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Abstract 

Background A significant proportion of septic patients with acute lung injury (ALI) are recognized late due 
to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mor-
tality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier 
and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making 
sense of complex gene expression data to find robust ALI diagnostic biomarkers.

Methods The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normali-
zation, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning 
feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic 
model. The other datasets were considered as the validation sets. To further evaluate the performance and predic-
tive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were 
constructed. Finally, the potential small molecular compounds interacting with selected features were explored 
from the CTD database.

Results The results of GSEA showed that immune response and metabolism might play an important role 
in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus 
feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were 
selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 
and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, 
respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance 
and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol 
and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI.
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Conclusion This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish 
ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential 
therapeutic targets for sepsis-induced ALI.

Keywords Sepsis, Acute lung injury, Acute respiratory distress syndrome, Machine learning, Transcriptome

Introduction
Sepsis is a major public health concern which develops 
an abnormal host response to an infection, and is asso-
ciated with the life-threatening organ dysfunction [1, 2]. 
Acute respiratory distress syndrome (ARDS), a common 
and fatal complication of sepsis, is characterized by the 
damage of alveolar-capillary membrane leading to lung 
edema and hypoxemia [3]. In a large international study, 
approximately 75% of patients with ARDS were caused 
by sepsis [4]. According to the US report, there are over 
210,000 cases of sepsis-induced ARDS in the US annu-
ally [5]. Besides, septic patients with ARDS had a higher 
overall disease severity, poorer recovery from lung injury 
and higher mortality than non-sepsis-related ALI [6]. 
Despite the growing understanding of the mechanisms 
in sepsis-induced ARDS, we still remain incompletely 
understood of why only a fraction of septic patients will 
develop ARDS. Furthermore, ARDS will develop rapidly 
after initial insult, and no consensus has yet been reached 
regarding biomarkers that can be used to directly diag-
nose ARDS and assess lung injury. Thus, it is important 
to identify some diagnostic biomarkers for the diagnosis 
of ARDS.

Gene expression signatures have been an intense focus 
of studies in recent years. Numerous studies have indi-
cated that gene expression signatures have great predic-
tive value to identify septic patients with ARDS [7]. In 
one study, an 8-gene signature was found to be associ-
ated with acute lung injury (ALI), which could be used 
to distinguish ALI patients from septic patients [8]. Then, 
the expression of genes related to neutrophils was sig-
nificantly increased in septic patients with ARDS rather 
than patients with sepsis alone [9]. The recent study had 
also found the distinguishing gene expression profiles 
in monocytes between patients with sepsis and patients 
with sepsis with ARDS [10]. Thus, the gene signatures 
from gene expression profiles might be a novel and accu-
rate biomarkers to distinguish patients with ARDS. How-
ever, with a large number of gene signatures involving the 
pathophysiological process, identifying those relevant for 
diagnosis of ARDS can be computationally challenging.

Machine learning is an emerging field with huge 
resources to deal with large, complex and disparate data. 
It has progressively improved our ability to find relevant 
features in large and high-dimensional data from gene 
expression profiles [11]. Supervised machine learning 

has been used successfully to develop classifiers for dis-
ease diagnosis and identify the related biomarkers on the 
basis of the input features [12, 13]. However, it still lacks 
the research using machine learning to identify poten-
tial diagnostic biomarkers of sepsis-induced ALI. Here, 
we hypothesized that by integrating multiple machine 
learning algorithms, we could identify gene expression 
signatures for sepsis-induced ALI, which may serve as 
diagnostic tools. Moreover, the functional analysis of 
the diagnostic genes identified will provide insight into 
the pathogenesis mechanisms of ALI development and 
uncover druggable targets for its prevention. In this 
study, we systematically reviewed the available transcrip-
tomic profiling datasets, and identified the gene bio-
markers associated with the diagnosis of sepsis-induced 
ALI by using a consensus of four different supervised 
machine learning features selection techniques. Further 
insight into the role of biomarkers in the pathogenesis of 
sepsis-induced ALI and potential candidates for the ther-
apeutic intervention were explored.

Methods
Data sources used for analysis
The overall design of this study was shown in Fig.  1. 
We have retrospectively enrolled 5 datasets from Gene 
Expression Omnibus (GEO) (http:// www. ncbi. nlm. nih. 
gov/ geo) and ArrayExpress (https:// www. ebi. ac. uk/ array 
expre ss/) database. Datasets between 2009 and 2020 con-
taining transcriptomic profiling in Homo sapiens were 
potentially eligible. Datasets were excluded following the 
criteria: (1) the datasets included pediatric patients; (2) 
not measuring RNA; (3) patient’s samples were obtained 
after the admission over 48  h; (4) focusing on special 
pathogens such as Staphylococcus aureus and Pseu-
domonas aeruginosa; (5) not focusing on sepsis, sepsis-
associated lung injury or sepsis-associated pneumonia. 
Additional datasets could be added by manual search 
of the references of included studies. The detailed base-
line characteristics was summarized in Additional file 1: 
Table  S1. Among these datasets, GSE66890, GSE10474 
and GSE32707 were utilized to develop the diagnostic 
model. Then, E-MTAB-5273 and E-MTAB-5274 from 
the ArrayExpress database were applied to evaluate the 
performance of the diagnostic model in distinguishing 
sepsis-induced ALI patients.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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Data preprocessing and identification of differentially 
expressed genes (DEGs)
The datasets were downloaded from GEO and Array-
Express databases, and the probe expression matrix was 
converted to gene expression based on the platform 
annotation file. The expression matrix was further nor-
malized by robust multichip average (RMA). Genes were 
then filtered, keeping only those expressed in at least 
10% of arrays. In cases where datasets had missing val-
ues, Multiple Imputation were conducted by using the 
weighted average from k-nearest neighbors (KNN) to 
handle the missing values. Then, the datasets GSE66890, 
GSE10474 and GSE32707 were merged by using the 
“comBat” function in the sva package to remove the 
batch effect among the datasets. To evaluate the batch 
effect, we conducted the Principal Component Analysis 
(PCA) and t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) to investigate the data. The DEGs analysis 
between sepsis and sepsis-induced ALI was performed 
using the limma package. The thresholds of DEGs were 

