
Wang et al. Journal of Translational Medicine          (2023) 21:671  
https://doi.org/10.1186/s12967-023-04509-5

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Understanding the relationship 
between circulating lipids and risk of chronic 
kidney disease: a prospective cohort study 
and large-scale genetic analyses
Yutong Wang1, Li Zhang1, Wenqiang Zhang1, Mingshuang Tang1, Huijie Cui1, Xueyao Wu1, Xunying Zhao1, 
Lin Chen1, Peijing Yan1, Chao Yang1, Chenghan Xiao2, Yanqiu Zou1, Yunjie Liu1, Ling Zhang3, Chunxia Yang1, 
Yuqin Yao4, Jiayuan Li1, Zhenmi Liu2, Xia Jiang1,5,6* and Ben Zhang1* 

Abstract 

Background This study aims to comprehensively investigate the phenotypic and genetic relationships between four 
common lipids (high-density lipoprotein cholesterol, HDL-C; low-density lipoprotein cholesterol, LDL-C; total choles-
terol, TC; and triglycerides, TG), chronic kidney disease (CKD), and estimated glomerular filtration rate (eGFR).

Methods We first investigated the observational association of lipids (exposures) with CKD (primary outcome) 
and eGFR (secondary outcome) using data from UK Biobank. We then explored the genetic relationship using sum-
mary statistics from the largest genome-wide association study of four lipids (N = 1,320,016), CKD  (Ncase = 41,395, 
 Ncontrol = 439,303), and eGFR(N = 567,460).

Results There were significant phenotypic associations (HDL-C: hazard ratio (HR) = 0.76, 95%CI = 0.60–0.95; TG: 
HR = 1.08, 95%CI = 1.02–1.13) and global genetic correlations (HDL-C: rg = − 0.132, P = 1.00 ×  10–4; TG: rg = 0.176; 
P = 2.66 ×  10–5) between HDL-C, TG, and CKD risk. Partitioning the whole genome into 2353 LD-independent regions, 
twelve significant regions were observed for four lipids and CKD. The shared genetic basis was largely explained by 29 
pleiotropic loci and 36 shared gene-tissue pairs. Mendelian randomization revealed an independent causal relation-
ship of genetically predicted HDL-C (odds ratio = 0.91, 95%CI = 0.85–0.98), but not for LDL-C, TC, or TG, with the risk 
of CKD. Regarding eGFR, a similar pattern of correlation and pleiotropy was observed.

Conclusions Our work demonstrates a putative causal role of HDL-C in CKD and a significant biological pleiotropy 
underlying lipids and CKD in populations of European ancestry. Management of low HDL-C levels could potentially 
benefit in reducing the long-term risk of CKD.
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Graphical Abstract

Introduction
Circulating lipids play an important yet complex role in 
the development of chronic kidney disease (CKD). While 
large-scale prospective cohort studies have demonstrated 
the risk effect of triglycerides (TG) (risk ratio (RR) = 1.28, 
95%CI = 1.16–1.41) [1], low high-density lipoprotein cho-
lesterol (HDL-C) (RR = 1.21, 95%CI = 1.12–1.30) [1], and 
low-density lipoprotein cholesterol (LDL-C) (RR = 1.04, 
95%CI = 1.02–1.06) [2] on the onset of CKD, these find-
ings have not been supported by clinical studies aimed 
at understanding the effects of lipid-lowering therapies. 
Recent clinical trials have shown little benefit or even 
deleterious effect among treated dyslipidemia patients in 
relation to incident kidney disease [3, 4]. Indeed, inter-
ventions in randomized trials are often implemented 
over relatively short periods, typically around 40 months 
for phase III trials [5]. Additionally, conventional obser-
vational studies can be susceptible to environmental con-
founding and reverse causality [6].

