mortality of disease [78–80]. 
Presence of high levels of EVs with TF in severe COVID 
indicates the ability of EVs to transfer TF intercellularly 
or directly contribute to thrombus formation and serve 
as a link between inflammation and coagulation [80]. 
The coagulopathy induced by the hyperactivate platelets 
and thrombin formation causes activation of endothelial 
cells [81]. Endothelial damage/dysfunction is a classical 
pathological feature in COVID-19, which could be medi-
ated by the immunocoagulopathy or cytokine storm [82, 
83]. E selectin expression in endothelial cells mediates 
the leucocyte infiltration into inflammatory loci leading 
to tissue or organ damage [84]. In corroboration with 
this, endothelial EVs in COVID-19 express high levels of 
E-selectin (CD62), which correlated with critical disease 
and mortality [85]. In addition, this study evaluated the 
predictive value of CD62E + EV subtype on COVID-19 
related mortality [85]. In addition to being markers of 
endothelial damage, EVs can act as mediators of endothe-
lial dysfunction [86]. For example, a study by Lascano 
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et  al. evaluated the circulating levels of EV-associated 
neutrophil elastase activity and identified the correla-
tion to pulmonary endothelial damage [87]. The authors 
suggest that neutrophil derived EVs with high neutro-
phil elastase activity exacerbate endothelial dysfunction 
in COVID-19 [87]. As previously mentioned proteins 
of inflammatory and coagulation pathways are upregu-
lated in EVs in COVID-19 and EV mediated transfer of 
proinflammtory molecules could induce apoptosis of 
endothelial cells [59]. Hence EVs are critical mediators of 
thromboinflammation and mediate vascular damage in 
COVID-19.

The majority of studies linking EVs to COVID-19 
pathogenesis focus on molecules associated with inflam-
mation and coagulation in EVs and fewer studies have 
explored into EV moieties other than protein. One such 
study is by Wang et  al. which demonstrated that the 
expression of miRNAs, miR-7-5p, miR-24-3p, miR-
145-5p, and miR-223-3p in circulating EVs to be higher 
in younger patients and lower in older adults and those 
living with diabetes. These EV associated miRNAs can 
effectively inhibit the viral S protein and replication, and 
contributes to difference in disease severity between 
patients with different age and comorbidities A study 
conducted by Song et  al., 2020 performed comprehen-
sive analysis of the plasma metabolome and lipidome in 
COVID-19 patients [88]. This study identified that the 
lipodomic profile in EVs in COVID-19 reflects the over-
all plasma lipidomic signature. EVs in COVID-19 were 
enriched in sphingomyelins and monosialodihexosyl 
gangliosides(GM3) and had reduced levels of diacylg-
lyerols. The levels of GM3-enriched EVs elavated with 
disease severity. GM3 levels in plasma of the COVID 
patients negatively correlated with CD4 + T cell counts 
implicating the role of GM3-enriched EVs in the regula-
tion of T cell and contribution to disease severity [88]. 
Clinical translation of the knowledge about the molecu-
lar cargo in EVs and their role in the pathogenesis of 
COVID-19 could help stratification of patients and per-
sonalization of therapies. An illustration depicting role 
of EVs in the pathogenesis of COVID-19 is presented as 
Fig. 1.

Extracellular vesicles in diagnosis, therapeutics 
and vaccine development in COVID‑19
The molecular content of EVs reflect the pathological 
events in their cells of origin, EVs have been evaluated 
for their biomarker potential to detect the COVID-19 as 
well as predict the severity of acute disease. Balbi et al., 
reported that serum-derived EVs from COVID-19 ( +) 
patients express higher surface markers such as CD49e, 
CD206, CD86, CD133/1, CD69, CD142, and CD20 than 
healthy controls (COVID-19 (−) patients) [89]. Using 