|log fold change (FC)|> 0.2 and P value < 0.05. Then, the 
results were visualized in volcano plots and heatmap 
plots which were constructed by using the R packages 
ggplot and pheatmap. The guidelines of the transparent 
reporting of a multivariable prediction model for indi-
vidual prognosis or diagnosis (TRIPOD) statement were 
followed (Additional file 1: Table S2).

Pathway enrichment analysis
Based on the normalized gene expression matrix, the R 
package clusterProfiler was used to conduct the GSEA 
analysis. The pathway gene sets were downloaded from 
the molecular signature database (MSigDB). Normalized 
enrichment score (NES) and false discovery rate (FDR) 
were applied to quantify enrichment magnitude and sta-
tistical significance, respectively [14, 15].

Multivariable DEGs selection and model building
To further conduct the multivariable DEGs selec-
tion, we firstly need to eliminate the high mean 

Fig. 1 The overall flow of this study
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absolute correlation of DEGs by using a correlation 
matrix method. For each DEGs, the mean absolute cor-
relation based on the pair-wise correlations was calcu-
lated. If a pair-wise correlation was > 0.5, the DEGs with 
greater absolute correlation was removed by using the 
caret package in R [16].

In multiple DEGs selection, the four independent fea-
ture selection methods were simultaneously conducted to 
screen candidate biomarkers. The intersection amongst 
the four machine learning algorithms were considered 
the significant features. In each method, parameters were 
tuned using stratified tenfold cross-validation (repeated 
10 times) on the training set, and the cross-validation was 
also performed to overcome the imbalance of outcome 
variables. Then, we subsequently create predictive clas-
sification models by using a supervised machine learning 
method for binary classification, based on the selected 
features from machine learning algorithms. Elastic net 
linear regression could be used to select the relevant 
DEGs on binomial logistic regression using glmnet pack-
age in R [17]. We chose the regularization parameter, λ, 
using tenfold cross-validation with binomial deviance as 
the criterion. A probability threshold of > 0.5 was used to 
determine whether septic patients with ALI or not. SVM 
is a supervised learning manner to select relevant char-
acteristics and remove redundant characteristics using 
e1071 R package. Based on the best parameters, we chose 
Polynomial Kernel of svm to screen features. Boruta is a 
feature selection random forest wrapper algorithm used 
to obtain the relevant variables. We performed 300 items 
of the random forest normalized permutation impor-
tance function to attribute importance by using Boruta 
package. Then, we constructed the random forest model 
with the DEGs selected by Boruta using randomForest 
package [16]. XGBoost is a very effective method in in a 
range of classification problems. It is an extreme gradi-
ent boosting method which can rank features from most 
to least important by using XGBoost package in R [18]. 
The final parameters selected can be seen in Additional 
file  1: Table  S3. Features contributing to more than 1% 
improvement in accuracy to the branch were consid-
ered importance. However, few algorithms possessed the 
ability to perfectly perform feature selection. Thus, we 
constructed an ensemble supervised machine learning 
model based on the ‘stacking’ method, which refers to fit-
ting multiple machine learning models on the same data-
set and using secondary modeling to learn how to best 
combine their predictions [19]. The above supervised 
machine learning algorithms were combined to gener-
ate a consensus model. An ensemble of predictions from 
each model were generated by averaging the predicted 
probabilities from each individual supervised machine 
learning algorithm (Additional file 1: Figure S1). Models 

with highest area under the receiver operating curve 
(AUROC) in cross-validation were selected as the opti-
mal model.

Multivariable classifier performance assessment 
and validation
To further evaluate the performance of the diagnostic 
model, the AUCs of all methods above were calculated 
using average of the cross validation across the whole 
dataset. Then, we also assessed the accuracy of diagnos-
tic model through external validation. The two datasets 
(E-MTAB-5273 and E-MTAB-5274) from ArrayExpress 
database were applied to perform the verification, and 
the AUCs were also calculated. To further compare clas-
sifiers, we also looked at the performance of each super-
vised machine learning algorithm by using the evaluation 
metrics.

