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Abstract 

Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the com‑
plex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase 
the likelihood of transplant rejection. Under prolonged static cold storage, highly damage‑susceptible tissues such 
as muscle and nerve undergo irreversible degradation that may render allografts non‑functional. Skin‑containing VCA 
elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quan‑
titative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. 
Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection 
and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand 
on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively 
assessed. The use of implantable physiological status monitoring biochips, non‑invasive bioimpedance monitoring 
to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.
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Introduction
Vascularized composite allotransplantation involves the 
transfer of anatomical structures containing multiple tis-
sue types including skin, bone, fat, muscle, and connec-
tive tissue from one individual to another. Vascularized 
composite allografts (VCAs) range from face and hand to 
less commonly transplanted grafts such as the abdominal 
wall, uterus, and penis [1]. To date, more than 120 upper 
extremity and 46 face transplants have been performed 
worldwide along with other types of VCAs [2, 3]. Suc-
cessful short- and long-term transplantation outcomes 
demonstrate VCA as viable treatment option for patients 
suffering large tissue defects or loss of limbs and for 
whom there are no conventional reconstructive options 
[4–7]. Currently, around 185,000 amputations take place 
in the US every year due to trauma, oncological resec-
tion, or severe burn, with the total number of amputees 
expected to reach 3.5 million by 2050 [8]. However, high 
immunogenicity and antigenicity are significant chal-
lenges in VCA, particularly with recipient response to 
skin. Acute rejection rates are approximately six-fold 
greater in VCA than in solid organ transplantation, 
necessitating treatment with immunosuppression and, in 
some instances, result in graft loss [1]. For amputees, limb 
prosthetics serve as an alternative to VCA transplanta-
tion. While prosthetics avoid the immunological chal-
lenges of graft rejection, functional and sensory recovery 
are unparalleled in VCA transplantation. Furthermore, 
prosthetics contribute to a significant rate of rejection as 
they are largely limited in practical applications, difficult 
to maintain, and awkward or uncomfortable to use [9]. 
While generally non-lifesaving, vascularized composite 
allotransplantation significantly improves an amputee’s 
quality of life, enables full functional recovery, and sub-
stantially recovers potential economic productivity loss 
[3, 10, 11].

Orchestrating the logistics of preserving and trans-
porting the tissue remains a significant barrier to VCA 
accessibility. Once the graft is removed from circulation, 
a pathophysiological signaling cascade initiates due to 
ischemia and storage on ice. Under cold ischemia, grafts 
develop inflammatory signaling, muscle necrosis, mito-
chondrial dysfunction, and degraded vascular integrity 
[12–14]. Herzberg et  al. and Piza-Katzer demonstrated 
that the extent of ischemic injury is inversely correlated 
with graft function in a bilateral hand transplantation 
study [15, 16]. Using the current gold standard method 
of static cold storage, the window of time for VCA via-
bility is approximately 4–6  h [17]. This restricted time 
frame limits the geographic proximity of VCAs available 
for transplantation [18]. Compounding this constraint, 
strict aesthetic and anatomical features are necessary. 
While human leukocyte antigen (HLA) status is a metric 

for both organ and VCA suitability, anatomical criteria 
such as bone size, skin color, and soft tissue features are 
considered in VCA [19]. Prolonging the viability of VCAs 
beyond current constraints would therefore expand the 
availability of compatible allografts.

Advancing machine‑perfusion‑based preservation
The gold standard in organ preservation, static cold stor-
age, involves inducing hypothermia to reduce the meta-
bolic demand of an organ or graft. Upon procurement, 
the VCA is flushed with a cold preservation solution and 
maintained on ice during transport. During this time, 
oxygen deprivation and the switch to anaerobic metabo-
lism contribute to ischemic tissue injury [20]. In lower-
ing the preservation temperature, static cold storage 
preserves the graft by slowing cellular metabolic activ-
ity [21, 22]. Despite its simplicity and widespread adop-
tion in the clinic, static cold storage beyond a few hours 
is associated with early graft dysfunction in VCA due to 
tissue injury [20–22]. Muscle and nerve are particularly 
relevant to VCA preservation as these tissues are highly 
susceptible to ischemic damage [22–25]. In addition, 
once circulation is re-established and oxygen re-intro-
duced to the now ischemic tissue, damage is exacerbated 
by reperfusion injury, a complex, injurious, pathophysio-
logical cascade [13, 23, 26]. A number of detailed reviews 
on the molecular and cellular underpinnings of reperfu-
sion injury have been published [12, 25, 27, 28]. Briefly, 
upon re-establishing blood flow, oxidative stress forms 
reactive oxygen species (ROS). Once the graft is trans-
planted, ROS and inflammatory signaling aggravate the 
innate immune system of the VCA recipient, leading to a 
cascade of tissue damaging events that encompass acute 
rejection. Furthermore, a study by Friedman and col-
leagues emphasized the contribution of injury-induced 
inflammation in acute allograft rejection [29]. Recently, 
machine perfusion has emerged as an alternative to 
ischemia that mitigates the consequences of metabolite 
accumulation and anoxia.