a multivariate model and ROC analysis, it was shown 
that the expression of tissue factor CD142-bound EV 
activity is increased in COVID-patients and associated 
with TNF-α serum levels [89]. It has been showed that 
severe patients’ sera contained increased amounts of 
CD13 + and CD82 + EVs which correlated with the fre-
quency of IL-6 producing monocytic myeloid-derived 
suppressor cells. In addition, sera of mild COVID-19 
patients contained more HLA-ABC + EVs than healthy 
controls and more CD24 + EVs than that observed in 
severe COVID-19 patients [90]. Fujita et al., reported that 
EV-protein COPB2, a subunit of Golgi coatomer com-
plex, is highly abundant in mild patients compared to 
severe or critical patients, and evaluated the diagnostic 
performance to patient stratification in the early phase of 
disease [91].

In addition, analysis of EV cargo showed that poten-
tial biomarkers of COVID-19 related inflammation and 
coagulation such as fibrinogen, fibronectin, complement 
C1r subcomponent, and serum amyloid P-component 
were differentially expressed and effectively discrimi-
nated SARS-CoV-2 infection from healthy controls [11]. 
The standard routine diagnosis of COVID-19 is per-
formed by quantitative PCR (qPCR) of SARS-CoV-2 
RNA in respiratory samples [92]. The presence of SARS-
CoV-2 in circulation can be detected by qPCR of circu-
lating SARS-CoV-2 RNA but with lower sensitivity [93]. 
Interestingly, SARS-CoV-2 RNA was identified in small 
EVs [11]. Detection of SARS-CoV-2 RNA encapsulated 
in EVs is an attractive alternative to plasma free circulat-
ing SARS-CoV-2 RNA which is diluted and degraded by 
nucleases and exhibits poor performance with quantita-
tive PCR. Ning et al., captured plasma derived EVs using 
the CD81 antibody and amplified the SARS-CoV-2 RNA 
by fusing with liposomes loaded with target amplification 
reagents, enabling accurate identification of COVID-19 
patients with greater sensitivity [13]. This can be utilized 
in situations in which detection of SARS-CoV-2 in blood 
is required as a secondary test to standard testing using 
respiratory samples.

In view of the important roles of EVs in COVID-19 
pathogenesis, several groups have explored the possibil-
ity that these recent findings may aid in the development 
of new therapeutic interventions against COVID-19. 
Engineered EVs exposing the ACE2 receptor can act as 
effective decoys for the SARS-CoV-2 virus and can be 
utilized for viral neutralization [15, 18, 54, 57, 94–96]. 
For example, Xie et al., reported that EVs enriched with 
palmitoylated ACE2 reduced viral load and lung inflam-
mation in human ACE2 transgenic mice [15]. Similarly, 
ACE2-overexpressing microparticles administered intra-
nasally in a SARS-CoV-2-infected mouse model inhibit 
the proinflammatory phenotype of alveolar macrophages 
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by increasing lysosomal pH, thus inducing a therapeutic 
effect against SARS-CoV-2 infection [97]. EV-decorated 
nanoparticles expressing the ACE-2 receptor was used to 
compete with ACE2 expressing cells for binding to viral 
S protein [95]. EVs derived from ACE-2 overexpressing 

lung cells when administered intranasally were taken up 
by alveolar macrophages and enhanced lysosomal degra-
dation of the virus by altering the pH levels in the endo-
somal compartments, leading to increased treatment 
efficacy in a mouse model [98].