Functional analysis of diagnostic features
To further explore why diagnostic genes contribute to 
the development of ALI, we defined the top 30% and bot-
tom 30% of patients with diagnostic DEGs expression in 
the merged dataset as overexpression and low expres-
sion groups. Then, the differences and pathway activity 
change between groups were analyzed by gene set varia-
tion analysis (GSVA) [20].

Nomogram, decision curve analysis (DCA) and clinical 
impact curve (CIC) of predictive model
Nomogram is a graphical tool that is designed to approx-
imate complicate calculation quickly [21]. The selected 
gene signatures in diagnostic model were included to 
construct a nomogram model using rms package, which 
was established to predict the occurrence of ALI in sep-
tic patients. To validate the performance of nomogram, 
the concordance index (C-index) was calculated to assess 
the discrimination by a bootstrap method with 1000 
resamples. Then, the calibration curve was plotted to 
observe the nomogram prediction probabilities against 
the observed rates. DCA curves are widely used to meas-
ure clinical utility of a specific model by comprehensively 
considering the relative value of benefits and harms asso-
ciated with the prediction model, which can overcome 
the limitations of both traditional statistical metrics [22]. 
CIC could visually show the overall net benefit of nomo-
gram within the wide and practical ranges of threshold 
probabilities that might impact patient outcomes, which 
indicates that the diagnostic model possesses significant 
predictive value [23]. Thus, in this study, the DCA curves 
and CIC were used to evaluate the predictive value of 
diagnostic model by using rmda package.
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Drugs screened and docking
Based on the functional analysis of 5 selected features, 
we screened 5 protein-coding genes for targeted drugs. 
Drug selection criteria focused on the expression of 
selected features in sepsis-induced ALI patients. We 
used Autodock for molecular docking to find the inter-
action between small molecules compound and selected 
genes. First, we obtained the catalog of small molecules 
compound that interacting with selected genes from 
the CTD database (http:// ctdba se. org/), followed by the 
structures of small molecules compound from PDB data-
base (https:// rcsb. org/). Next, we downloaded the bio-
logical macromolecular structures of selected features 
from Uniprot database (https:// unipr ot. org/). Finally, 
the automatic docking of biological macromolecules and 
small molecular compounds was performed according to 
the standard docking process. The interaction of small 
molecular compounds and biological macromolecules 
was determined by lowest binding energy. The PyMol 
was used to visualize the results.

Statistical analysis
All data processing and analysis were conducted in R ver-
sion 4.2.0. Correlation analysis between two continuous 
variables were analyzed by Spearman Rank correlation 
analysis. Nonparametric test was used to compare the 
difference between two groups. The ROC curve used to 
predict binary categorical variables was implemented via 
pROC package. P value < 0.05 was regarded as statistically 
significant. Error bar span 95% confidence intervals.

Results
Screening for DEGs and underlying biological mechanisms
According to the exclusion criteria, 3 microarray raw 
datasets containing a total of 79 cases of sepsis and 60 
septic patients with ALI were included as the training set. 
The basic information of the included datasets is shown 
in Additional file  1: Table  S2. Through gene expression 
profiles and PCA, we observed that there were baseline 
batch differences among the included datasets (Addi-
tional file  1: Figure S2A, B). To merge the datasets, the 
“combat” algorithm was applied to eliminate the batch 
effect which could increase the analysis power in the 
following analysis. After performing batch-correction 
approach, the batch differences were all eliminated (Addi-
tional file  1: Figure S2C, D). Among them, the sample 
(GSM812638, GSM812696, GSM812737, GSM812705, 
GSM812721) were removed because they could not be 
integrated. Initial t-SNE was also conducted to show 
some separation between groups (Additional file  1: Fig-
ure S2E, F). Then, DEGs were obtained by using limma 
package based on the P-value < 0.05 and |Log2FC|> 0.2. 
The different expression analysis revealed that there was 

289 DEGs, including 76 upregulated and 193 downregu-
lated genes (Fig. 2A, B).

To decipher the possible biological mechanisms under-
lying sepsis-induced ALI, we performed GSEA on 21,338 
gene sets from MSigDB resource. The results showed 
that immune response and metabolism might play an 
important role in the development of ALI (Fig.  2C, D). 
Among them, the innate immune response, adaptive 
immune response and monocyte chemotaxis were signif-
icantly activated. Moreover, the pathways of chemokines 
secretion, Toll-like receptor and T cell receptor were also 
upregulated. To further explore the functional changes, 
we also conducted the functional enrichment analy-
sis, including KEGG and GO analysis (Additional file 1: 
Figure S3). Based on the GO analysis, we found that the 
sepsis-induced ALI might be initiated by an inflamma-
tory host response to a microbial pathogen (Additional 
file 1: Figure S3A). Then, mitochondrial plays an impor-
tant role in the pathogenesis in sepsis-induced ALI. The 
mitochondrial biogenesis and other processes could 
be regulated by LPS (via TLR4 activation) involving the 
inflammatory and/or oxidative stress in tissues (Addi-
tional file 1: Figure S3B and D) [24]. Changes in alveolar 
epithelial and endothelial cells during sepsis-induced ALI 
include alterations in cell–cell junction formation, cell 
surface glycocalyx, and cell trauma or death (Additional 
file 1: Figure S3C, D). Thus, the results showed that aber-
rant host response to infection leads to the disruption of 
alveolar-capillary barrier, resulting in the development 
of lung injury. Dysregulated immune response was asso-
ciated with the occurrence of sepsis-induced ALI, and 
monocytes might be the key immune cells contributing 
to the lung injury. Damage of endothelial and epithelial 
cells was essential for the progression of ALI.