In the subsequent efforts raised to address these dis-
crepancies, genetic data has been used to overcome 
these drawbacks. Notably, a modest genetic correlation 
underlying circulating lipids and CKD has been quanti-
fied by a twin study (TG-CKD, rg = 0.13; HDL-C-CKD, 

rg = -0.14) [7]. Multiple pleiotropic loci (i.e., CD36 and 
PCSK9) have further been identified as affecting LDL-C 
and total cholesterol (TC) levels as well as CKD or kid-
ney function [8–10]. Moreover, Mendelian randomiza-
tion (MR) studies have suggested a putative causal effect 
of HDL-C on CKD, with estimates ranging from 0.85 to 
0.96 [11–13]. Despite these progresses, there are still a 
few major gaps that remain to be addressed. First, except 
for HDL-C, the causal roles of other lipids on CKD 
remain unclear. While some MR studies reported signifi-
cant causal effects of three lipids (LDL-C, TC, and  TG) 
on CKD or kidney function [2, 14, 15], the others did not 
[12, 13]. Second, previous genetic research has relied on 
genome-wide association studies (GWAS) conducted on 
relatively small samples [2, 11–15], which limits the sta-
tistical power. Third, the majority of MR studies have not 
taken into account the independent effects of each lipid 
phenotype [12–14]. Fourth, the information obtained 
from previous genetic studies was relatively fragmented, 
lacking large-scale observational or genetic analyses 
that simultaneously investigate the degree and nature of 
shared etiology.

Therefore, leveraging the hitherto largest observational 
and genetic data, we aimed to comprehensively evaluate 
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the relationships between four lipid phenotypes (HDL-
C, LDL-C, TC, and  TG) with CKD and with estimated 
glomerular filtration rate (eGFR). We first examined the 
phenotypic association using individual-level data from 
the UK Biobank (UKB). We next performed genetic 
analyses to quantify global and local genetic correlations, 
identify pleiotropic loci, and detect putative causal rela-
tionships underlying these complex traits. We set CKD as 
the primary outcome of interest and eGFR as the second-
ary outcome. The overall study design is shown in Fig. 1.

Methods
UK Biobank data UK Biobank is a large population-
based prospective cohort study with over 500,000 indi-
viduals aged 40–69 at the time of recruitment in the UK 
from 2006 to 2010 [16]. All participants provided writ-
ten informed consent, and UK Biobank received ethi-
cal approval from the National Health Service Research 
Ethics Service. We only considered participants of white 
British descent (N = 472,050). We defined CKD by the 
International Classification of Diseases, tenth Revision 
(ICD-10) code N18. We excluded participants with a his-
tory of kidney disease at baseline (ICD-9 codes 580–589; 
ICD-10 codes N00-N29), those with missing informa-
tion of HDL-C, LDL-C, TC, or TG at baseline, or those 
receiving lipid-lowering therapy at enrollment and dur-
ing follow-up, leaving 357,662 participants for the cur-
rent analysis.

GWAS summary statistics for lipids and CKD
Lipids GWAS The hitherto largest lipids GWAS sum-
mary statistics were obtained from the Global Lipids 
Genetics Consortium, aggregating 146 cohorts total-
ing 1,320,016 individuals of European ancestry [10]. 
We selected 380, 403, 429, and 388 single nucleotide 
polymorphisms (SNPs) of genome-wide significance 
(P < 5 ×  10–8) as instrumental variables (IVs) for HDL-
C, LDL-C, TC, and TG, respectively (Additional file  1: 
Tables S1–S4). We also applied GWAS summary statis-
tics for other analyses.

CKD GWAS The hitherto largest GWAS of CKD was 
conducted by the CKDGen Consortium, meta-analyz-
ing data from 23 participating studies combining 41,395 
cases and 439,303 healthy controls (all of European 
ancestry) [9]. CKD was defined as an eGFR below 60 ml/
min per 1.73  m2. As the original GWAS did not report 
index variants, we thus selected 27 independent genome-
wide significant (P < 5 ×  10–8) SNPs by applying clump-
ing at a linkage disequilibrium (LD) threshold of r2 < 0.01 
(Additional file 1: Table S5). The relevant GWAS of eGFR 
comprised 567,460 individuals of European ancestry [9]. 
We selected 256 SNPs as IVs to proxy eGFR (Additional 
file  1: Table  S6). To minimize the false positive findings 

due to sample overlap, we further adopted another CKD 
GWAS for MR sensitivity analysis from the FinnGen con-
sortium (https:// r7. finng en. fi/), involving 6,604 cases and 
299,094 controls.