Fig. 1 Role of EVs in the pathogenesis of acute COVID‑19. The similarities in the EV biogenesis and SARS‑CoV‑2 infection pathway leads 
to packaging and release of viral proteins in EVs. The S protein loaded in EVs act as decoys for neutralizing antibodies and contradictorily activate 
immune response. ACE2 in EVs act as decoys for the virus. The virus induced cellular apoptosis triggers release of virus encapsulated in apoptotic 
bodies which help the virus to evade immune cells and neutralizing antibodies as well as provide receptor independent viral uptake in target cells. 
The Damage Associated Molecular Patterns (DAMPs) released by apoptotic cells activate immune cells and release pro‑inflammatory cytokines 
which in adverse conditions lead to cytokine storm. The endothelial damage and platelet activation in SARS‑CoV‑2 infection leads to blood 
clot formation and coagulopathy. EVs released from immune cells and platelets are key mediators of imfalmmation and coagulation by transfer 
of molecular cargo between cells
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On the other hand, expressing the viral S protein in 
EVs for specifically targeting cells that highly express 
ACE2, and delivering anti-viral therapeutic agents has 
been a promising strategy. For example, engineered EVs 
loaded with the receptor- binding domain (RBD) of the 
S protein accumulate specifically in the tissues enriched 
with the ACE2 receptor, including lungs, and deliv-
ered anti-viral siRNAs to suppress infection in  vivo 
[99]. Engineered EVs decorated with the RBD of viral 
S protein, and labelled with an imageable molecule is 
an attractive method to monitor the in vivo biodistribu-
tion, and the binding affinities of different viral variants 
to inform therapeutic strategy [100].

Additionally, engineered EVs have been used for 
targeted treatment of the acute inflammation and 
organ damage associated with the pathological seque-
lae of COVID-19. Activated specialized tissue effector 
EVs derived from genetically modified fibroblasts is 
reported to inhibit the mTOR pathway and exert cyto-
protective and antiviral effects [101]. Also, the thera-
peutic effect of mesenchymal stem cell derived EVs in 
regulating the immune response has been evaluated 
[21]. Interestingly, ginger exosome-like nanoparticle 
containing miRNA aly-miR396a-5p inhibits the viral 
Nsp12 and S protein genes and alleviates the lung 
inflammation in SARS-CoV-2 infection [17].

mRNA-based vaccines directed against the SARS-
CoV-2 S protein has been authorized for vaccination 
in COVID-19 [102, 103]. EVs can be involved in the 
development of the immune response following immu-
nization. It has also been shown that in healthy adults 
who received the Pfizer–BioNTech vaccine, EVs carry-
ing the SARS-CoV-2 S protein were detected before the 
antibody response to S protein [55]. Mice immunized 
with these EVs  developed a specific humoral and cel-
lular immune response to the SARS-CoV-2 S protein 
[55]. Interestingly, EVs can act as carriers of the vaccine 
candidate to be delivered in the host cell. For example, 
EVs loaded with mRNAs encoding immunogenic forms 
of the SARS-CoV-2 S and N proteins can effectively 
induce a dose-dependent anti-S and anti-N antibody 
response as well as antigen-specific T cell-mediated 
immunity in mice [24]. In another study Wang et  al., 
showed that an inhalable COVID-19 vaccine composed 
of human lung-derived EVs decorated with a recom-
binant SARS-CoV-2-RBD protein induces, in mice 
and hamsters, both a humoral and cellular immune 
response against SARS-CoV-2 infection and can be 
stored at room temperature [23]. On the other hand, 
DNA vectors expressing the fusion products of inactive 
HIV-1 Nef protein and SARS-CoV-2 S and N proteins 
loaded in EVs induces a strong CD8 + T cell immunity 
in mice immunized with these vectors [26, 104, 105]. 

An illustration depicting the clinical utility of EVs in 
COVID-19 is presented as Fig. 2.