Ex vivo perfusion
Over the last few decades, ex vivo machine perfusion has 
presented promising options for prolonging organ pres-
ervation time. Figure 1 illustrates the design and imple-
mentation of a generalized machine perfusion bioreactor 
used in VCA. The intent of perfusion is to reduce the 
extent of ischemic damage by removing harmful metabo-
lites while delivering nutrients to sustain cellular metab-
olism [30]. As a well-established focus in transplant 
medicine, detailed reviews of organ preservation solu-
tions and their compositions have been published [31, 
32]. Generally, perfusates include the following compo-
nents: colloids to minimize edema by increasing oncotic 
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pressure, ions to preserve membrane function or serve 
as buffering agents, saccharides to sustain glycolysis and/
or increase osmotic pressure to counteract edema, and 
dilute red blood cells or artificial hemoglobin to facili-
tate oxygen transport [30, 31, 33]. Furthermore, sodium 
bicarbonate is included to balance metabolite accumu-
lation and insulin is included to increase glucose uptake 
[17, 20, 34]. Perfusion typically occurs through attach-
ment to intact arteries and vessels to pulsatile perfusion 
systems following [18]. In early studies, pumping perfu-
sate through grafts led to significant pressure-induced 
tissue injury, or barotrauma [35]. Nonetheless, there has 
been noteworthy progress and even commercialization 
of ex  vivo perfusion systems designed for solid organs 
including the kidney, liver, lung, and heart [36]. Much 
research over the last 30 + years has focused on adapt-
ing solid organ perfusion systems for VCA preservation 
[37–41]. In experimental VCA, perfusates adapted from 
solid organ transplantation such as STEEN Solution™, 
Perfadex®, Custodiol® HTK, Celsior®, and University of 
Wisconsin (UW) Solution have been used to perfuse tis-
sue with comparable efficacies [42–45]. Blood-based per-
fusates have also been used to facilitate oxygen delivery 
[41, 46]. Promising outcomes from large animal models 
encouraged Werner and colleagues to study ex vivo per-
fusion in human VCA, subsequently demonstrating the 
feasibility of human limb machine perfusion for 24  h 
with plasma-based hemoglobin [47]. In a surgical set-
ting, VCA is typically perfused prior to static cold storage 

with UW solution established as the preferred perfu-
sate. However, the empirical rationale for its selection 
has not been thoroughly characterized [30, 48]. While 
differences in transplant outcomes have been compared 
in solid organ preservation, comparative data in VCA is 
limited and there currently is no consensus on optimal 
perfusate composition [49–53]. Despite advances in VCA 
perfusion methodology, corresponding metrics to evalu-
ate their efficacy need to be identified in order to catalyze 
advancement of the field.

Surrogate biomarkers of VCA injury 
during preservation
Within the complex tissue architecture of VCA, nearly 
imperceptible damage occurs during preservation. 
Vascular degeneration, necrosis, and metabolite accu-
mulation include those changes which are not visu-
ally detectable yet lower the likelihood of successful 
transplant outcomes. Evaluation of tissue integrity and 
pathology is typically achieved with tissue biopsy and 
subsequent histology. Using this method, features such 
as cellular muscle structure and edema can be visual-
ized with high resolution. The Banff Criteria ranks tissue 
pathology in VCA and encompasses a set of histopatho-
logical features that distinguish severity by the extent 
and localization of immune infiltrate (Table  1) [55, 56]. 
Enhancing its resolution, Rosales and colleagues have 
expanded on the Banff Criteria to stratify epidermal 
and vascular tissue features [57]. Immunostimulatory 