Statistical analyses
Observational analysis
Baseline characteristics of participants from the UK 
biobank were described as mean ± standard deviation 
(SD) for continuous variables and count (percentage) 
for discrete variables. We constructed a Cox propor-
tional hazards regression model with baseline-measured 
HDL-C, LDL-C, TC, and TG as the exposure. We used 
three sets of adjustments. Estimates in model 1 (basic 
model) were adjusted for age, sex, region, body mass 
index (BMI), hypertension, diabetes mellitus, and the 
top 10 genetic principal components. Estimates in model 
2 were further adjusted for income, Townsend depriva-
tion index, smoking, drinking, physical activity, sleep 
duration, antihypertensive medications, and hypoglyce-
mic medications usage at baseline and during follow-up. 
Estimates in model 3 (full model) were further adjusted 
for lipid fractions. In the sensitivity analysis, we excluded 
participants with less than a year of follow-up or a diag-
nosis of CKD within one year after enrollment. We fur-
ther divided plasma lipids into quartiles and repeated the 
above analysis. All statistical analyses were performed 
using SAS version 9.4 (SAS Institute, Cary, NC). Statisti-
cal tests were two-sided, and significant levels were set at 
P < 0.05.

Genome‑wide genetic correlation analysis
We quantified the genome-wide genetic correlation using 
LD score regression (LDSC) [17]. The genetic correlation 
estimates rg range from − 1 to + 1, with + 1 denoting a 
complete positive correlation and − 1 indicating a perfect 
negative correlation. Bonferroni correction was applied 
to correct for multiple statistical tests. We defined a sig-
nificant rg as P < 6.25 ×  10−3 (α = 0.05/8, number of phe-
notype pairs) and suggestive rg as 6.25 ×  10−3 ≤ P < 0.05.

We further estimated the pairwise local genetic correla-
tion using SUPERGNOVA [18]. This algorithm partitions 
the whole genome into 2,353 approximate LD-independ-
ent blocks and quantifies shared local effects driven by 
genetic variants at each particular region. A Bonferroni-
adjusted P-threshold (P < 2.12 ×  10–5 = 0.05/2,353) was 
applied to determine statistical significance.

Cross‑trait meta‑analysis
We next conducted a Cross-Phenotype Association 
(CPASSOC) analysis to identify potential pleiotropic var-
iants that affect both traits [19]. We computed pairwise 
 SHet, a statistic that is more powerful when heterogeneity 

https://r7.finngen.fi/
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Fig. 1 Flowchart of overall study design. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total 
cholesterol; TG, triglycerides; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate
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exists. We used the PLINK clumping function to obtain 
independent shared variants (parameters: -clump-p1 
5e-8 -clump-p2 1e-5 -clump-r2 0.1 -clump-kb 500) [20]. 
Significant index SNP was defined as PCPASSOC < 5 ×  10–8 
and Psingle-trait < 1 ×  10–5 (for both traits). Novel shared 
SNP was defined if all following conditions were satis-
fied: (1) the SNP did not reach genome-wide significance 
(5 ×  10–8 < Psingle-trait < 1 ×  10–5) in original single-trait 
GWAS; (2) the SNP was not in LD (r2 < 0.1) with any of 
those previously reported genome-wide significant SNPs 
in single-trait GWAS. Ensemble Variant Effect Predictor 
[21] was applied for detailed functional annotation of the 
identified pleiotropic SNPs.

Fine mapping credible‑set analysis and colocalization 
analysis
We performed a fine-mapping analysis using FM-sum-
mary [22] to identify a credible set of SNPs 99% likely to 
contain the causal SNP at each of the shared loci obtained 
from CPASSOC. We conducted a colocalization analysis 
applying Coloc to calculate the posterior probabilities 
under the hypothesis of the sharing causal variants in a 
genomic region (H0-H4) [23]. A locus was considered 
colocalized if the posterior probability for H4 (PPH4, the 
probability that both traits are associated through shar-
ing a single causal variant) was greater than 0.5.

