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Abstract 

Background Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy. Neutrophil extracellular traps 
(NETs) are pathogen-trapping structures in the tumor microenvironment that affect DLBCL progression. However, 
the predictive function of NET-related genes (NRGs) in DLBCL has received little attention. This study aimed to inves-
tigate the interaction between NRGs and the prognosis of DLBCL as well as their possible association with the immu-
nological microenvironment.

Methods The gene expression and clinical data of patients with DLBCL were downloaded from the Gene Expression 
Omnibus database. We identified 148 NRGs through the manual collection of literature. GSE10846 (n = 400, GPL570) 
was used as the training dataset and divided into training and testing sets in a 7:3 ratio. Univariate Cox regression 
analysis was used to identify overall survival (OS)-related NETs, and the least absolute shrinkage and selection operator 
was used to evaluate the predictive efficacy of the NRGs. Kaplan–Meier plots were used to visualize survival functions. 
Receiver operating characteristic (ROC) curves were used to assess the prognostic predictive ability of NRG-based fea-
tures. A nomogram containing the clinical information and prognostic scores of the patients was constructed using 
multivariate logistic regression and Cox proportional risk regression models.

Results We identified 36 NRGs that significantly affected patient overall survival (OS). Eight NRGs (PARVB, LYZ, 
PPARGC1A, HIF1A, SPP1, CDH1, S100A9, and CXCL2) were found to have excellent predictive potential for patient 
survival. For the 1-, 3-, and 5-year survival rates, the obtained areas under the receiver operating characteristic curve 
values were 0.8, 0.82, and 0.79, respectively. In the training set, patients in the high NRG risk group presented a poorer 
prognosis (p < 0.0001), which was validated using two external datasets (GSE11318 and GSE34171). The calibration 
curves of the nomogram showed that it had excellent predictive ability. Moreover, in vitro quantitative real-time 
PCR (qPCR) results showed that the mRNA expression levels of CXCL2, LYZ, and PARVB were significantly higher 
in the DLBCL group.

Conclusions We developed a genetic risk model based on NRGs to predict the prognosis of patients with DLBCL, 
which may assist in the selection of treatment drugs for these patients.
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Introduction
Diffuse large B-cell lymphoma (DLBCL) is a common 
aggressive form of non-Hodgkin’s lymphoma. Globally, 
approximately 150,000 new DLBCL cases are reported 
annually [1]. Its clinical features and prognoses are highly 
heterogeneous. The classic international prognostic 
index (IPI), which classifies patients into four risk groups, 
is widely used by clinicians as a valid prognostic tool in 
clinical practice [2]. However, its ability to differenti-
ate between the four risk groups is reduced by the use of 
rituximab, especially in high-risk patients [3–5]. In addi-
tion, due to the high tumor heterogeneity, even patients 
in the same IPI risk category exhibit different clinical out-
comes [6]. Currently, the 5-year survival rate for first-line 
treatment, as represented by R-CHOP, is 60–70%, with 
up to 50% of patients presenting as chemo-refractory or 
relapsing after treatment [7]. Thus, it is vital to develop 
new markers for evaluating patient prognosis.

Neutrophils, the most abundant immune cells in the 
bone marrow and peripheral blood, have various func-
tions in cancer development, growth, and metastasis [8]. 
As part of the inflammatory cells in the tumor microenvi-
ronment, neutrophils play both pro- and anticancer roles 
[9]. In solid tumors, the neutrophil-to-lymphocyte ratio 
is an independent prognostic indicator for several malig-
nancies [10]. Most clinical evidence supports the notion 
that neutrophils promote cancer progression in solid 
tumors [11, 12]. At the same time, cancer cells shape the 
tumor microenvironment by secreting various cytokines 
and chemokines, providing the necessary environmental 
conditions for the reprogramming of neutrophils, which 
may explain the varied functions of neutrophils in cancer 
[12]. In DLBCL, tumor-associated neutrophils contribute 
to the survival, growth, and drug resistance of malignant 
B cells [13]. Neutrophils not only act through degranu-
lation and phagocytosis but also create neutrophil extra-
cellular traps (NETs), which destroy bacterial virulence 
factors and kill bacteria [14]. Recent studies have shown 
that patients with DLBCL who have more NETs in their 
plasma or tumor tissues have a poorer prognosis. Thus, 
we hypothesized that NETs could act as new prognostic 
markers in patients with DLBCL [15].

In this study, we identified the NET-regulated genes 
(NRGs) associated with survival in patients with DLBCL 
and developed a prognostic model. NRGs were obtained 
from previously published studies. DLBCL transcrip-
tomic datasets were downloaded from the Gene Expres-
sion Omnibus (GEO) database and divided into training 
and validation datasets. Univariate Cox regression anal-
ysis was performed to assess the prognostic impact 
of NETs in DLBCL, and the least absolute shrinkage 
and selection operator (LASSO) Cox regression was 
used to identify key variables and construct the risk 

characteristics associated with NRGs. To test predic-
tive performance, we analyzed the predictive accuracy 
of the prognostic markers on a validation set. The results 
showed that the risk score was a reliable prognostic indi-
cator independent of other clinical parameters. In this 
study, we constructed a risk model based on NRGs and 
explored the unique immune cell infiltration landscape of 
the tumor microenvironment as well as identified poten-
tial drug targets.

Methods
Data collection and processing
Three DLBCL transcriptome microarrays (GSE10846, 
GSE11318, and GSE34171) based on the Affymetrix 
Human Genome U133 Plus 2.0 Array platform contain-
ing clinical and transcriptomic data for 420, 203, and 68 
patients with DLBCL, respectively, were downloaded 
from the GEO database. To increase the accuracy of the 
study, we used the normalize between arrays function in 
the R package ‘limma’ (version 3.54.2) to normalize the 
expression matrix and eliminate patients with a survival 
time of less than 30 days. We then interpolated the miss-
ing values from the clinical data using the R package 
‘mice’ (version 3.15.0). We selected GSE10846 (n = 400) 
as the training dataset And GSE11318 (n = 193) and 
GSE34171 (n = 67) as the external validation datasets. 
The clinical information of the patients is listed in Addi-
tional file 1: Table S1.

Acquisition of NET gene list
We identified 148 genes for analysis by manually collect-
ing previously published NRGs from the literature, see 
Additional file 2: Table S2 for a film showing this in more 
detail.

Consensus clustering analysis and principal component 
analysis (PCA)
The ‘ConsensusClusterPlus’ package (version 1.60.0) was 
used to set the model to cohesive "means" clustering, uti-
lizing Euclidean correlation distances and 50 replicates 
for 80% of the samples [16]. The R package ‘FactoMineR’ 
(version 2.7) was used for PCA analysis and visualization 
to show the distribution between groups [17].