Fig. 1 Perfusion bioreactor design and implementation. The general layout of the machine extracorporeal perfusion system commonly used 
in VCA ex‑vivo perfusion. A A schematic illustration of the perfusate circulation as a system comprising a the porcine forelimb in the perfusion 
box on top of a b metal grid that allows c passive venous drainage of the preservation fluid, d a 15 mm needle probe that measures muscle 
temperature, e collection reservoir, f a centrifugal pump, regulating in‑line pressure at ≤ 30 mmHg,   g a membrane oxygenator, infusing the fluid 
with a mix of 95%  O2 and 5%  CO2, h heater‑cooler machine, cooling the fluid to 8–10 °C, i drug administration point/fluid sampling port, and j 
flowmeter. (Image reproduced with permission from [54] ©2020 Anne Sophie Kruit et al. Transplant International published by John Wiley & Sons 
Ltd on behalf of Steunstichting ESOT.) B An actual perfusion system showing a human arm in the bioreactor chamber. C and D Photos of actual 
perfusion bioreactor systems consisting of an allograft housing, perfusate pump, perfusate oxygenator, heater, sampling port, and flow meter. 
(Images reproduced with permission from [47] © 2017 Wolters Kluwer Health)
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molecules evoked by surgical tissue damage and altered 
metabolic activity under ischemia trigger the infiltration 
of macrophages into muscle and skin [56, 58]. While the 
resolution of tissue histology may yield invaluable insight 
for VCA status, applications to ex vivo graft preservation 
are limited due to its invasiveness, time-intensiveness, 
intrinsic inter- and intra-observer variability, and lack of 
quantification. In one center, it was found that approxi-
mately 80% of in  vivo skin containing VCA rejection 
episodes that were resolved with topical therapy or oral 
immunosuppression were scored as Grade III using the 
Banff Criteria [59]. Interestingly, VCA with rejection epi-
sodes necessitating systemic administration of immuno-
suppression were also scored as Grade III. To overcome 
the uncertainty associated with histopathological grad-
ing, quantifiable VCA features and alternative biomark-
ers of viability have emerged in recent time. A review 
of the literature that employs a range of tissue monitor-
ing methods was conducted using Scopus and PubMed. 
Given the relatively recent development of VCA sur-
gery, all original research articles up to the present were 
included. Search terms included ‘vascularized composite 
tissue allograft/allotransplantation’ in combination with 
the following terms: biomarker, monitoring, diagnostics, 
perfusion, viability, rejection, ex vivo preservation.

Figure  2 provides an illustration that summarizes the 
various methods of analysis of tissue status during pres-
ervation of allografts in VCA. The illustration follows the 
methods described in the following sections.

Metabolic and biochemical biomarkers
During solid organ perfusion, cellular metabolites are 
often used as surrogates of transplant viability. With 
effective machine perfusion, perfusate carries biomole-
cules from the interstitial space for sample collection and 
analysis. These surrogate viability markers are derived 
from normal metabolic processes, whose deviation from 
established physiological values are thought to indicate 
graft deterioration. Once the VCA is removed from the 
donor, the surgical tissue damage, the ischemic period 
and lack of circulation alters the graft on a molecular and 
cellular level. Oxygen and nutrient deprivation lead to 
series of ionic and metabolic changes in cells over time. 