COVID‑19 and long‑term effects
Long COVID or post acute sequelae of COVID-19 is a 
condition affecting multiple organs comprising of mul-
titute of symptoms that follows the acute infection from 
SARS-CoV-2 [106]. WHO describes long term effects of 
COVID-19 otherwise named ‘long COVID’ as the con-
tinuation or development of new symptoms 3  months 
after the initial SARS-CoV-2 infection with these symp-
toms lasting for at least 2  months with no other expla-
nation [107]. Fatigue, shortness of breath and cognitive 
dysfunction are amongst the most frequent symptoms 
of long COVID, although more than 200 different symp-
toms can be associated with the condition [107]. A pio-
neering study conducted in COVID-19 patients from 
Italy reported the persistence of at least one COVID-19 
related symptom 60 days after recovery. The most com-
mon symptoms were fatigue and dyspnoea, and joint 
pain and chest pain were found in high proportions 
[108]. This delay in returning to the former heath trajec-
tory is observed not only in patients that have recovered 
from severe COVID-19 which required intensive care 
admissions, but also in patients recovered from mild 
and moderate symptoms [109] Furthermore, many stud-
ies reported patients showing variety of symptoms in 
the post-acute phase affecting multiple organs including 
lungs, heart, immune system, nervous system, gastro-
intetsinal system, kidneys and endocrine system [106]. 
Around 10% of people who have had COVID-19 have 
reported long COVID, however the exact numbers are 
uncertain [106]. In addition, studies to understand the 
pathophysiology of long COVID-19 are at an early stage. 
Table 1 summerizes the major studies that reported long 
COVID as persistence of symptoms or onset of new 
sympstoms in patients post acute illness.

Pulmonary consequences of COVID‑19
Impaired lung function characterized by decreased diffu-
sion capacity and diminished respiratory muscle strength 
is reported to persist 30 days after hospital discharge in 
COVID-19 patients [110]. A study by Wu et al., prospec-
tively followed up severe COVID-19 patients for 3, 6, 9, 
and 12 months after discharge and reported persistence 
of pulmonary changes at 12 months after discharge. There 
was a significant decline in diffusion capacity and persis-
tence of radiological changes in a subgroup of patients 
(24%) at 12  months after discharge [111]. The persis-
tence of long-lasting symptoms, including shortness of 
breath, is reported even in non-hospitalized patients, up 
to seven months post-infection [112]. Among the pulmo-
nary function tests, impairment in diffusion capacity is 
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reported most commonly followed by ventilatory defects 
in COVID-19 survivors, mostly in association with the 
severity of the disease [113–117]. The predominant chest 
CT abnormality associated with acute COVID-19 is the 
ground glass opacity of lungs, which peaks during illness 
and had persisted at the time of hospital discharge [118]. 
In patients with more severe disease at acute phase, the 
persistence of chest CT abnormalities with ground glass 
opacity were reported in studies that were performed up 
to 6 months follow up [111, 116, 119–122].

Cardio‑metabolic consequences of COVID‑19
The long-term impact of COVID-19 involves abnormali-
ties associated with the cardiovascular system as well 
[123]. Myocardial inflammation (myocarditis) has been 
described in severe acute COVID-19 with activation of 
DNA damage [123, 124]. A study reporting cardiac mag-
netic resonance imaging in recovered COVID-19 patients 

around 71 days after COVID-19 diagnosis identified car-
diac involvement and ongoing myocardial inflammation 
independent of COVID-19 severity, or course of acute 
illness and presence of co-morbidities [125]. Moreo-
ver, patients with mild or no symptoms that were diag-
nosed as SARS-CoV-2 positive by real-time PCR showed 
myocarditis nearly 12–53  days after diagnosis [126]. 
Retrospective analysis of US electronic health database 
identifies that COVID-19 diagnosis is associated with 
increased incidence of hypertension, chest pain, coronary 
atherosclerosis and heart failure compared to healthy 
controls and changes in a graded manner according to 
the severity of the disease [127]. However, the pathophys-
iology of long term impact on COVID-19 on cardiovas-
cular system is currently poorly understood.

Co-morbidities such as hypertension, cardiovascular 
diseases, obesity, and insulin resistance, are responsible 
for poorer prognosis of acute COVID-19 [123, 128–130]. 