Identification of differentially expressed genes (DEGs)
We utilized the R package ‘limma’ (version 3.54.2) to 
identify DEGs between the two clusters and risk groups. 
DEGs were determined using the threshold |log2FC|≥ 1 
and p < 0.05.

Functional enrichment analysis
We conducted Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment 
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analyses of the DEGs using the R package ‘clusterProfiler’ 
(version 4.7.1.3) [18]. Terms with p < 0.05 were consid-
ered as significantly enriched.

Identification of overall survival (OS)‑related NRGs
The GSE10846 dataset was randomly divided into train-
ing and testing sets at a ratio of 7:3. Univariate Cox 
regression analysis was used to identify OS-related NETs 
in the training cohort (n = 280; p < 0.05).

Construction and validation of NRG‑related prognostic 
model for patients with DLBCL
We used the R packages ‘glmnet’ (version 4.1.6) and ‘sur-
vival’ (version 3.4.0) on the training dataset to identify 
the most significant features in OS-related NRGs using 
LASSO Cox regression to avoid overfitting [19]. We then 
constructed a multivariate Cox proportional risk model 
based on the Akaike Information Criterion for forward 
and backward stepwise selection [20]. The risk score of 
the prognostic signature was calculated as follows:

where Coef i is the regression coefficient of the Cox 
model, i represents the corresponding index of each NRG 
that comprised of the signature, Ai represents the rela-
tive value of the expression of the individual NRG in the 
signature, and n represents the number of genes in the 
signature. The R package ‘survminer’ (version 0.4.9) was 
used to select the best cutoff value and divide the patients 
into low- and high-risk groups. Kaplan–Meier survival 
curves were created using the same package, and further 
log-rank tests were performed to examine how events 
unfolded chronologically in each group. Time-dependent 
receiver operating characteristic (ROC) curves were used 
to assess the predictive power of the models [21]. We 
then used Kaplan–Meier survival analysis and log-rank 
testing to determine patient survival.

To verify the predictive ability of the model, GSE11318 
(n = 193) and GSE34171 (n = 67) were used as testing 
sets. Risk scores were calculated for each patient, and 
Kaplan–Meier survival curves were used to reflect their 
performance in OS. The ability of NRG-based features 
to predict prognosis was assessed using time-dependent 
receiver operating characteristic (ROC) curves.

Analysis of the tumor immune microenvironment
For gene expression data in patients with DLBCL, sin-
gle-sample gene set enrichment analysis (ssGSEA) was 
performed to estimate the infiltration abundance of 28 
different immune cell types [22]. Immune cells with a 
p < 0.05 were considered to be significantly different.

Risk score =

n∑

i

Coefi ∗ Ai

Correlation analysis of immune checkpoints and risk scores
Recently, immunotherapy and targeted therapies for 
DLBCL have received increasing attention. Here, we 
conducted Pearson correlation analysis to examine the 
association between risk scores and treatment targets 
in clinical trials and clinical practice to assess the possi-
ble impact of risk score-based treatments. Selected tar-
gets were PLK1, CD33, DOT1L, CHEK1, CD47, MCL1, 
ASXL1, IDH1, MDM2, and BCL2.

Construction of a NET‑related clinicopathologic nomogram
The R package ‘rms’ (version 6.5.0) was used to cre-
ate a NET-related clinicopathological nomogram for 
predicting the OS of the patients by incorporating the 
prognostic signature into the clinicopathological char-
acteristics available in the training set [23]. Calibration 
curves were generated using the R package ‘PredictA-
BEL’ (version 1.2.4) to predict OS in patients with 
DLBCL.

Prediction of half‑maximal inhibitory concentration (IC50) 
values for different targeted therapy agents
Based on the gene expression level, the R package 
‘oncoPredict’ (version 0.2) was used to predict the IC50 
values of the targeted drugs [24].

Drug‑NRGs network analysis
The drug-gene interaction database (DGIdb, https:// 
dgidb. genome. wustl. edu/), an online tool for drug-gene 
prediction, was used to explore the target drugs of the 
eight NRGs [25].

Molecular docking
Molecular docking simulations are used to predict the 
formation of stable complexes between large and small 
molecules. The structure of the HIF1A protein was 
obtained from the Protein Data Bank (https:// www. 
rcsb. org/), and related small molecules were obtained 
from the PubChem database (https:// pubch em. ncbi. 
nlm. nih. gov) [26]. AutoDockTools and Discovery Stu-
dio 2021 client were used to preprocess the input file, 
including the hydrogenation and deletion of crystallo-
graphic water and ligands. Molecular docking between 
the small molecules and HIF1A binding pockets was 
carried out using the AutoDock Vina program with 
default parameters. The predicted binding interaction 
geometries of HIF1A were visualized, and the docking 
affinity between small molecules and protein targets 
was assessed. The optimal docking conformation and 
related results were analyzed using Discovery Studio 
2021.

https://dgidb.genome.wustl.edu/
https://dgidb.genome.wustl.edu/
https://www.rcsb.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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Cell lines and cell culture
The DLBCL cell line OCI-LY3 was obtained from 
Bolsen Biotechnology Company (Shanghai, China). 
Human blood B lymphocytes (IM-9) were obtained 
from the Beina Chuanglian Institute of Biotechnology 
(Beijing, China). OCI-LY3, IM-9 cells were grown in 
RPMI-1640 (Thermo Fisher Scientific, USA).

RNA extraction, cDNA synthesis, and quantitative real‑time 
PCR (qPCR)
Total RNA was isolated using TRIzol reagent (Thermo 
Fisher Scientific). First-strand cDNA was synthesized 
from total RNA using Transcript All-in-One First-strand 
cDNA Synthesis SuperMix for qPCR (TransGen, Bei-
jing, China). RT-qPCR was performed using PerfectStart 
Green qPCR SuperMix on CFX Maestro (Bio-Rad Labo-
ratories, Hercules, CA, USA), with GAPDH as an inter-
nal loading control. The Bio-Rad CFX Maestro real-time 
monitoring system was used according to the manufac-
turer’s instructions. Relative levels were calculated by the 
relative quantification 2^(-ΔΔCT) method. The mean 
value of the relative mRNA expression in the control 
samples was set to 1. Primers were purchased from San-
gon Biotechnology Co., Ltd. (Beijing, China), and their 
sequences are listed in Table 1.

Statistical analysis
Statistical analyses were conducted using R software 
(version 4.2.1). DEGs were identified using linear models 
and the empirical Bayes method. The Spearman corre-
lation coefficient was used for correlation analysis. Dif-
ferential analysis of continuous variables with a normal 
or non-normal distribution was performed using the 

Student’s t-test or Wilcoxon rank-sum test, respectively. 
All p-values in this study are two-tailed, and statistical 
significance was set at p < 0.05.