DEGs selected using supervised machine learning 
algorithms
In this study, we profiled the DEGs from 77 sep-
tic patients without ALI and 57 septic patients with 
ALI. Since several of the supervised machine learning 
approaches could not account for the multicollinearity, 
we removed the DEGs failing quality control and DEGs 
highly correlated with each other (Additional file 1: Fig-
ure S4). Then, remaining 70 genes selection was used to 
determine the DEGs most relevant to the diagnosis. Four 
different machine learning methods (Elastic net, svm, 
random forest and XGBoost) were performed to select 
DEGs and construct diagnostic model. Each features sub-
sets selected by each method were different (Additional 
file  1: Figure S5A–D), and there were 5 genes overlap-
ping in all (Fig.  3A, B). Basic on the importance of fea-
tures, there were 27 genes were selected by Elastic net, 
29 genes were selected by svm, 20 genes were selected by 

http://ctdbase.org/
https://rcsb.org/
https://uniprot.org/
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random forest and 33 genes were selected by XGBoost. 
The genes (ARHGDIB, ALDH1A1, TREM1, TACR3 and 
PI3) selected by all methods were further used to con-
struct diagnostic model. The expression levels of selected 
features were showed in Fig. 3C–G. To ensure no individ-
ual features was driving the diagnostic model, a univari-
able analysis was conducted. For the DEGs selected by 
at least two methods, the expression levels of sepsis and 
sepsis-induced ALI were compared by using Wilcoxon 
signed-rank test, and controlled for multiple testing by 
using Benjamini Hochberg correction at 0.05. The cen-
tered expression values of DEGs selected by at least two 
methods were showed in Additional file 1: Figure S6A, B. 
32 DEGs identified in the feature selection methods had 
an p-value < 0.05.

Performance of diagnosis for sepsis‑induced ALI using 
selected DEGs
To compare the performance of each feature selection 
method, we evaluated how each model performed as 
a classifier on the validation set. As shown in Table 1, 
the svm model had the highest AUC (0.846) and accu-
racy (0.872). The random forest model had the poorest 

AUC (0.727) and accuracy (0.730) (Fig. 4A–D). As mul-
tivariable methods are known to select features with 
different accuracy, we conducted the ensemble learn-
ing algorithm using the DEGs selected by each model. 
The result showed that ensemble model had higher 
AUC (0.876) than svm model (Fig. 4E). Then, the num-
ber of DEGs selected by each model were also differ-
ent, with the XGBoost model selecting the most genes 
and random forest model selecting the least genes 
(Table 1). Moreover, we further focused on the overlap-
ping genes selected by four feature selection methods, 
and we evaluated the performance of individual over-
lapping genes in sepsis-induced ALI diagnosis. The 
result showed that PI3 had the best performance with 
the highest AUC (0.833). Then, the genes selected by 
all models were combined to construct the diagnostic 
model, and the model have great predictive value with 
higher AUC (0.875) (Fig.  4F). These results confirmed 
that the diagnostic model constructed by genes (ARH-
GDIB, ALDH1A1, TREM1, TACR3 and PI3) had per-
fect diagnostic efficiency. Thus, a clear association of 
selected features with sepsis-induced ALI diagnosis 
may warrant future investigation of specific genes for 
therapeutic intervention.

Fig. 2 Different expression analysis and functional studies. A, B Volcano plot and heatmap showed the differentially expressed genes. C, D The 
biological functions were associated with the development of sepsis-induced ALI
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Validation of diagnosis for sepsis‑induced ALI by using 
external datasets
To assess the predictive performance of diag-
nostic model, two datasets (E-MTAB-5273 and 
E-MTAB-5274) obtained from ArrayExpress data-
base were considered as external validation. The over-
lapping genes selected by four supervised machine 
learning algorithms were used to conduct ROC analy-
sis. The results showed that the AUC was 0.725 in 
E-MTAB-5273 (Fig.  5A) and 0.833 in E-MTAB-5274 
(Fig.  5B). Thus, the results of external validation 

demonstrated that the diagnostic model constructed 
by 5 genes had excellent performance in sepsis-induced 
ALI.

Visualization of the diagnostic model
For visualization of the diagnostic model, the risk nomo-
gram that integrated 5 independent predictors for the 
incidence of sepsis-induced ALI (Fig.  6A). The calibra-
tion curves for incidence of sepsis-induced ALI indicated 
a high degree of overlap between the actual incidence 
rate and the incidence rate predicted by the nomogram 

Fig. 3 The DEGs selected by each machine learning methods. A Venn diagram showed the intersection of DEGs selected by four supervised 
machine learning approaches. B The expression correlation matrix among DEGs selected by all machine learning algorithms. C–G The expression 
levels of PI3, ARHGDIB, ALDH1A1, TREM1 and TACR3