Fig. 2 EVs in the pathogenesis of COVID‑19 and their utility in clinical translation. EVs released from infected cells may contain SARS CoV 2 virus 
in double membrane vesicles, viral nucleic acids, proteins, virus induced cellular factors, mediators of inflammation, coagulation and organ 
damage,and factors associated with perpetuation of COVID‑19 or long COVID. The intercellular transfer of cargo via EVs promote the spread 
of the virus and reprogram host disease susceptibility leading to the development of acute and long term consequences of COVID. EV associated 
molecular signature in COVID‑19 can be investigated for their biomarker potential and therapeutic utility
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Hyperglycaemia is associated independently with 
COVID-19 related death in people with type 1 and type 2 
diabetes [128]. Furthermore, in COVID-19 patients with 
type 2 diabetes, well-controlled blood glucose is corre-
lated with reduced mortality and adverse outcomes [129].

The pathophysiology of COVID-19 and diabetes has a 
bidirectional interplay in which COVID-19 could induce 
metabolic complications including diabetic ketoacidosis 
and hyperglycaemia in diabetic patients [130]. In addi-
tion, COVID-19 can precipitate newly diagnosed dia-
betes, leading to long-term metabolic consequences in 
recovered patients [131]. This may be the result of unre-
solved inflammation from the acute SARS-CoV-2 infec-
tion which correlates with the persistence of insulin 
resistance and abnormal beta cell function [131]. Pan-
creatic beta cells express the ACE2 receptor protein, the 
TMPRSS2 enzyme protein, and neuropilin 1 (NRP1), all 
of which may help the entry of SARS-CoV-2 into beta 
cells [132]. Infection of pancreatic beta cells with SARS-
CoV-2 can lead to cellular reprogramming, cell death, 
and reduced production and release of insulin from pan-
creatic beta cells [133]. Rathmannn et  al. reported that 
individulas with COVID-19 showed increased incidence 
of type 2 diabetes compared to controls with acute upper 
respiratory tract infections up to 500 days post infection 
[134]. Retrospective study using the electronic health 
database of the US Department of Veterans Affairs in a 
cohort of 181280 COVID positive participants and con-
temporary (n = 4118441) and historical (n = 4286911) 
controls for 352  days post-COVID reported increased 
burden of diabetes and anti-hyperglycemic use [135]. 
However, retrospective study using national register in 
Scotland in a cohort of 365,080 individuals reported type 
1 diabetes increased during pandemic, but was not asso-
ciated with SARS-CoV-2 infection [6]

Other post‑acute sequelae of COVID‑19
Long COVID can impact multiple organs and a multi-
tude of symptoms have been identified [106]. Chronic 
health loss in COVID-19 survivors involving multiple 
organs, including nervous, gastrointestinal, haemato-
logical, and musculoskeletal systems have been reported 
[127]. During acute illness, SARS-CoV-2 may enter brain 
tissue and invade the olfactory nerve causing anosmia 
[136]. Headache, vertigo and other symptoms associated 
with chemosensory dysfunction and cognitive symptoms 
are reported to persist after COVID-19 [108, 112, 137]. In 
addition, psychiatric problems associated with COVID-
19 are reported to persist months after recovery and this 
includes post-traumatic stress disorder, depression, anxi-
ety, and insomnia [138]. Renal sequelae of COVID-19 
is characterized by high mortality, which was reported 
in a follow up study of COVID-19 survivors with acute 

kidney disease requiring renal replacement [139].Gas-
trointestinal sequelae include gut dysbiosis, abdominal 
pain and nausea whilst in the reproductive system, long 
COVID leads to erectile dysfunction and reduced sperm 
count in men, and abnormal premenstrual symptoms 
and irregular menstruation in females [106]

In children, COVID-19 was initially reported to cause 
only mild disease without severe manifestations [140]. 
However, in April 2020, a severe systemic hyperinflam-
matory condition called multisystem inflammatory syn-
drome (resembling Kawasaki disease), that develops 
4–6  weeks after COVID-19, was reported in children. 
This involves multiple systems, and clinical symptoms 
such as fever, a hyperinflammatory state, skin lesions, 
abdominal pain, diarrhoea and vomiting [141]. Cardiac 
manifestations are predominant, including myocarditis, 
coronary artery abnormalities, pericarditis, pericardial 
effusion, and valvular regurgitation [142]. Taken together, 
the long-term sequelae of COVID-19 in recovered 
patients can seriously threaten the overall wellbeing and 
day to day activities. Hence, studies exploring biomarkers 
to predict the occurrence of long COVID is critical for 
patient management.