Transcriptome‑wide association studies
We performed a transcriptome-wide association study 
(TWAS) using FUSION based on 49 GTEx (version 8) 
tissue expression weights to investigate gene expression 
in specific tissues [24]. We first performed 49 TWASs 
for each trait, one tissue-trait pair at a time. We then 
conducted joint/conditional tests for a locus with mul-
tiple associated features to investigate conditionally 

independent genes at each locus. We further integrated 
single-trait TWAS results to identify shared gene-tissue 
pairs common to both traits.

Mendelian randomization analysis
Two-sample MR analyses were performed using sum-
mary statistic data to investigate the causal relationship. 
The inverse-variance weighted (IVW) approach was 
applied as the primary method [25]. As a complement 
to IVW, we also conducted MR-Egger regression and 
a weighted median approach [26, 27]. A Bonferroni-
adjusted P-threshold of 6.25 ×  10−3 (α = 0.05/8, number of 
phenotype pairs) was applied, and 6.25 ×  10−3 ≤ P < 0.05 
was defined as suggestive significance. An effect esti-
mate was considered putative causal if it was significant 
in IVW and showed directional consistency in the MR-
Egger regression and weighted median approach. We 
conducted an additional sensitivity analysis by excluding 
palindromic IVs with strand ambiguity and replicating 
the significant associations using nonoverlapped data. 
We further performed a multivariable MR (MVMR) 
approach to disentangle the independent effect of each 
lipid exposure while controlling for genetic predisposi-
tion to the remaining lipids traits, type 2 diabetes (T2D)
[28], hypertension [16], and BMI [29]. Finally, we calcu-
lated F-statistic [30] for each set of IVs to assess weak 
instrument bias (Additional file 1: Table S7).

Results
Phenotypic association
The baseline characteristics of UKB participants included 
in the observational analysis were presented in Addi-
tional file 1: Table S8. In total, participants were followed 
for 4,342,332 person-years (12.14 ± 1.87  years), during 
which 7,934 individuals developed CKD (Table  1). In 
basic model, all four lipids were significantly associated 

Table 1 Observational associations between lipids and subsequent risk of chronic kidney disease

Hazard ratios (HRs) are provided with 95% confidence intervals

Model 1: adjusted for age, sex, region, BMI, hypertension, diabetes mellitus, the top 10 genetic principal components

Model 2: model1 + income, Townsend deprivation index, smoking, drinking, physical activity (IPAQ), sleep duration, antihypertensive medications usage at baseline 
and during follow-up, hypoglycemic medications usage at baseline and during follow-up

Model 3: model1 + income, Townsend deprivation index, smoking, drinking, physical activity (IPAQ), sleep duration, antihypertensive medications usage at baseline 
and during follow-up, hypoglycemic medications usage at baseline and during follow-up, HDL-C, LDL-C, TC, and TG

HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, IPAQ international physical activity 
questionnaire, BMI body mass index, HR hazard ratio

Primary analysis Sensitivity analysis

Model 1 Model 2 Model 3

HDL-C 0.50(0.46–0.54) 0.68(0.61–0.75) 0.76(0.60–0.95) 0.78(0.62–0.99)

LDL-C 0.90(0.87–0.93) 0.97(0.94–1.01) 0.99(0.77–1.26) 1.01(0.79–1.29)

TC 0.89(0.87–0.92) 0.97(0.94–1.00) 0.98(0.79–1.21) 0.97(0.78–1.20)

TG 1.13(1.11–1.16) 1.10(1.06–1.13) 1.08(1.02–1.13) 1.07(1.02–1.13)
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with the risk of CKD (HDL-C: hazard ratio (HR) = 0.50, 
95%CI = 0.46–0.54; LDL-C: HR = 0.90, 95%CI = 0.87–
0.93; TC: HR = 0.89, 95%CI = 0.87–0.92; TG, HR = 1.13, 
95%CI = 1.11–1.16). With further adjustments, signifi-
cant associations remained only for HDL-C (HR = 0.68, 
95%CI = 0.61–0.75) and TG (HR = 1.10, 95%CI = 1.06–
1.13), while LDL-C or TC was no longer associated with 
CKD. In full model, the effect of HDL-C (HR = 0.76, 
95%CI = 0.60–0.95) and TG (HR = 1.08, 95%CI = 1.02–
1.13) attenuated to some extent yet remained statistically 
significant. Similar results were observed in the sensitiv-
ity analysis. The patterns remained consistent when each 
lipid variable was categorized into quartiles (Additional 
file 1: Table S9).