Results
Analysis of gene function and clustering
Consensus clustering analysis identified two clusters 
based on the GSE10846 dataset of 400 samples (Fig. 1A, 
B). The accuracy of this classification was confirmed 
by PCA (Fig.  1C). In total, 3765 DEGs (p < 0.05 and 
|log2FC|≥ 1) were identified, of which 1891 were upreg-
ulated and 1874 were downregulated (Additional file  3: 
Table  S3). The top 25 upregulated and downregulated 
genes are shown in a heatmap (Additional file 8: Fig S1A). 
Enrichment analysis was performed, which included GO 
keywords, namely biological process, cellular compo-
nent, molecular function, and KEGG pathways (Fig. 1D, 
E, Additional file 4: Table S4) [18]. GO terms related to 
receptor signaling pathway via JAK-STAT (GO:0007259), 
receptor signaling pathway via STAT (GO:0097696), 
nucleosome organization (GO:0034728), DNA repli-
cation-dependent chromatin assembly (GO:0006335), 
glucose metabolic process (GO:0006006), tyrosine phos-
phorylation of STAT protein (GO:0007260), positive 
regulation of tyrosine phosphorylation of STAT protein 
(GO:0042531), hexose metabolic process (GO:0019318), 
regulation of tyrosine phosphorylation of STAT protein 
(GO:0042509), muscle system process (GO:0003012), 
and chromatin remodeling (GO:0006338) are found 
in the biological process. In the molecular function 
subontology, the structural constituents of chromatin 
(GO:0030527), actin filament binding (GO:0051015), and 
actin-binding (GO:0003779) were significantly enriched. 
Enrichment of cellular components revealed that the 
DEGs may be involved in the nucleosome (GO:0000786), 
cluster of actin-based cell projections (GO:0098862), 
and brush border (GO:0005903) (Fig.  1D). KEGG path-
way enrichment analysis indicated that these DEGs 
may be involved in the phospholipase D signaling path-
way (hsa04072), NET formation (hsa04613), human 
T-cell leukemia virus 1 infection (hsa05166), Epstein-
Barr virus infection (hsa05169), systemic lupus ery-
thematosus (hsa05322), JAK-STAT signaling pathway 
(hsa04630), MAPK signaling pathway (hsa04010), shig-
ellosis (hsa05131), and alcoholism (hsa05034) (Fig.  1E). 
Kaplan–Meier survival analysis revealed that the survival 
probability differed considerably between clusters 1 and 
2 and that cluster 2 had a better prognosis than cluster 1 
(Fig. 1F).

We also identified DEGs associated with overall sur-
vival between high- and low-risk patients. A total of 
159 DEGs were identified between the two groups, of 
which 22 were upregulated and 137 were downregulated 

Table 1 Primer sequences were used in this study

Genes Forward primer sequence Reverse primer sequence

PARVB TGG ACT CAA TTC ACG GGA 
AGA 

GCA CCG TTA CAT GCT CAG GA

S100A9 CAA CAC CTT CCA CCA ATA 
CTCT 

AGG TCC TCC ATG ATG TGT TCT 

CXCL2 CCG AAG TCA TAG CCA CAC 
TCA 

TGG ATT TGC CAT TTT TCA GCA 
TCT 

SPP1 GAA GTT TCG CAG ACC TGA 
CAT 

GTA TGC ACC ATT CAA CTC CTCG 

LYZ GGC CAA ATG GGA GAG TGG 
TTA 

CCA GTA GCG GCT ATT GAT 
CTGAA 

HIF1A ATC CAT GTG ACC ATG AGG 
AAATG 

TCG GCT AGT TAG GGT ACA CTTC 

CDH1 ATT TTT CCC TCG ACA CCC GAT TCC CAG GCG TAG ACC AAG A

PPARGC1A GCT TTC TGG GTG GAC TCA 
AGT 

GAG GGC AAT CCG TCT TCA TCC 

GAPDH CTG GGC TAC ACT GAG CAC C AAG TGG TCG TTG AGG GCA ATG 
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(p < 0.05 and |log2FC|≥ 1). The patients in the two groups 
showed different gene expression patterns (Additional 
file  8: Fig S1B). GO term enrichment analysis revealed 

that the DEGs were mainly involved in the biological pro-
cesses of extracellular matrix organization (GO:0030198), 
extracellular structure organization (GO:0043062), 

Fig. 1 Consensus clustering and functional annotation of DEGs between the two clusters. A, B Consensus matrix heatmap defining two clusters 
(k = 2) and their correlation area. C PCA showing a clear difference in the transcriptomes between cluster 1 (n = 174) and cluster 2 (n = 106). D, E GO 
and KEGG enrichment analyses of DEGs between two clusters. F Kaplan–Meier curves for OS of the two clusters
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and external encapsulating structure organization 
(GO:0045229) (Fig. 2D). Among the cellular components, 
collagen-containing extracellular matrix (GO:0062023), 
collagen trimer (GO:0005581), and collagen trimer com-
plex (GO:0098644) were significantly enriched (Fig. 2E). 
Enrichment of the molecular function sub-ontology 
showed that DEGs might be involved in extracellular 
matrix structural constituents (GO:0005201), glycosa-
minoglycan binding (GO:0005539), and integrin binding 
(GO:0005178) (Fig. 2F).

Identification of survival‑related genes
Using univariate Cox regression analysis, survival-related 
genes were identified based on eight essential OS-related 
NRGs. We identified genes that were significantly associ-
ated with survival in the training dataset (p < 0.05) (Addi-
tional file 5: Table S5). The Venn diagram showed that 36 
NRGs were associated with prognosis (Fig. 2A).

Recognition of NRG prognostic markers
To avoid potential overfitting, we performed a LASSO 
Cox regression analysis (Fig.  2B, C). Finally, we selected 

eight essential OS-related NRGs for modeling based 
on the following formula: Risk score = [Expression 
(HIF1A) * (− 0.6495694)] + [Expression (CXCL2) * 
0.2840293] + [Expression (CDH1) * (− 0.1415326)] + [Expres-
sion (SPP1) * (− 0.1812388)] + [Expression (PPARGCIA) * 
(0.2010867)] + [Expression (PARVB) * 0.2506490] + [Expres-
sion (LYZ) * (− 0.4752112)] + [Expression (S100A9) * 
0.1712968].