There are several hypotheses regarding the underlying 
mechanism of long COVID, including presence of a long-
lasting inflammatory response from the acute disease 
that affects multiple organs, tissue damage during acute 
disease resulting in release of autoantibodies, microbi-
ome dysbiosis in gut which may cause chronic inflamma-
tion, reactivation of latent viruses such as Epstein Barr 
virus, persistence of viral replication and all Pathogen 
Associated Molecular Patterns (PAMPS) after the reso-
lution of the acute infection, and continuation of tissue 
damage that occurred during active viral replication and 
acute disease [143–148]. An example for continuation 
of tissue damage is that significant micro clot formation 
that are resistant to fibrinolysin in the acute disease was 
continued to the post COVID phase [149, 150]. It is pos-
sible that some, all or none of these mechanisms drive the 
pathogenesis of long COVID. Indeed given the diversity 
of clinical symptoms in long COVID patients it is pos-
sible that different mechanisms of disease drive different 
clinical manifestations of the illness.

EVs as mediators of long‑term complications 
of COVID‑19
The long-term consequences of COVID-19 or long 
COVID-19 is an unexplored area that urgently needs 
studies to understand the clinical trajectory and bio-
logical mechanisms associated with the complica-
tions. Patients with long COVID have activated innate 
immune cells, reduced naïve T and B cells and elevated 
levels of proinflammatory cytokine including interferons 
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persisting more than 8  months following convalescence 
[146]. This study may indicate that the virus or viral 
antigen might be persisting post-acute phase in COVID 
[146]. The ability of EVs to maintain the viral infection 
and help viral establishment in chronic latent infections 
has been reported [151]. For example, in Human Immu-
nodeficiency Virus (HIV) infection, EVs from infected 
cells transfer viral components to uninfected cells and 
prime the neighbouring cells to viral infection [152, 153]. 
EVs help maintain a favourable host environment for long 
periods of time when the viral replication is minimal and 
promote persistent viral infection [151]. However, direct 
evidence regarding persistence of SARS-CoV-2 infection 
in long COVID patients is lacking. Heterogenous popula-
tions of EVs play a variety of roles as mediators of inflam-
mation in diseases [154–156]. Studies investigating the 
possible roles of EVs in sustenance of inflammation and 
programming of host immune response in SARS-CoV-2 
infection will provide more insights into this.

Nevertheless, EVs could have possible roles in sus-
taining the pathological effects/tissue damage caused by 
SARS-CoV-2 and promoting the persistence of disease. 
For example, EVs from COVID-19 patients 3-months 
post acute phase had differential protein profile associ-
ated with inflammation, coagulation and liver function 
[157].EVs from different stages of COVID-19 infection, 
including pre-symptomatic, disease, and convalescent 
phase, reported alterations in protein and lipid com-
position during the course of disease [158]. Specifically, 
alterations in EV protein and lipids associated with 
immune response, coagulation processes and choles-
terol metabolism were identified along the temporal 
trajectory of the disease [158]. Further, EVs from differ-
ent stage of infection produced distinct metabolic effect 
on target cells indicating EVs as mediators of metabolic 
dysregulation in COVID-19 [158]. However, no studies 
so far have explored into the role of EVs in perpetuating 
the metabolic dysregulation of COVID in long COVID. 
Interestingly, EVs and their molecular cargo have been 
described as prognostic biomarkers and mediators of 
intracellular signalling in metabolic diseases [159–161]. 
Diabetes and obesity are associated with alterations in 
the concentration, cellular origin, and molecular cargo 
of circulating EVs, which affect target organs at a sys-
temic level, suggesting a potential pathogenic role of EVs 
in metabolic diseases [159–161]. Similarly, circulating 
EVs are increased in cardiovascular diseases [162, 163], 
with altered molecular cargo [164–166], and involved 
in cellular crosstalk between cardiomyocytes and non-
cardiomyocytes [167], contributing to the pathology of 
cardiovascular diseases [168, 169]. Given the strong asso-
ciation of EVs to endocrine-related conditions [7] and 
their ability to act as metabolic effectors in COVID-19 

[158] they could have possible roles in mediating the car-
dio-metabolic sequelae of long COVID.