Global and local genetic correlation
As shown in Fig.  2A, a significant global genetic cor-
relation was observed for CKD with both HDL-C 
( rg = -0.132, P = 1.00 ×  10–4) and TG ( rg = 0.176, 
P = 2.66 ×  10–5). No significant result was found for 
either LDL-C ( rg = − 0.002, P = 0.95) or TC ( rg = 0.003, 
P = 0.93). For kidney function, a similar pattern of corre-
lation was observed (Fig. 2B).

Partitioning the whole genome into 2,353 LD-inde-
pendent regions and after correcting for multiple testing 
(P < 2.12 ×  10–5), we identified twelve genomic regions 
(HDL-C: 12q23.3-q24.11,17q12; LDL-C: 1P31.3, 7q11.23, 
11q14.1, 15q21.1-q21.2, 17q11.2; TC: 7q11.23, 11q14.1, 
17q11.2; TG: 2q35, 4q32.1, 11q14.1, 12p13.31, 14q24.2, 
and 22q13.1) demonstrating a significant local genetic 
correlation for lipids and CKD (Fig.  2C–F). Notably, 
chr11:77,904,339–79,723,318 at 11q14.1 was repeatedly 
identified as a significant region in three of four analy-
ses, harboring GAB2, a well-established susceptible locus 
for both lipids and kidney function and TENM4, a pre-
viously reported susceptible gene for kidney function. 
Regarding kidney function, 12 regions were identified for 
HDL-C with eGFR, 14 for LDL-C, 10 for TC, and 12 for 
TG (Fig.  2G–J). Detailed information on each region is 
shown in Fig. 2.

Cross‑trait meta‑analysis
We continued to perform pairwise CPASSOC analysis 
to identify pleiotropic loci (Fig.  3 and Additional file  1: 
Table  S10, S11). In total, we identified 29 independent 
pleiotropic SNPs shared between lipids and CKD, includ-
ing 12 loci for HDL-C and CKD, nine loci for LDL-C and 
CKD, seven loci for TC and CKD, and nine loci for TG 
and CKD. Among these, we determined two novel SNPs 
(rs780094 and rs12951387) shared by HDL-C and CKD. 
SNP rs780094 was mapped to GCKR, a pleiotropic gene 
associated with diabetic and cardiometabolic traits [31, 
32], and SNP rs12951387 was mapped to GGNBP2, a 

gene harboring eGFR- and metabolic biomarkers-associ-
ated loci [33, 34].

Relaxing the disease status CKD into its underlying 
physiological measure eGFR, we identified 383 independ-
ent pleiotropic SNPs, among which 30 were novel pleio-
tropic SNPs (6 for HDL-C, 3 for LDL-C, 9 for TC, and 12 
for TG).

Detailed annotations of each variant are shown in 
Additional file 1: Table S12–S19.

Fine mapping credible‑set analysis and colocalization 
analysis
For all identified pleiotropic SNPs, we determined a 99% 
credible set of causal SNPs using FM-summary, providing 
targets for downstream experimental analysis. In particu-
lar, we identified only one candidate causal SNP in the 
99% credible set for HDL-C and CKD (rs1047891) with a 
posterior probability of 1.00. With regard to kidney func-
tion, more causal variants were identified for lipids and 
eGFR. Lists of candidate causal SNPs at each pleiotropic 
locus are shown in Additional file 1: Table S20–S27.

Colocalization analysis was next conducted to deter-
mine whether genetic variants driving the association 
between different traits were the same. We identified 
36.4% of shared loci colocalized at the same candidate 
SNPs (PPH4 > 0.5) for HDL-C-CKD, including two novel 
shared SNPs (rs780094 and rs12951387). Regarding kid-
ney function, more causal variants were identified (Addi-
tional file 1: Table S28, S29).