Model performance in external datasets
According to the optimum cutoff value determined by 
the R package ‘survminer’ (version 0.4.9), each dataset 
was automatically split into low- and high-risk groups. 
Kaplan–Meier analysis showed that patients in the high-
risk groups had a significantly poor prognosis than those 
in the low-risk groups, training set (p < 0.0001), validation 
set (p = 0.0066), GSE11318 (p < 0.0001), and GSE34171 
(p = 0.0014) (Figs.  3A and 4A, C, E). We also examined 
the risk score predictions for 1-, 3-, and 5-year mortality, 
and the resulting area under the receiver operating char-
acteristic curve (AUC) values in the training dataset were 
0.8, 0.82, and 0.79, respectively (Fig. 3B). Additionally, the 

Fig. 2 Screening for prognosis-related NRGs and functional identification of DEGs between high- and low-risk groups. A Venn diagram analysis 
showing the overlap of NET sets and univariate Cox results. B Establishment of signatures via least absolute shrinkage and selection operator 
(LASSO) logistic regression analysis. The 36 genes are represented by different colors in the LASSO coefficient profile. C Selection of the optimal 
parameter (lambda) in the LASSO model, and generation of a coefficient profile plot. D–F Bubble charts depicting GO-enriched DEG items in three 
functional categories: biological processes (BP, D), cell composition (CC, E), and molecular function (MF, F)
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Fig. 3 Evaluation of prognostic signature to predict the OS of patients with DLBCL. A Patients in the high-risk group had significantly shorter OS 
than those in the low-risk group. B ROC curves for predicting the 1-, 3-, and 5-year survival according to the NRGs score in the training cohort. 
C Univariate Cox regression analysis of the risk scores and clinical parameters. D Multivariate Cox regression analysis of the risk scores and cliAaa 
clinical parameters. E, F Ranked dot and scatter plots showing the NRGs score distribution and patient survival status. G NRG risk model gene 
expression value
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Fig. 4 Validation of the NRG prognostic signature on DLBCL cohorts. A Kaplan–Meier curve of the prognostic model in the validation cohort. B ROC 
curves for predicting the 1-, 3-, and 5-year survival according to the NRGs score in the validation cohort. C Kaplan–Meier curve of the prognostic 
model in the GSE11318 cohort. D ROC curves for predicting the 1-, 3-, and 5-year survival according to the NRGs score in the GSE11318 cohort. 
E Kaplan–Meier curve of the prognostic model in the GSE34171 cohort. F ROC curves for predicting the 1-, 3-, and 5-year survival according 
to the NRGs score in the GSE34171 cohort
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AUC of the IPI score predictions for 1-, 3-, and 5-year 
mortality were 0.72, 0.71, and 0.73, respectively (Addi-
tional file 9: Fig S2A). Univariate and multifactorial Cox 
regression analyses were performed to verify the effects 
of the clinical features and risk scores on patient survival. 
The risk score was determined to be an independent risk 

factor (Fig. 3C, D). We then examined the expression of 
eight NRGs in these patients (Fig. 3G, Additional file 10: 
Fig S3). In addition, the distribution of sample size and 
patient survival status revealed a consistent relationship 
between high risk and high mortality (Fig. 3E–G).

Fig. 5 Construction and validation of a nomogram. A Nomogram for predicting the 1-, 3-, and 5-year OS of patients with DLBCL in the training 
cohort. B–D Calibration curves of the clinicopathologic nomogram predicted and observed 1-, 3-, and 5-year survival of patients with DLBCL
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Fig. 6 Tumor immune microenvironment analysis of the high- and low-risk groups. A Difference between tumor-infiltrating immune cells. The blue 
box reflects the low-risk group and the red box represents the high-risk group. B Heatmap showing Spearman’s correlations between differential 
immune cells and eight OS-related NRGs. Blue denotes a negative correlation and red denotes a positive correlation. The correlation coefficient 
increases with the degree of color. *p < 0.05, **p < 0.01, ***p < 0.001
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Construction of a nomogram for prognostic prediction
A nomogram was constructed to predict the OS of 
patients with DLBCL based on the clinical parameters 
(Fig. 5A). This nomogram was used to assess 1-, 3-, and 
5-year OS rates in patients with DLBCL. The calibration 
curves of this well-established nomogram demonstrated 
excellent consistency between the actual observations 
and the predicted values (Fig. 5B–D).

The immune status of patients in different risk groups
Different immune cell types showed different degrees of 
infiltration into the tumor microenvironment in the low- 
and high-risk groups (Additional file 9: Fig S2B, Fig. 6A). 
Activated dendritic cells, central memory CD8+ T cells, 
plasmacytoid dendritic cells, myeloid-derived suppressor 
cells, and monocytes showed higher infiltration levels in 
the high-risk group than in the low-risk group. In con-
trast, the numbers of type 2T helper cells, CD56bright 
natural killer cells, effector memory CD4 T cells, and 
natural killer cells were higher in the low-risk group 
(Fig.  6A). In addition, we found that the expression of 
some NRGs had positive correlations with tumor-infil-
trating immune cells, including PARVB, SPP1, and LYZ. 
In contrast, CDH1 and HIF1A levels were negatively 
correlated with most tumor-infiltrating immune cells. 
Meanwhile, a few NRGs, such as S100A9 and CXCL2, 
were bidirectional (Fig. 6B).

Analysis of correlations between risk scores 
and immunological checkpoints
Immune checkpoint inhibitors were recently discovered 
and studied in clinical trials for the treatment of patients 
with DLBCL. According to Pearson correlation analysis, 
the risk score was significantly and negatively associated 
with the mRNA expression levels of CD47 (cor = − 0.13, 
p = 0.028), MDM2 (cor = − 0.24, p = 5.3e−05), and 
ASXL1 (cor = − 0.14, p = 0.017). In contrast, the risk 
score was positively correlated with the mRNA expres-
sion levels of DOT1L (cor = 0.4, p = 4.6e−12), IDH2 
(cor = 0.22, p = 0.00017), MCL1 (cor = 0.27, p = 3.6e−06), 
PLK1 (cor = 0.31, p = 7.9e−08), and BCL2 (cor = 0.25, 
p = 1.6e−05) (Fig. 7). This suggests that targeted therapies 
against DOT1L, IDH2, MCL1, PLK1, and BCL2 may be 
able to benefit patients in the high-risk group.

IC50 analysis
We estimated the IC50 values of 198 drugs for each 
DLBCL patient between the two groups using the 
GDSC database. We discovered that the IC50 value of 
axitinib was higher in the high-risk group than in the 
low-risk group, whereas that of OSI_027 showed the 
opposite trend (Fig.  8A, B). This suggests that patients 
with low NRG scores may respond positively to axitinib, 

while patients with high NRG scores respond better to 
OSI_027. Axitinib is an inhibitor of vascular endothe-
lial growth factor receptors (VEGFR), which are asso-
ciated with tumor angiogenesis. And blockade of the 
VEGFR receptor pathway inhibits angiogenesis, thereby 
inhibiting tumor cell proliferation. OSI-027 is a selec-
tive and potent dual mTORC1 and mTORC2 inhibitor 
that induces autophagy in cancer cells. Overall, these 
results indicated that NRGs were associated with drug 
sensitivity.