Postacute neurological sequelae of SARS-CoV-2 infec-
tion includes an array of neurological disorders ranging 
from cognitive or memory impairment to stroke, enceph-
alitis or encephalopathy [170]. However, the pathologi-
cal basis of these neurological manifestations which are 
continuing or newly onset after many months of acute 
infection is not clear. Interestingly, long COVID with 
neurological symptoms is associated with altered profile 
of CD4 + and CD8 + T cells and B cells in cerebrospinal 
fluid which might indicate the role of sustained inflam-
mation in this condition [171] In addition, long COVID 
patients with neurological symptoms showed differential 
expression of plasma cytokines compared to recovered 
patients without neurological symptoms [172]. EVs of 
neuronal origin can be specifically isolated using anti-
bodies against L1 cell adhesion molecule (L1CAM) which 
is expressed in neurons [172, 173]. Interestingly, SARS-
CoV-2 S and N protein were higher in neuronal EVs in 
COVID-19 in post acute phase (both with and without 
long COVID) compared to healthy controls [173]. Neu-
ron derived EVs from recovered individuals with post-
acute neuronal synptoms showed differential expression 
of mitochondrial proteins associated with metabolism, 
energy generation, ion channels and neuronal survival 
[173]. However, the link between mitochondrial dysfunc-
tion caused by SARS-CoV-2 with implications on central 
nervous system is not clearly known. A study by Sun et al. 
reported increased expression of protein markers of neu-
rodegeneration including amyloid beta, neurofilament 
light, neurogranin and tau in neuron EVs in patients 
with long COVID at 1 to 3 months post-infection [172]. 
This is in line with the pivotal role of EVs in the patho-
genesis of neurodegenerative diseases transfer of patho-
logical proteins between neurons [174–176]. Overall, 
current evidence linking EVs to the post-acute sequelae 
of COVID-19 is limited a. Large cohort studies analysing 
the cargo of total or cell type specific EVs across the dis-
ease trajectory upto to the long-COVID stage combined 
with mechanistic studies to understand the effect of EVs 
on recipient cells are required to shed light into this area 
of research. Figure 2 illustrates the potential involvement 
of EVs in the pathogenesis of COVID and their utility in 
clinical translation.

Future directions of EV research for long COVID
Currently there are several unanswered clinical ques-
tions in the long-term consequences of COVID-19 
which are (1) How many patients recovering from 
COVID will suffer from long-term consequences? (2) 
What are the underlying disease conditions that con-
tribute to development of long term sequelae? (3) Can 
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we predict the development of long COVID during the 
acute phase of the disease? (4) How can long COVID be 
supported, medically or using life style interventions? 
[109, 146, 177]. Identification of biomarkers that can 
predict long COVID in acute phase is a critical research 
need. It is known that certain factors such as severity 
of the acute infection, vaccination status, sex and co-
morbidities predict the risk for long COVID [106, 143, 
178] but there is a lack of biomarker that can predict 
ones risk of long COVID. This impairs patient diagnosis 
and seriously affects the estimates of disease prevalence 
and subsequent public health planning.

However, obtaining study participants in a longi-
tudinal study design for extended time periods and 
resources required for conducting the patient recruit-
ment, sample collection and processing pose major 
challenge in conducting large scale multi-centre stud-
ies. Long COVID is characterised by a diverse array of 
symptoms possibly originating from different mecha-
nisms of disease and currently there is an absence of 
clear diagnostic criteria causing difficulty in interpret-
ing findings between different studies. A clear definition 
of patient inclusion criteria with definition of outcomes 
and common protocols is required to overcome this 
[109]. In addition, the potential bias attributed to the 
variant of SARS-CoV-2 infection, vaccination status 
and treatment undergone duing acute disease should be 
considered [179, 180].