Table 1 Model performance of 4 classifiers in validation set

Elastic net Svm Random forest XGBoost Ensemble

DEGs selected by model, n 27 29 20 33 53

Sensitivity 0.800 0.917 0.692 0.813 0.714

Specificity 0.792 0.852 0.750 0.714 0.789

Positive predictive value 0.706 0.733 0.643 0.684 0.714

Negative predictive value 0.864 0.958 0.789 0.833 0.789

Correct classification rate 0.795 0.872 0.730 0.757 0.758

AUC 0.781 0.846 0.727 0.731 0.876
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(Fig. 6B), suggesting that nomogram has an excellent pre-
dictive value. Then, the decision curve analysis (DCA) for 
the diagnostic genes (ARHGDIB, ALDH1A1, TREM1, 
TACR3 and PI3) and that for the model with diagnos-
tic genes integrated was presented in Fig. 6C. The DCA 
showed that if the threshold probability of a patients or 
doctor is > 10%, using the individual genes or diagnos-
tic model to predict the occurrence of ALI adds more 

benefit than either diagnosis-all-patients scheme or the 
diagnosis-none scheme. Within this range, net benefit 
was comparable. The net benefit of integrated diagnos-
tic model was superior than individual diagnostic genes 
(Fig. 6C). Based on the results of DCA, we further plot-
ted the CIC to assess the clinical utility of the nomogram. 
The CIC visually showed that the nomogram with a 
superior overall net benefit within the wide and practical 

Fig. 4 The performance of each feature selection method. A Elastic net utilizing 27 genes. B svm utilizing 29 genes. C Random forest utilizing 20 
genes. D XGBoost utilizing 33 genes. E Ensemble approach utilizing 53 genes. F Average cross validated ROC for overlapping genes selected by four 
feature selection methods on the validation set

Fig. 5 External validation of predictive performance in diagnostic model. A The ROC curve of E-MTAB-5273. B The ROC curve of E-MTAB-5274
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ranges of threshold probabilities and impacted the diag-
nosis, suggesting that the diagnostic model had an excel-
lent predictive value (Fig.  6D). Besides, the CIC of the 
individual diagnostic genes were also showed the similar 
results (Additional file 1: Figure S7).

Functional analysis and small molecular compound 
docking of diagnostic genes
A good biomarker is not only characterized by high spec-
ificity and sensitivity in diagnosing the disease but also 
yields valuable insights into the pathogenesis of the dis-
ease [25].Understanding the biological roles of specific 
diagnostic markers for ALI may help elucidate underlying 
mechanisms and lead to the identification of novel targets 
for therapeutic intervention. Thus we further explored 
the functional alteration of 5 diagnostic genes. Firstly, for 
ARHGDIB, it was significantly downregulated in sepsis-
induced ALI. The results of GSVA after high expression 
showed that the activities of multiple immune response 

pathways, including neutrophils activation, were upregu-
lated, indicating that ARHGDIB was involved in various 
immune and pathogen clearance in septic patients with 
ALI. Moreover, the upregulation of ARHGDIB in sep-
tic patients with ALI was also associated with negative 
regulation of vascular endothelial growth factor recep-
tor signaling pathway, which might involve in the regula-
tion of vascular permeability (Fig. 7A). Then, ALDH1A1 
was expressed at a low level in sepsis-induced ALI. It was 
found that the upregulated ALDH1A1 could involve in 
the negative regulation of oxidative stress-related path-
way such as respiratory burst. Furthermore, the endothe-
lial cell activation pathway was also upregulated in septic 
patients with ALI, indicating that endothelial cell might 
synthesize and secrete some proteins and cytokines 
to promote the vascular permeability (Fig.  7B). As for 
TREM1, it is expressed on myeloid cells as a superim-
munoglobulin receptor which could amplify the inflam-
matory response by interact with Toll-like receptor [26]. 

Fig. 6 The nomogram, DCA and CIC of the diagnostic model. A Nomogram to evaluate the risk of the occurrence of sepsis-induced ALI. B 
Calibration curves of the nomogram prediction. C DCA curves of the nomogram prediction. D CIC of the nomogram prediction
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In this study, the septic patients without ALI had higher 
expression of TREM1, indicating that inflammatory 
response had an important role in the development of 
sepsis. Septic patients with ALI had lower expression of 
TREM1, followed with the mitochondrial dysfunction 
and downregulated biological metabolic pathways, such 
as oxidative phosphorylation, which might reduce energy 
production and further inhibit the vascular regenera-
tion (Fig. 7C). Similarly, the decreased TACR3 in septic 
patients with ALI was also influenced the energy produc-
tion (e.g., TCA cycle) and celluar replication (Fig.  7D), 
suggesting that TACR3 had an important role in tissue 
regeneration. PI3 was revealed a rapid decrease in ALI 
patients, which followed with the degrading extracellular 
matrix and decreased biosynthesis (Fig. 7E).

We next used the CTD database, drug toxicology 
studies and auto molecular docking to explore the 
drugs targeted to diagnostic genes. Firstly, we found 
that Estradiol could bind tightly with ARHGDIB 
and decrease the expression of ARHGDIB (Fig.  8A). 