Drug‑gene networks
To explore the potential drugs targeting eight NRGs for 
the treatment of DLBCL, we searched the DGIdb data-
base, as shown in Additional file 6: Table S6, along with 
50 approved therapeutic compounds targeting four 
genes (HIF1A, SPP1, CDH1, and CCL2). There are 41 
relatively abundant potential HIF1A-targeting medica-
tions, including nifedipine and piretanide. In addition, 
we found an association between the SPP1 gene and four 
potential medicines, including gentamicin and tacroli-
mus. Lapatinib, erlotinib, and capecitabine can poten-
tially regulate CDH1 gene expression. Finally, the CXCL2 
gene may interact with alteplase and deferoxamine. These 
compounds that target NRGs may be potential DLBCL 
treatments, but they should be used cautiously until addi-
tional mechanisms are investigated (Additional file  6: 
Table S6).

Molecular docking
Molecular docking was used to screen potential drug 
candidates and elucidate the molecular mechanisms 
involved. AutoDock Vina was used for drug-protein 
molecular docking to screen for optimal potential drug 
targets. The affinity score was used to measure the mer-
its of a docking process. A high absolute score indicates 
stronger binding between small molecules and proteins. 
The molecular docking results showed that all binding 
energies were negative. The docking scores of potential 
drugs (Fig. 8C, D) suggest that HIF1A (PDB ID:4H6J) had 
the strongest binding affinity for axitinib (− 8.5 kcal/mol, 
|affinity|)\sorafenib (− 8.5  kcal/mol, |affinity|) (Addi-
tional file 7: Table S7).

qPCR results
To further validate the expression of the eight NRGs, we 
performed qPCR on DLBCL cells (OCI-LY3) and human 
peripheral blood B lymphocytes (IM-9). The levels of 
CXCL2, LYZ, and PARVB were significantly higher in 
the DLBCL group (Fig.  9B, D, E). Meanwhile, the con-
trol group showed considerably higher levels of mRNA 
expression of CDH1, HIF1A, and SPP1 (Fig.  9A, C, H). 
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Fig. 7 Pearson correlation of the risk scores of the targets of immunotherapy and targeted therapy. A CTLA4. B DOT1L. C CD47. D IDH1. E IDH2. F 
MCL1. G MDM2. H PLK1. I CHEK1. J ASXL1. K BCL2. L CD33
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PPARGC1A and S100A9 expression levels did not differ 
significantly between the two groups (Fig. 9F, G).

Discussion
DLBCL is one of the most common aggressive malig-
nancies in adults. According to a previous study, the 
prognosis of a patient may no longer be accurately pre-
dicted using IPI scores [27]. Consequently, there is an 

Fig. 8 Relationships between risk score and therapeutic sensitivity and molecular docking simulation. A Treatment response of axitinib. B 
Treatment response of OSI_027. C Left: HIF1A- AXITINIB. Right: Chemical formula of AXITINIB. D Left: HIF1A-SORAFENIB. Right: Chemical formula 
for SORAFENIB
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urgent need to develop reliable biomarkers for prognostic 
evaluation. In the present study, we focused on the role 
of NETs in the prognosis of patients with DLBCL. We 
constructed a predictive risk model based on the eight 
OS-related NRGs, which was found to be an effective 

and independent prognostic tool with superior predic-
tive capability compared with the traditional IPI score. 
Finally, we verified the expression of these eight genes 
using in  vitro qPCR. The experimental results gener-
ally agree with our expectations, indicating that the data 

Fig. 9 Relative expression of the eight NRGs was assessed by qPCR. A CDH1. B CXCL2. C HIF1A. D LYZ. E PARVB. F PPARGCA1. G S100A9. H SPP1. 
*p < 0.05, **p < 0.01, ***p < 0.001
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mining results are credible and have potential research 
value. In conclusion, our study identified a novel and reli-
able prognostic biomarker for patients with DLBCL.

Consensus clustering is an unsupervised clustering 
algorithm that discovers probable groups based on the 
intrinsic properties of data [16]. Using this method, we 
identified two molecular subtypes with notably different 
prognoses. According to KEGG analysis results, DEGs 
between the two groups were considerably enriched in 
NETs. This finding supports our hypothesis that NRGs 
can function as a novel prognostic marker in patients 
with DLBCL.

To further evaluate the predictive efficacy of the 
NRGs, we constructed an eight-gene risk model in 
the training dataset using univariate and LASSO Cox 
regression analyses. This score served as an independ-
ent prognostic marker. The ROC curve showed that 
the prognostic performance of the model was signifi-
cantly superior to that of the IPI score. We constructed 
a nomogram containing the clinical information and 
prognostic scores of the patients to extend the clini-
cal utility of the model. The calibration curves indicate 
that the model has an excellent prediction ability. We 
verified the model in the testing and validation datasets 
and found that it had excellent predictive performance. 
To the best of our knowledge, this study is the first 
to assess the role of NRGs in DLBCL. The NETs risk 
model is still highly applicable in other solid tumors. 
Xin  et al. constructed a prognostic model based on 
NETs for hepatocellular carcinoma, and the 1-, 3-, and 
5-year AUCs in the training set were 0.836, 0.879, and 
0.902, respectively [28]. The NRGs risk model con-
structed in breast cancer by Zhao et  al. also showed 
good predictive performance, the respective AUCs for 
the dataset were 0.73, 0.80, and 0.78 [29]. These studies 
implied that prognostic models based on NETs may be 
able to have potential prognostic significance in solid 
tumors.

Genes in the NRG risk model have various functions 
in the disease. Parvin beta (PARVB) is involved in actin 
reorganization and focal adhesion, which are associated 
with cell adhesion, spreading, and motility [30]. Previ-
ous studies have demonstrated that PARVB overexpres-
sion may promote endogenous growth and metastasis 
of tongue squamous cell carcinoma by enhancing tumor 
migration [31]. In urothelial cancer cells, downregulation 
of PARVB promotes proliferation and migration [32]. In 
this study, PARVB was associated with a poor progno-
sis in DLBCL; however, further research is required to 
determine precisely how it functions. S100 calcium-bind-
ing protein A9 (S100A9) is a calcium-binding protein 
that is mainly produced by neutrophils and monocytes 
[33]. S100A9 can promote cell proliferation, migration, 