When using EVs in clinical studies, strigent and uni-
form methods for collection and storage of samples, iso-
lation of EVs, analysis of contents and reporting of results 
should be employed. EV levels and contents are highly 
dynamic and change drastically with pre-analytical vari-
ables such as time of processing, temperature of storage 
and processing, presence/absence of coagulation, degree 
of hemolysis etc. [181]. For example, EVs derived from 
non-target cells such as blood cells at the time of sample 
collection could mask the disease specific EV signature 
from target cells [182]. In addition, different EV isolation 
methods yield EVs with different purity and particles/fac-
tors coisolated with EVs can mask the disease signature 
or contribute to the function of EVs depending on the 
research question being addressed [181]. Hence straight 
forward and robust method of EV isolation and EV char-
acterization should be employed for optimum results in 
clinical translation. Proteins and miRNAs are the most 
studied molecules in EVs due to advancement in prot-
eomics and sequencing techniques [183, 184]. However, 
mRNA [185], DNA [186] and lipid content [187] of EVs 
could be critical mediators of disease mechanisms and 
required to be studied with regard to long COVID. Fur-
ther studies to address the limitations of EV research 
in large scale clinical studies could help overcome the 

potential bias attributed by the above factors and develop 
a comprehensive understanding of EVs in long COVID.

Concluding remarks
As we navigate the multifaceted landscape of COV-
ID-19’s impact on human health, it becomes evident that 
our journey towards understanding and addressing its 
long-term consequences is far from over. Longitudinal 
observational studies and rigorous clinical trials stand 
as indispensable pillars in constructing a comprehen-
sive comprehension of the virus’s enduring effects. These 
efforts not only empower us to decipher the intricate 
aspects of COVID-19’s influence on patients’ well-being 
but also provide the insights needed to tailor healthcare 
systems to effectively manage these consequences. In 
this context, the intriguing role of EVs and their intricate 
molecular cargo emerges as an area of great promise. By 
functioning as potent mediators of intercellular commu-
nication in various metabolic disorders, EVs could poten-
tially establish a crucial link between COVID-19 and 
its enduring aftermath. The unique molecular signature 
(e.g., bioactive lipids, proteis and nuclic acids) carried 
by EVs during the acute phase of the disease unveils the 
prospect of employing them as sensitive indicators of the 
long-term implications of COVID-19, potentially offering 
a valuable tool for prognosis and monitoring. However, 
the significance of these insights extends beyond diagnos-
tic applications. Particularly the potential for EVs to serve 
as precursors of novel therapeutic targets for patients 
with long COVID. In providing fresh perspectives into 
the molecular pathways of EV signaling within the patho-
genesis of these enduring consequences, we uncover the 
possibility of discovering previously uncharted roads for 
intervention. This presents optimism for the significant 
population dealing with the complexities of long COVID, 
offering the potential for improved management and 
enhanced quality of life.

It is important to acknowledge the limitations of our 
current understanding. The field of EV research in the 
context of COVID-19’s long-term effects is still evolving, 
and while the potential is promising, further compre-
hensive longitudinal studies are required to validate the 
role of EVs as both diagnostic indicators and therapeu-
tic avenues. Moreover, the intricate interplay between 
EVs and the numerous factors influencing long COVID 
underscores the requirement for a comprehensive explo-
ration that fully embraces the multifaceted nature of this 
condition. The integration of EV research into our under-
standing of COVID-19’s long-term implications not only 
enriches our scientific understanding but also holds the 
promise of translating knowledge into tangible benefits 
for individuals affected by this widespread and intricate 
condition. Finally, the collective efforts of researchers, 
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healthcare professionals, and institutions remain crucial 
in unraveling the problem of long COVID.
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