Estradiol, as the naturally existing endogenous hor-
mone in women, had been demonstrated that it could 
improve the pulmonary inflammation [27] and promote 
the proliferation of endothelial cells [28]. According to 
the GSVA results, we found that upregulated ARHG-
DIB was correlated with the increasing inflammation 
and inhibition of vascular endothelium regeneration. 
Thus, the results of molecular docking analysis indi-
cated that Estradiol might ameliorate the lung injury 
by interacting with ARHGDIB with an optimal dock-
ing binding energy of -7.11(kcal/mol). Acetaminophen 
(also known as n-acetyl-p-aminophenol or APAP) was 
the famous analgesic and antipyretic agents, which 
could be used to block prostaglandin synthesis from 
arachidonic acid by inhibiting the enzymes cyclooxy-
genase (COX)-1 and -2 [29]. Moreover, Acetaminophen 
could also impact the activity of mitochondrial to affect 
the TCA cycle [30]. In our study, Acetaminophen could 
efficiently increase the expression of TACR3, which 

Fig. 7 Functional analysis of diagnostic genes. A–E After grouping ARHGDIB (A), ALDH1A1 (B), TREM1 (C), TACR3 (D) and PI3 (E) at high and low 
levels, the enriched KEGG and GO pathways were scored for GSVA
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might enhance the production of biological energy by 
regulating the TCA cycle in mitochondrial (Fig.  8B). 
However, it still needs further study to prove the effi-
ciency of Acetaminophen in treating sepsis-induced 
ALI. Curcumin is a polyphenolic compound derived 
from dietary spice turmeric which has several phar-
macologic effects including anti-inflammatory, anti-
oxidant, antiproliferative and antiangiogenic activities 
[31]. We found that Curcumin could blockage TREM1 
by binding to TREM1 with high docking energy − 5.39 
(kcal/mol), which might improve the inflammation and 
oxidative stress in septic patients (Fig. 8C). Tretinoin is 
a retinol (vitamin A) derivative which has been evalu-
ated as a treatment for ARDS. In this study, Tretinoin 
could enhance the expression of PI3 with the high level 
of docking binding energy of up to −  6.71 (kcal/mol) 
(Fig.  8D). Dexamethasone, an approved corticosteroid 
medication, acting as an anti-inflammatory and immu-
nosuppressant agent. It has been widely used to treat a 
variety of diseases, including ARDS and sepsis. In the 
results of molecular docking, Dexamethasone could 

bind tightly with ALDH1A1which will result in the 
decreased gene expression of ALDH1A1 (Fig. 8E).

Discussion
ALI is a lethal clinical syndrome that commonly occurs 
in septic patients, but the pathogenesis is still unknown. 
The limitations of the current ALI diagnostic system 
hamper the capacity to early provide optimal clinical 
care to septic patients, as the clinical diagnosis of sepsis-
induced ALI is primarily determined by PaO2/FiO2 and 
chest imaging, without regard to molecular biological 
characteristics [32, 33]. With the development of high-
throughput sequencing technology and computational 
biology, numerous studies have proposed the predictive 
gene expression signatures based on various machine 
learning approaches. However, two questions should be 
considered that why a particular method should be used 
and which solution is the best one. The selection of algo-
rithms by researchers may exist in the preference and 
bias. Thus, in this study, we integrated the gene expres-
sion profiles and performed a consensus machine learn-
ing algorithm to generate a consensus signature with 

Fig. 8 The docking results of diagnostic genes encoded proteins with small molecular compounds. A The docking result of ARHGDIB with Estradiol. 
B The docking result of TACR3 with Acetaminophen. C The docking result of TREM1 with Curcumin. D The docking result of PI3 with Tretinoin. E The 
docking result of ALDH1A1 with Dexamethasone
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high accuracy at identifying septic patients with ALI, as 
candidates for further investigation. We subsequently 
perform the external validation to assess the feasibility 
of diagnostic model in different centers, and the results 
suggested that the selected genes had a great predictive 
value with AUC (0.725 and 0.833). These data indicated 
that selected genes by combing different methods could 
reveal the diagnostic signatures and insights into regula-
tors of disease.

The study has identified five gene signatures (ARH-
GDIB, ALDH1A1, TREM1, TACR3 and PI3) by several 
supervised machine learning algorithms (Additional 
file  1: Figure S8). ARHGDIB, the pivotal molecular in 
celluar signaling, is mainly expressed in hematopoietic 
tissues such as B- and T-lymphocyte cell line which was 
initially found to be act as the inhibitor of GDP dissocia-
tion from RhoA [34]. Previous studies had demonstrated 
that the upregulated ARHGDIB could promote the mac-
rophages infiltration and increase the production of ROS 
by regulating the activity of NADPH oxidase in phago-
cytes [35, 36], indicating that the upregulated expression 
of ARHGDIB might aggravate the lung injury. Moreover, 
ARHGDIB could also inhibit the vascular endothelial 
cell migration and regulates vascular tone and other vas-
cular functions [37]. The upregulated ARHGDIB could 
inhibit the expression of vascular endothelial growth fac-
tor (VEGF) which might suppress the regeneration of 
endothelial cells [38]. It has been found in this research 
that the overexpression of ARHGDIB in sepsis-induced 
ALI increases the activity of immune cells, and ARH-
GDIB had a significant negative correlation with the 
regeneration of vascular endothelial cell. It indicated that 
ARHGDIB promoted the development of ALI by affect-
ing immune response and regulating activity of vascu-
lar, resulting in the damage of vascular endothelial cell 
and lung edema. It has been reported that the key role 
of ALDH1A1 is the oxidation of retinaldehyde to retinoic 
acid, forming transcriptional regulators critical for nor-
mal cell growth and differentiation [39]. Furthermore, 
the overexpression of ALDH1A1 is closely associated 
with system metabolism and inflammation. Studies have 
found that the high expression of ALDH1A1 predicts a 
poor prognosis because of dysregulated metabolism and 
inflammatory response [40, 41]. Interestingly, ALDH1A1 
is low expression in septic patients with ALI. After the 
low expression of ALDH1A1 in the sepsis-induced ALI, 
it was found that the ability of immune tolerance was 
decreased, and the activities of related pathways of inter-
cellular connectivity were also decreased, indicating that 
the low expression of ALDH1A1 might promote the 
damage of alveolar-endothelium barrier. TREM1, part of 
the immunoglobulin superfamily, was mainly expressed 
in neutrophils or monocytes/macrophages, when 