and invasion in a variety of malignancies [34–36]. C-X-C 
motif chemokine ligand 2 (CXCL2) is a chemokine gen-
erated by activated monocytes and neutrophils. Previ-
ous studies showed that compared to normal tissue, 
DLBCL overexpressed CXCL2 with a fold change of 
2.544, and our study reached similar trends [37, 38]. In 
addition, CXCL2 may be used as a new biomarker for 
predicting cancer prognosis in specific patients [39]. 
Secreted phosphoprotein 1 (SPP1) encodes a cytokine 
that increases the production of interferon-gamma 
and interleukin-12 [40]. A pan-cancer analysis of SPP1 
showed that it promotes immune cell infiltration and 
that its upregulation is associated with poor progno-
sis in a variety of cancers [41]. According to Tun et  al., 
SPP1 expression is significantly upregulated in primary 
central nervous system (CNS) lymphoma; however, its 
expression in non-CNS DLBCL has not been studied 
[42]. Lysozyme (LYZ) encodes human lysozyme, which 
digests the peptidoglycan found in bacterial cell walls. 
LYZ can be used as a new biomarker in diseases such as 
acute intracerebral hemorrhage and Graves’ orbitopa-
thy [43, 44]. Hypoxia-inducible factor 1 subunit alpha 
(HIF1A) is a transcription factor that helps cancer cells 
adapt to hypoxic conditions [45]. Madan et al. found that 
HIF1A may function as a tumor promoter by degrading 
the p53 protein and increasing invasive and metastatic 
activity by binding to five response elements  in the p53 
promote [46]. Additionally, it is involved in tumor energy 
metabolism, angiogenesis, and apoptosis, which may 
help DLBCL cells survival [47].Cadherin 1 (CDH1) codes 
for calcium-dependent cell adhesion proteins [48, 49]. As 
an oncogene, its loss of function is thought to contrib-
ute to cancer progression through promoting prolifera-
tion, invasion, and/or metastasis [50, 51]. The heritable 
CDH1 mutations are associated with an increased risk of 
gastric and breast cancers [52]. Alkebsi et al. investigated 
the expression of CDH1 in DLBCL and non-malignant 
tissues and showed that CDH1 expression was signifi-
cantly reduced in lymphomas and our qPCR results also 
support this conclusion [53]. PPARG coactivator 1 alpha 
(PPARGC1A) is a transcriptional coactivator that regu-
lates cellular energy metabolism, oxidative phosphoryla-
tion, and mitochondrial function. Its expression may be 
linked to type 2 diabetes and cardiovascular disease 
[54]. In conclusion, although the roles of some genes in 
DLBCL have not been investigated, our study confirmed 
a potential relationship between eight prognostic genes 
and the prognosis of DLBCL, which will aid future stud-
ies in the field.

Most patients with DLBCL can be treated with regular 
chemotherapy, although up to 40% do not benefit from 
standard chemotherapy [55]. A recent meta-analysis 
confirmed the safety and efficacy of immune checkpoint 
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inhibitors in patients with non-Hodgkin lymphoma, sug-
gesting that clinicians may use immune checkpoint inhib-
itor therapy as an adjunctive therapy [56]. Since DOT1L, 
IDH2, MCL1, PLK1, and BCL2 were positively correlated 
with the risk score, patients may benefit from the inhi-
bition of these genes. Conversely, patients may not ben-
efit from blocking CD47, MDM2, or ASXL1 expression. 
However, larger long-term follow-up trials are required 
to validate the safety and effectiveness of ICI treatment in 
patients with DLBCL.

To prevent treatment resistance, it is urgent to identify 
targeted drugs for DLBCL. The DGIdb database con-
tains 50 FDA-approved target medicines based on eight 
NRGs. Epoetin alfa acts as an erythropoietin (EPO) and 
is a growth factor produced in the kidneys that stimu-
lates the production of red blood cells, decreases the 
number of PRBC transfusions, and does not appear to 
negatively impact remission duration [57, 58]. Consider-
ing the large number of target drugs for HIF1A, we uti-
lized molecular docking to select the best candidates. 
Interestingly, axitinib and sorafenib showed the strong-
est binding to HIF1A via hydrogen bond formation. Due 
to the complexity of cellular signaling, several genes 
with low expression are also crucial in the development 
of cancer. In lung cancer, PTEN loss leads to the forma-
tion of an immunosuppressive microenvironment which 
offers resistance to anti-PD-1 therapy [59]. The expres-
sion of GPC5 decreased significantly in lung adeno-
carcinoma tissues, and the low expression of this gene 
was associated with poor outcomes in lung adenocarci-
noma [60]. HIF1A was found to be highly expressed in 
the low-risk group in our study (p = 7e−12). Although 
the precise mechanism is still unknown, the difference 
in HIF1A expression between the high-risk and low-risk 
groups may be related to the two groups’ different tumor 
immune microenvironments. Based on a clinical trial 
(NCT00071006), axitinib has been tested in patients with 
myelodysplastic syndromes, and the results showed that 
two patients with myelodysplastic syndromes had stable 
disease for 8.3 and 6.2  months, respectively [61]. This 
enlightens us on the potential efficacy of axitinib as an 
adjuvant treatment for DLBCL. We will conduct future 
studies on the specific efficacy of axitinib against HIF1A 
and explore its intrinsic mechanism.

Conclusions
We identified the NRGs associated with prognosis and 
developed an eight-gene prognostic model. The model 
provides a prognostic score that is independent of other 
factors. Additionally, we validated the robustness of the 
model using multiple methods and obtained satisfac-
tory results. Our study not only analyzed the predictive 

performance of the risk model but also screened pro-
spective treatment drugs.

Limitations
Our study has some limitations. First, the GEO provides 
only a limited amount of information on clinical features 
and may not include other clinical parameters. Second, 
the data were obtained from retrospective studies, which 
may have been influenced by selection bias. Prospective 
investigations are required to confirm our findings. Fur-
ther research is needed to determine how these eight OS-
related genes function in DLBCL.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967- 023- 04494-9.

Additional file 1: Table S1a. Clinical Information of GSE10846. Table S1b. 
Clinical Information of GSE11318. Table S1c. Clinical Information of 
GSE34171.

Additional file 2: Table S2. Information of 148 NET-related genes (NRGs) 
collected in this research.

Additional file 3: Table S3. Differentially expressed genes of the training 
dataset.

Additional file 4: Table S4a. Gene Ontology (GO) terms of the DEGs. 
Table S4b. Kyoto Encyclopedia of Genes and Genomes (KEGG) of the 
DEGs.

Additional file 5: Table S5a. Survival-related genes in the training data-
set. Table S5b. Survival-related genes in the training dataset. (p < 0.05). 
Table S5c. Prognosis related NRGs.

Additional file 6: Table S6. Prediction of potential therapeutic drugs.

Additional file 7: Table S7. Molecular docking analysis of HIF1A.

Additional file 8: Fig. S1. The heatmap of DEGs. (A) Heatmap of DEGs 
between the two clusters. (B) Heatmap of DEGs between the high-risk and 
low-risk groups.

Additional file 9: Fig. S2. (A) ROC curves for predicting the 1-, 3-, and 
5-year survival according to the IPI score in the training cohort. (B) The 
tumor microenvironment in the low- and high-risk groups.

Additional file 10: Fig. S3. The relative gene expression between the 
high- and low- risk group in the training dataset.

Acknowledgements
The authors thank everyone who contributed to the public dataset used in 
this study.

Author contributions
HS conceptualized and designed the study. HS and YP collected the data. HS, 
YH, and YP performed data analysis. HS, YP, and MW drafted the manuscript. 
MW, YP, and GX performed cellular experiments. HS, YP, MW, GX, QF, ZL, WJ, 
and LL reviewed and revised the manuscript. All authors read and approved 
the final manuscript.