Transcriptome‑wide association study
We identified multiple independent gene-tissue pairs 
shared between lipid phenotypes and CKD or kidney 
function (Additional file 1: Table S30, S31). A total of 36 
significant tissue-gene pairs were detected for CKD with 
at least one lipid phenotype, including seven genes (4 
with HDL-C, 3 with LDL-C, 1 with TC, and 6 with TG) 
mainly enriched in tissues of the nervous, cardiovascular, 
and reproductive system. Among the 7 TWAS-signifi-
cant genes, six were previously implicated in  lipids and/
or kidney function (GWAS Catalog accessed by Decem-
ber 31, 2022), including PCNX3 associated with HDL-
C, RGS14, and CCDC158 associated with eGFR, MXD3, 
MAP3K11, and OVOL1 associated with lipids and eGFR. 
Regarding kidney function, 892 significant tissue-gene 
pairs were detected and mainly enriched in tissues of the 
nervous and cardiovascular systems.

Bidirectional Mendelian randomization
We continued to conduct a bidirectional MR to evalu-
ate potential casual associations motivated by the sig-
nificant shared genetic basis. We only identified a 
causal relationship of genetically predicted HDL-C 
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 (ORIVW = 0.91, 95%CI = 0.85–0.98, P = 4.36 ×  10–3) with 
the risk of CKD (Fig. 4). The causal estimates remained 
directionally consistent when  using MR-Egger regres-
sion (OR = 0.96, 95%CI = 0.87–1.05) or weighted 
median approach (OR = 0.92, 95%CI = 0.84–1.00). Sen-
sitivity analyses excluding palindromic SNPs (Fig.  4) 
or using CKD GWAS from the FinnGen consortium 
(Additional file 1: Table S32) supported the robustness 

of the results. MVMR generated similar results with 
even more pronounced magnitude and significance, 
suggesting an independent causal relationship. No 
causal association was found for LDL-C, TC, and TG 
with CKD (LDL-C:  ORIVW = 0.97, 95%CI = 0.91–1.02, 
P = 0.27; TC:  ORIVW = 0.95, 95%CI = 0.89–1.00, P = 0.07; 
TG:  ORIVW = 1.06, 95%CI = 0.99–1.13, P = 0.12). For 

Fig. 2 Genome-wide genetic correlation between lipids and chronic kidney disease. The boxes (A, B) denote the point estimate of the global 
genetic correlation, and the error bars denote 95% confidence intervals (CI). In the QQ plots (C–J), red points represent genomic regions 
that contribute significant local genetic correlation as estimated by SUPERGNOVA (P < 0.05/2353). HDL-C high-density lipoprotein cholesterol, LDL-C 
low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, CKD chronic kidney disease, eGFR estimated glomerular filtration rate
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kidney function, no causal association was found 
between genetically predisposed lipids level and eGFR.

In the reverse-direction MR, genetic predisposi-
tion to CKD or eGFR did not seem to causally affect 
lipids levels. Genetically predicted CKD was only 
significantly associated with a higher level of TG 
 (betaIVW = 0.018, 95%CI = 0.006–0.031) (Additional 

file  2: Fig. S1), yet the estimate was not direction-
ally consistent in MR-Egger regression. Regard-
ing kidney function, genetically predisposed eGFR 
was significantly associated with a lower level of TG 
 (betaIVW = −0.282, 95%CI = −0.429–0.136), yet it 
became nonsignificant in MVMR.

Fig. 3 Novel pleiotropic loci between lipids and chronic kidney disease identified from cross-trait meta-analysis. A HDL-C and CKD phenotypes; 
B LDL-C and CKD phenotypes; C TC and CKD phenotypes; D TG and CKD phenotypes. In the circular Manhattan plot, the two circular lanes depict 
the cross-trait meta-analysis results between lipids traits and CKD phenotypes (blue: eGFR, light blue: CKD). The outermost numbers represent 
chromosomes 1–22. The red dots represent novel pleiotropic SNPs in the cross-trait meta-analysis (PCPASSOC < 5 ×  10–8, 5 ×  10–8 < Psingle-trait < 1 ×  10–5 
(in both traits), and were not in LD (r2 < 0.1) with both single-trait index SNPs). HDL-C high-density lipoprotein cholesterol, LDL-C low-density 
lipoprotein cholesterol, TC total cholesterol, TG triglycerides, CKD chronic kidney disease, eGFR estimated glomerular filtration rate
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Discussion
To the best of our knowledge, this is the most com-
prehensive observational and genetic analysis that 
systematically investigates the phenotypic association 
and the shared genetic architecture among circulating 
lipids, CKD, and kidney function. In both phenotypic 
and genetic analyses, associations with CKD or kidney 
function were consistently more evident for HDL-C 
than for other lipid components. We found a significant 
shared genetic basis between lipids and CKD or kid-
ney function on several genomic regions, a number of 
pleiotropic loci, and shared expression-trait pairs. We 

further identified a pronounced causal effect of HDL-C 
in the development of CKD.