bound to ligand, stimulating release of proinflamma-
tory cytokines (e.g., TNF-α and IL-1β). It is reported that 
the TREM1 can be used as a diagnostic and prognostic 
biomarker for sepsis, indicating the potential diagnostic 
value of TREM1 [42]. It is believed that the upregulated 
expression of TREM1 in response to infection will aug-
ment inflammatory response not only remove the path-
ogens but also aggravate the organs damage [42–44]. In 
this study, we found that the decreased expression of 
TREM1 in septic patients with ALI which might impair 
the clearance of pathogens. Besides, TREM1 is involved 
in the mitochondrial metabolism and energy production 
[45, 46]. The downregulating TREM1 will lead to mito-
chondrial metabolism disorder and reduce the energy 
production which affect the cell proliferation and repair-
ment. Our research also found that the downregulating 
TACR3 was associated with the decreasing production 
of energy and enhanced oxidative stress. It is speculated 
that the redox imbalance and disturbed energy were 
induced by downregulating the expression of TACR3, 
leading to the development of ALI. PI3 is neutrophil ser-
ine proteinase inhibitor with a crucial role in preventing 
excessive tissue injury during inflammatory events. It 
has previously been identified as significantly downreg-
ulated in the acute stage of ARDS, in concordance with 
our findings [47]. The plasma PI3 levels could be used to 
early diagnosis ARDS, indicating that direct analysis of 
ARDS patient blood may provide valuable information 
[47]. Furthermore, the expression and polymorphisms 
in PI3 gene were significantly associated with ARDS risk 
which could be regarded as a prognostic marker [48, 49]. 
After injury-inducing, the epithelial will be repaired by 
secreting extracellular matrix to restore the epithelial 
barrier [50]. However, the downregulating of PI3 affected 
the secretion of extracellular matrix protein which might 
delay the tissue repair [47].These results suggest that the 
dysregulated immune response and enhanced oxidative 
stress might be the crucial initial mechanism to damage 
the alveolar-endothelium barrier, leading to increased 
permeability to liquid and protein across the lung 
endothelium, which then leads to oedema in the lung 
interstitium. Besides, mitochondrial dysfunction and 
bioenergetic dysfunction also largely contribute to the 
progression of sepsis-associated ALI. Thus, understand-
ing the function of diagnostic genes will help to clarify 
the pathogenesis of sepsis-induced ALI and proposed the 
targeted therapy options.

Nowadays, reorientation of drug function is the novel 
strategy for disease treatment. With the ARDS mecha-
nisms continued to reveal and treatment plans contin-
ued to refine, a variety of drugs were applied to treat 
ALI/ARDS. In COVID-19 associated ARDS, a lot of 
drugs were explored to treat COVID-19 patients even 
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they were not applied to the treatment of lung diseases 
before [51, 52]. Therefore, according to this strategy, we 
performed targeted drug screening of diagnostic genes 
to propose a novel therapeutic approach for inhibiting 
the development of sepsis-associated ALI. As a small 
molecular compound, Estradiol could efficiently bind to 
and decrease ARHGDIB expression. Estrogen receptor 
are expressed in all immune cells which could regulate 
the cellular functions as transcriptional factor. Treatment 
with Estradiol will decrease the accumulation of immune 
cells (e.g., neutrophil and monocyte) and suppress the 
production of proinflammatory cytokines, which could 
improve the lung inflammation [53, 54]. However, exces-
sive intake of Estrogen will result in the side effect such as 
vomiting, nausea and thrombosis [55]. Acetaminophen is 
one of the most popular analgesic and antipyretic agents, 
which showed an exceptional performance in increasing 
TACR3 expression. Previous studies have demonstrated 
that treating sepsis patients with Acetaminophen will 
reduce oxidative stress and inhibit the excessive innate 
immune response [56, 57], which is benefit for the tissue 
repair. The toxicity of Acetaminophen should be noticed 
that the overdose of Acetaminophen will lead to acute 
liver failure [58]. The herbal compounds Curcumin have 
been reported the beneficial effects in treating inflam-
matory diseases, neurological diseases, cardiovascular 
diseases, pulmonary disease, metabolic diseases, liver 
diseases, and cancers [59]. In sepsis-induced ALI, intra-
nasal Curcumin could significantly reduce the expression 
of oxidative stress marker (e.g., nitric oxide (NO) and 
malondialdehyde (MDA)) and inflammatory cytokines 
(e.g., TNF-α). Besides, Curcumin also improves the lung 
permeability and reduce the capillary leakage [60]. Yuan 
et  al. further demonstrated that curcumin exerts anti-
inflammatory and anti-oxidant effects through regulation 
of TREM-1 gene activity, which is in line with our study 
[61]. Tretinoin (vitamin A derivative) was one of the com-
pounds with upregulation of PI3 that exhibit high affin-
ity docking binding energy. Tretinoin is a medicine with 
anti-inflammatory and immunomodulating properties 
for sepsis. Treatment with Tretinoin in sepsis will inhibit 
the activation of NF-κB and related target genes such as 
IL-6, MCP-1 and COX-2 [62]. Furthermore, Tretinoin 
also attenuated the fibroblast degradation of extracel-
lular matrix, suggesting that Tretinoin could modify 
tissue injury and ameliorate the lung fibrosis [63]. There-
fore, the interaction between Tretinoin and PI3 might 
improve the lung inflammation and fibrosis. Dexameth-
asone has been recognized as one of the most efficient 
anti-inflammatory medicines which was used in various 
inflammatory diseases. Early administration of Dexa-
methasone could reduce the overall mortality in ARDS 
patients [64]. Paradoxically, these hormones were given 