Funding
This study was supported by the CAMS Innovation Fund for Medical Sciences 
(CIFMS) (2021-I2M-1-060).

Availability of data and materials
The datasets generated during or analyzed during the current study are 
publicly available.

https://doi.org/10.1186/s12967-023-04494-9
https://doi.org/10.1186/s12967-023-04494-9


Page 17 of 18Shi et al. Journal of Translational Medicine          (2023) 21:630  

Declarations

Ethics approval and consent to participate
Following institutional guidelines and national laws and regulations, this study 
did not require ethical approval, as it did not involve human clinical trials or 
animal experiments, and therefore did not require further approval from the 
ethics committee.

Consent for publication
All authors approved the final manuscript and the submission to this journal.

Competing interests
The authors declare that they have no competing financial interests exist.

Author details
1 Department of Hematology, Shanghai General Hospital, Shanghai Jiao 
Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, 
China. 2 Institute of Blood Transfusion, Chinese Academy of Medical Sciences 
and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, 
Chenghua District, Chengdu 610052, Sichuan, China. 3 Key Laboratory of Trans-
fusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai 
Rd, Longtan Industry Zone, Chenghua District, Chengdu 610052, Sichuan, 
China. 4 School of Public Health, Anhui Medical University, Hefei 230032, China. 
5 Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong 
University School of Medicine, Shanghai 200080, China. 6 Stomatology Center, 
Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China. 
7 Department of Blood Transfusion, the Third People’s Hospital of Chengdu, 
Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Qing-
yang District, Chengdu 610031, Sichuan, China. 

Received: 27 June 2023   Accepted: 30 August 2023

References
 1. Sehn LH, Salles G. Diffuse large B-cell lymphoma. N Engl J Med. 

2021;384(9):842–58.
 2. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. 

A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J 
Med. 1993;329(14):987–94.

 3. Sehn LH, et al. The revised International Prognostic Index (R-IPI) is 
a better predictor of outcome than the standard IPI for patients 
with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 
2007;109(5):1857–61.

 4. Zhou Z, et al. An enhanced International Prognostic Index (NCCN-IPI) for 
patients with diffuse large B-cell lymphoma treated in the rituximab era. 
Blood. 2014;123(6):837–42.

 5. Olszewski AJ, Winer ES, Castillo JJ. Validation of clinical prognostic indices 
for diffuse large B-cell lymphoma in the National Cancer Data Base. 
Cancer Causes Control. 2015;26(8):1163–72.

 6. Ruppert AS, et al. International prognostic indices in diffuse large 
B-cell lymphoma: a comparison of IPI, R-IPI, and NCCN-IPI. Blood. 
2020;135(23):2041–8.

 7. Crump M, et al. Outcomes in refractory diffuse large B-cell lym-
phoma: results from the international SCHOLAR-1 study. Blood. 
2017;130(16):1800–8.

 8. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral 
no more. Nat Rev Cancer. 2016;16(7):431–46.

 9. Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients 
with cancer. Nat Rev Clin Oncol. 2019;16(10):601–20.

 10. Yang L, et al. DNA of neutrophil extracellular traps promotes cancer 
metastasis via CCDC25. Nature. 2020;583(7814):133–8.

 11. Templeton AJ, et al. Prognostic role of neutrophil-to-lymphocyte ratio 
in solid tumors: a systematic review and meta-analysis. J Natl Cancer 
Inst. 2014;106(6): dju124.

 12. Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and 
metastasis. J Hematol Oncol. 2021;14(1):173.

 13. Grégoire M, et al. Neutrophils trigger an NF-κB dependent polarization 
of tumor-supportive stromal cells in germinal center B-cell lympho-
mas. Oncotarget. 2015;6(18):16471–87.

 14. Brinkmann V, et al. Neutrophil extracellular traps kill bacteria. Science. 
2004;303(5663):1532–5.

 15. Nie M, et al. Neutrophil extracellular traps induced by IL8 promote 
diffuse large B-cell lymphoma progression via the TLR9 signaling. Clin 
Cancer Res. 2019;25(6):1867–79.

 16. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery 
tool with confidence assessments and item tracking. Bioinformatics. 
2010;26(12):1572–3.

 17. Ritchie ME, et al. limma powers differential expression analyses for 
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): 
e47.

 18. Yu G, et al. clusterProfiler: an R package for comparing biological 
themes among gene clusters. OMICS. 2012;16(5):284–7.

 19. Fontanarosa JB, Dai Y. Using LASSO regression to detect predictive 
aggregate effects in genetic studies. BMC Proc. 2011;5(Suppl 9):S69.

 20. Vrieze SI. Model selection and psychological theory: a discussion 
of the differences between the Akaike information criterion (AIC) 
and the Bayesian information criterion (BIC). Psychol Methods. 
2012;17(2):228–43.

 21. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves 
for censored survival data and a diagnostic marker. Biometrics. 
2000;56(2):337–44.

 22. Barbie DA, et al. Systematic RNA interference reveals that oncogenic 
KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.

 23. Zhang Z, Kattan MW. Drawing Nomograms with R: applications to 
categorical outcome and survival data. Ann Transl Med. 2017;5(10):211.

 24. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for pre-
dicting in vivo or cancer patient drug response and biomarkers from 
cell line screening data. Brief Bioinform. 2021;22(6): bbab260.

 25. Freshour SL, et al. Integration of the Drug-Gene Interaction Data-
base (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 
2021;49(D1):D1144-d1151.

 26. Burley SK, et al. RCSB Protein Data Bank (RCSB.org): delivery of 
experimentally-determined PDB structures alongside one million com-
puted structure models of proteins from artificial intelligence/machine 
learning. Nucleic Acids Res. 2023;51(D1):D488-d508.

 27. Wight JC, et al. Prognostication of diffuse large B-cell lymphoma in the 
molecular era: moving beyond the IPI. Blood Rev. 2018;32(5):400–15.

 28. Xin H, et al. Noninvasive evaluation of neutrophil extracellular traps 
signature predicts clinical outcomes and immunotherapy response in 
hepatocellular carcinoma. Front Immunol. 2023;14:1134521.

 29. Zhao J, Xie X. Prediction of prognosis and immunotherapy response in 
breast cancer based on neutrophil extracellular traps-related classifica-
tion. Front Mol Biosci. 2023;10:1165776.

 30. Sepulveda JL, Wu C. The parvins. Cell Mol Life Sci. 2006;63(1):25–35.
 31. Eslami A, et al. PARVB overexpression increases cell migration capability 

and defines high risk for endophytic growth and metastasis in tongue 
squamous cell carcinoma. Br J Cancer. 2015;112(2):338–44.

 32. Wu CF, et al. Expression of parvin-beta is a prognostic factor for 
patients with urothelial cell carcinoma of the upper urinary tract. Br J 
Cancer. 2010;103(6):852–60.