The intrinsic connection between lipids and CKD, or 
kidney function reflected by the significant global and 
local genetic correlations, can be the result of pleiotropy 
and/or causality. In our downstream MR analysis per-
formed to explore these alternatives, we identified low 
HDL-C concentration was genetically associated with an 
increased risk of CKD. Meanwhile, based on the large-
scale prospective data, we found a phenotypic association 
between HDL-C and CKD risk. Consistent with previ-
ous MRs [11–13], we further extended the investigation 

Fig. 4 Mendelian randomization analysis between lipids and chronic kidney disease. The boxes denote the point estimate of the causal effects, 
and the error bars denote 95% confidence intervals (95%CI). MVMR models were adjusted for body mass index, hypertension, type 2 diabetes, 
HDL-C, LDL-C, TC, and TG. HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, 
CKD chronic kidney disease, eGFR estimated glomerular filtration rate, MVMR multivariable mendelian randomization
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by at least doubling  the number of IVs (380 IVs vs. 122 
IVs [12]; 380 IVs vs. 84 IVs [11]; 380 IVs vs. 195 IVs [13]). 
Incorporating additional IVs substantially improved 
the strength of genetic instruments as well as both the 
accuracy and precision of MR estimates. Moreover, we 
detected an independent causal relationship between 
HDL-C and CKD from MVMR. Although a prior study 
has additionally corrected the pleiotropic effect of gly-
cated hemoglobin and blood pressure using MVMR, the 
numbers of incorporated IVs were only 3 ~ 29 [11]. In 
comparison, our study has distinguished the impact of 
lipid fractions, T2D, hypertension, and a nonnegligible 
factor BMI [35], using a substantially enlarged number 
of IVs (231 ~ 670). Different from HDL-C, we detected 
no causal effect of LDL-C, TC, and TG on CKD or kid-
ney function. Conversely, findings from Copenhagen 
studies indicated that high LDL-C was genetically asso-
ciated with an elevated risk of  CKD [2], while a recent 
two-sample MR study reported the causally protective 
effect of TC on CKD risk. Besides, another MR analysis 
integrating results from the UK biobank and the Trøn-
delag Health Study (HUNT) only found a possible weak 
effect of higher LDL-C or TG on increased kidney func-
tion [15]. The possible explanation for these inconsist-
ent positive findings is the limited sample size and IVs of 
prior applied genetic data [2, 11–15], resulting in reduced 
power and accuracy. Additionally, the prior one-sample 
MR [2] might not have fully considered the exclusion 
restriction assumption of MR that the instrument–out-
come causal pathway must be mediated entirely via the 
exposure of interest [36], and the study has not tested 
this assumption by adjusting for measured lipid levels in 
the association between the weighted genetic scores and 
outcome risk [37].

Results from cross-trait meta-analyses demonstrated 
the biological pleiotropy between lipids and CKD or kid-
ney function. Multiple novel shared loci were mapped to 
genes implicated in alcohol intake (GIT2 and HOMER2) 
[38, 39], glucose metabolism or diabetes (FNIP1, 
PFKFB2, LINC00393, GCKR, RER1, and IGF1R) [40–43], 
obesity (GGNBP2, ITSN2, and FBXL17) [42, 43], bio-
logical processes related to kidney fibrosis or podocyte 
injury (CHCHD1, PRR12, PKP3, PPM1B, COL8A1, and 
ACTN4) [44–49], and endothelial function (ADAM15, 
RAB5A, and GAB1) [50–52], reflecting potential mecha-
nistic pathways linking lipids to CKD. Here we highlight 
two novel candidate causal variants, rs12951387, and 
rs780094, shared by HDL-C and CKD. SNP rs12951387 
is located in GGNBP2, encoding a gametogenetin-bind-
ing protein associated with obesity [42, 43, 53]. Obesity 