to patients with sepsis and pneumonia could not find the 
beneficial therapeutic efficacy [65, 66]. In our study, we 
found that Dexamethasone could increase the expression 
of ALDH1A1 in septic patients with ALI, which might 
prevent the lung inflammation and improve lung perme-
ability. However, when administered through a systemic 
route, Dexamethasone can elicit severe side effects, such 
as hyperglycemia, hypertension, hydro-electrolytic dis-
orders and peptic ulcers [67]. Thus, based on the drugs 
screening for targeting the five diagnostic genes, our 
study has proposed a novel targeted therapy strategy 
with a combination of multiple drugs, which might pre-
vent the development of sepsis-induced ALI brought by 
the five diagnostic genes and improve the prognosis of 
patients. However, of the gene-targeted drugs selected 
in this study, the primary goal is regulating the mRNA 
expression of targeted genes. Further research is needed 
to explore the novel biomaterials to deliver drugs to tar-
geted genes.

The novelty of this study lies in the integration of mul-
tiple machine learning algorithms to construct a consen-
sus model for distinguishing septic patients with ALI or 
not. We firstly used the correlation matrix to eliminate 
the multicollinearity and performed multiple supervised 
machine learning approaches for constructing diagnostic 
model. Then, we further used the external datasets to val-
idate the accuracy in diagnostic model. Further investiga-
tion discussing gene function and targeted drugs is also 
novel in this research. However, there still have some lim-
itations in this study. Firstly, although we have performed 
a batch correction for the several datasets, the essential 
bath effect still exists. Future integration studies could 
begin with sequenced documents to ensure consistency 
and accuracy. Second, many genes were excluded during 
the merging of datasets and eliminating multicollinear-
ity, resulting in the loss of some important genes. How-
ever, to validate the model in independent datasets, we 
must ensure that genes used for model construction were 
available in testing sets. Third, some clinical and molecu-
lar traits were not adequately provided in public datasets, 
which limited the study to further reveal the potential 
associations between diagnostic genes and some traits. 
Finally, while our study provides a framework for the 
early diagnosis through the assessment of specific genes, 
the results are still in the analytical and speculative stage 
without experiments validation, and we recognize that 
the process of assessing these diagnostic genes by micro-
array may be time-consuming. However, utilizing real-
time PCR to assess the expression of these 5 genes offers 
as a quick and relatively straightforward method for early 
recognition of sepsis-associated ALI. Thus, nanogram 
of five genes measured by real-time PCR may represent 
a promising step towards meeting the urgent diagnostic 
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needs in the context of rapidly progressing conditions 
like sepsis associated ALI. Future research may further 
refine this method and explore its integration with clini-
cal practice to enhance its usability and effectiveness. 
Besides, the combined therapeutic value of the five tar-
geted drugs at cellular and animal level will also need to 
further study. Based on the diagnostic model, we hope to 
establish a shared platform to aid in clinical diagnosis and 
treatment in sepsis-induced ALI.

Conclusion
Our study using four supervised machine learning fea-
ture selection approaches identified a five gene signatures 
for sepsis-induced ALI from patient whole blood. These 
diagnostic genes could be used to construct a diagnostic 
model with great predictive value, which could be effec-
tively distinguished septic patients with ALI or not. The 
selected signatures revealed the disease mechanisms that 
damage of alveolar-endothelium barrier and dysfunctions 
of mitochondrial metabolism may be the crucial mech-
anisms for the development of sepsis-associated ALI. 
Lastly, diagnostic genes may be the future putative drug 
targets, and drugs screened for the presence of diagnostic 
genes, leading to new sight for targeted therapy.
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