 33. Chen Y, et al. S100A8 and S100A9 in cancer. Biochim Biophys Acta Rev 
Cancer. 2023;1878(3): 188891.

 34. Laouedj M, et al. S100A9 induces differentiation of acute myeloid 
leukemia cells through TLR4. Blood. 2017;129(14):1980–90.

 35. Zhao Z, Zhang C, Zhao Q. S100A9 as a novel diagnostic and prog-
nostic biomarker in human gastric cancer. Scand J Gastroenterol. 
2020;55(3):338–46.

 36. Liu Y, Luo G, He D. Clinical importance of S100A9 in osteosarcoma 
development and as a diagnostic marker and therapeutic target. 
Bioengineered. 2019;10(1):133–41.

 37. Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma 
identified by gene expression profiling. Nature. 2000;403(6769):503–11.

 38. Zhou X, Guo S, Shi Y. Comprehensive analysis of the expression and 
significance of CXCLs in human diffuse large B-cell lymphoma. Sci Rep. 
2022;12(1):2817.



Page 18 of 18Shi et al. Journal of Translational Medicine          (2023) 21:630 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 39. Lin T, et al. CXCL2/10/12/14 are prognostic biomarkers and correlated 
with immune infiltration in hepatocellular carcinoma. Biosci Rep. 
2021;41(6): BSR20204312.

 40. Yim A, Smith C, Brown AM. Osteopontin/secreted phosphoprotein-1 
harnesses glial-, immune-, and neuronal cell ligand-receptor interac-
tions to sense and regulate acute and chronic neuroinflammation. 
Immunol Rev. 2022;311(1):224–33.

 41. Wei T, et al. The significance of secreted phosphoprotein 1 in multiple 
human cancers. Front Mol Biosci. 2020;7: 565383.

 42. Tun HW, et al. Pathway analysis of primary central nervous system 
lymphoma. Blood. 2008;111(6):3200–10.

 43. Li GC, et al. Identification of novel biomarker and therapeutic target 
candidates for acute intracerebral hemorrhage by quantitative plasma 
proteomics. Clin Proteomics. 2017;14:14.

 44. Aass C, et al. Establishment of a tear protein biomarker panel differenti-
ating between Graves’ disease with or without orbitopathy. PLoS ONE. 
2017;12(4): e0175274.

 45. Collin LJ, et al. Hypoxia-inducible factor-1α expression and breast can-
cer recurrence in a Danish population-based case control study. Breast 
Cancer Res. 2021;23(1):103.

 46. Madan E, et al. HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids 
Res. 2019;47(19):10212–34.

 47. Zheng F, et al. The HIF-1α antisense long non-coding RNA drives a 
positive feedback loop of HIF-1α mediated transactivation and glycoly-
sis. Nat Commun. 2021;12(1):1341.

 48. Meigs TE, et al. Galpha12 and Galpha13 negatively regulate the adhe-
sive functions of cadherin. J Biol Chem. 2002;277(27):24594–600.

 49. Soncin F, Ward CM. The function of e-cadherin in stem cell pluripo-
tency and self-renewal. Genes (Basel). 2011;2(1):229–59.

 50. Berx G, et al. Mutations of the human E-cadherin (CDH1) gene. Hum 
Mutat. 1998;12(4):226–37.

 51. Cheng J, et al. Pan-cancer analysis of homozygous deletions in 
primary tumours uncovers rare tumour suppressors. Nat Commun. 
2017;8(1):1221.

 52. Gamble LA, Heller T, Davis JL. Hereditary diffuse gastric cancer syn-
drome and the role of CDH1: a review. JAMA Surg. 2021;156(4):387–92.

 53. Alkebsi L, et al. Chromosome 16q genes CDH1, CDH13 and ADAMTS18 
are correlated and frequently methylated in human lymphoma. Oncol 
Lett. 2016;12(5):3523–30.

 54. Lai CQ, et al. PPARGC1A variation associated with DNA damage, diabe-
tes, and cardiovascular diseases: the Boston Puerto Rican Health Study. 
Diabetes. 2008;57(4):809–16.

 55. Coiffier B, et al. Long-term outcome of patients in the LNH-98.5 trial, 
the first randomized study comparing rituximab-CHOP to stand-
ard CHOP chemotherapy in DLBCL patients: a study by the Groupe 
d’Etudes des Lymphomes de l’Adulte. Blood. 2010;116(12):2040–5.

 56. Davoodi-Moghaddam Z, et al. A systematic review and meta-analysis 
of immune checkpoint therapy in relapsed or refractory non-Hodgkin 
lymphoma; a friend or foe? Transl Oncol. 2023;30: 101636.

 57. Ferrario E, et al. Treatment of cancer-related anemia with epoetin alfa: a 
review. Cancer Treat Rev. 2004;30(6):563–75.

 58. Zivot A, et al. Erythropoiesis: insights into pathophysiology and treat-
ments in 2017. Mol Med. 2018;24(1):11.

 59. Exposito F, et al. PTEN loss confers resistance to Anti-PD-1 therapy in 
non-small cell lung cancer by increasing tumor infiltration of regula-
tory T cells. Cancer Res. 2023;83(15):2513–26.

 60. Yuan S, et al. GPC5, a novel epigenetically silenced tumor suppressor, 
inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung 
adenocarcinoma. Oncogene. 2016;35(47):6120–31.

 61. Giles FJ, et al. The anti-angiogenesis agent, AG-013736, has minimal activ-
ity in elderly patients with poor prognosis acute myeloid leukemia (AML) 
or myelodysplastic syndrome (MDS). Leuk Res. 2006;30(7):801–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A novel NET-related gene signature for predicting DLBCL prognosis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Data collection and processing
	Acquisition of NET gene list
	Consensus clustering analysis and principal component analysis (PCA)
	Identification of differentially expressed genes (DEGs)
	Functional enrichment analysis
	Identification of overall survival (OS)-related NRGs
	Construction and validation of NRG-related prognostic model for patients with DLBCL
	Analysis of the tumor immune microenvironment
	Correlation analysis of immune checkpoints and risk scores
	Construction of a NET-related clinicopathologic nomogram
	Prediction of half-maximal inhibitory concentration (IC50) values for different targeted therapy agents
	Drug-NRGs network analysis
	Molecular docking
	Cell lines and cell culture
	RNA extraction, cDNA synthesis, and quantitative real-time PCR (qPCR)
	Statistical analysis

	Results
	Analysis of gene function and clustering
	Identification of survival-related genes
	Recognition of NRG prognostic markers
	Model performance in external datasets
	Construction of a nomogram for prognostic prediction
	The immune status of patients in different risk groups
	Analysis of correlations between risk scores and immunological checkpoints
	IC50 analysis
	Drug-gene networks
	Molecular docking
	qPCR results

	Discussion
	Conclusions
	Limitations
	Anchor 40
	Acknowledgements
	References