could lead to multiorgan ectopic lipid accumulation, 
characterized by adipocyte hypertrophy, insulin resist-
ance, dysregulation of inflammatory cytokines and adi-
pokines, and stimulation of pro-inflammatory signaling 
pathways, which could further result in oxidative stress, 
inflammation, and fibrosis in the kidney, and finally trig-
gers glomeruli and kidney tubule damage [54]. SNP 
rs780094, located in GCKR, is a well-characterized pleio-
tropic SNP. The T-allele of this SNP is associated with a 
reduced HDL-C level [10] but a lower diabetes risk [28] 
and greater kidney function [9], indicating a complex 
biological mechanism underlying HDL-C and CKD. At 
the gene-tissue pair level, the multiple genes identified in 
the nervous and cardiovascular system indicated a bio-
logical mechanism through the heart–brain–kidney axis, 
and more studies are warranted to fully explore these 
complex mechanisms.

Our findings have important clinical and public health 
implications. Firstly, HDL-C is a causal protective factor 
for CKD. Our study indicated the long-term renal-pro-
tective effect of managing low HDL-C levels. As clinical 
evidence showed non-significant improvement of kidney 
function or reduction CKD incidence via current dys-
lipidemia treatments primarily targeting cholesteryl ester 
transfer protein inhibition [4], it is plausible that in addi-
tion to HDL-C, other particles, such as sphingosine-1 
phosphate, apolipoprotein M, apolipoprotein A-I, or par-
aoxonase-1, reflecting the functionality of HDL, might 
also influence kidney health [55–58]. Future research 
should also explore the effects of these HDL components 
on CKD onset or kidney function changes. Secondly, our 
genetic work suggests a common biological mechanism 
for lipids and CKD. Identifying specific pleiotropic loci 
and genes regulating common biological pathways may 
help explore broad-spectrum therapeutic targets that 
could benefit both precision prevention and treatment 
of lipid-CKD comorbidity in the future. We hypothesize 
that aggregating large-scale GWAS to identify common 
genetic underpinnings may guide new drug development 
or drug repurposing.

We acknowledge several potential limitations. Firstly, 
our findings were restricted to individuals of European 
ancestry. As the relationships between  lipids and CKD 
risk show significant racial differences [13], future stud-
ies are expected to extend to other ancestry groups. 
Secondly, a substantial sample overlap (23.3% in our 
study) might bias the causal estimations toward obser-
vational associations [59]. As the magnitude of bias in 
IV estimates depends on the F-statistics [60], the F-sta-
tistics were over 289 for lipid instruments and over 56 
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for CKD instruments in our study, indicating that the 
potential bias stemming from sample overlap is likely 
to be minimal. Our sensitivity MR analysis utilizing 
non-overlapping GWAS data yielded similar results, 
thereby mitigating the potential for false positive find-
ings. Furthermore, other genome-wide cross-trait analy-
sis approaches demonstrate robustness in dealing with 
sample overlap [17–19]. Thirdly, two-sample MR using 
GWAS summary data assumes a linear effect of the 
exposure on outcome [25]. Recent studies have indicated 
potential U-shaped relationships between HDL-C levels 
and the risk as well as the mortality associated with sev-
eral conditions [61, 62]. Despite the absence of a statisti-
cally significant causal association between HDL-C and 
kidney function in our two-sample MR analysis, future 
research should leverage individual-level genetic data to 
elucidate the nature between HDL-C and kidney func-
tion. Fourthly, the effects of genetic variables on lipid 
phenotypes and kidney functions were obtained predom-
inantly from population-based cross-sectional studies 
and, therefore, may not reflect progression over time. The 
relationship between the alterations in lipid levels and 
the change in kidney functions could be further clarified.

Conclusions
The current study confirms a putative causal effect of 
HDL-C on CKD through an observational and genetic 
analysis of European ancestry. Dyslipidemia management 
targeting low HDL-C levels could help mitigate the long-
term burden of CKD. Future studies should consider the 
potential for non-linear relationships as well as HDL 
functionality in CKD.
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