Membrane potential and ion compartmentalization can 
be maintained with low ATP reserves early in ischemia, 
however, after a few hours, mitochondrial activity is 
altered and membrane potential decreases [14]. Without 
blood flow, cells are still able to synthesize ATP through 
anerobic metabolism and phosphocreatine (PCr) path-
ways, such that ATP drops slowly as PCr and glycogen 
remain abundant. However, three hours into ischemia, 
ATP declines quickly, followed by complete consumption 
of PCr and glycogen 6 h post ischemia [62]. The switch 
from aerobic to anaerobic metabolism has implications 
in metabolite accumulation that may give insight to graft 
viability and functionality. Upon ischemia, the change in 
cellular metabolism result in the accumulation of NAD, 
lactate, and  H+, thus lowering intra- and extracellular pH 
[23]. Furthermore, lactate, creatine kinase, potassium, 
lactate dehydrogenase have been identified as indicators 
of ischemia [63]. Lactate concentration is commonly used 
as a surrogate marker of cellular stress and hypoxia in 
solid organ transplantation and is often used as a marker 
for VCA viability [20, 43, 64, 65]. Lactate above a concen-
tration of 5 mmol/L at the end of the heart perfusion has 
been suggested as an indicator of poor post-transplant 
outcomes [66]. In a human limb tourniquet study, lac-
tate reportedly increased to 28  mmol/L after 36  min of 
ischemia, subsequently 15 mmol/L has been suggested as 
initial estimate for VCA lactate threshold [67]. Acidosis 
is associated with reduced VCA functionality for ex vivo 
timepoints, specifically in studies which use muscle con-
tractility as another metric of viability [68]. Additional 
study of the correlation between pH and VCA outcome is 
needed to bolster biomarker efficacy.

Concurrently, glucose, phosphocreatine, and ATP con-
tent of tissue inform its rate of energy consumption. As 
graft viability deteriorates, metabolism is expected to 
slow to an eventual stop. Liquid chromatography-mass 
spectrometry (LCMS) as well as blood-gas analysis have 
been used to quantify metabolites contained in tissues 
or perfusate following static cold storage or perfusion. 
Compared to a warm treatment group in a rat hindlimb 
model, Gok and colleagues demonstrated that static 
cold storage incurred the greatest decrease in phospho-
creatine and creatine using LCMS [22, 69]. However, a 

Table 1 Banff classification of acute rejection in skin‑containing allografts

Grade 0 No or rare inflammatory infiltrates

Grade I Mild Mild perivascular infiltration. No involvement of the overlying epidermis

Grade II Moderate Moderate‑to‑severe perivascular inflammation with or without mild epidermal and/or adnexal involvement 
(limited to spongiosis and exocytosis. No epidermal dyskeratosis or apoptosis

Grade III Severe Dense inflammation and epidermal involvement with epithelial apoptosis, dyskeratosis, and/or keratinolysis

Grade IV Necrotizing acute 
rejection

Frank necrosis of epidermal or other skin structures
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significant difference in ATP content or the ratio of ATP/
ADP was not evidenced in either study conducted. In 
another study, similar findings indicated a non-statisti-
cally significant increase in glucose content of cold stored 
VCA after 6  h of perfusion [20]. More recently, in-line 
glucose sensors have been applied to organ perfusion 
to continuously monitor perfusate [70]. Despite some 
encouraging evidence of glucose as a metric of cellular 
metabolism, it may be challenging to use as a biomarker 
when added to perfusate. This issue necessitates the use 
of more sensitive glucose sensors as well as precise con-
trol of perfusate composition.

Calcium is a key mediator of muscle contraction. Dur-
ing tissue and organ preservation, ischemia induces 
mitochondrial dysfunction and alters cellular calcium 

retention [71–75]. This process has been characterized in 
cardiac transplantation and is associated with impaired 
organ function [71, 76]. In VCA, metabolically-active 
skeletal muscle is highly susceptible to ischemic injury. 
Depletion of ATP inhibits ion exchange by sodium–
potassium ATPases as well as calcium ATPases [72, 
75]. Consequently, sodium-calcium antiporters reverse 
in mechanism to restore cytosolic sodium concentra-
tion, leading to an accumulation of cytosolic calcium 
[72]. Sodium, calcium, and potassium concentration are 
often used as a measure of ischemia in VCA. Specifically, 
increased intracellular ion retention has been used to 
identify the onset of tissue ischemia during preservation. 
In a study by Amin and colleagues, porcine forelimbs 
were preserved under an extended period of static cold 

Fig. 2 An illustrative summary of methods of analysis of tissue status during preservation of allografts in VCA. Clockwise: Metabolic, Biochemical, 
Histopathological, and Biophysical. (Images reproduced with permission from [60, 61] © 2015 Royal College of Ophthalmologists, 2019 American 
Chemical Society, respectively.)
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storage or perfusion with varying temperatures and mean 
arterial pressures for a total of 8 h prior to transplanta-
tion and reperfusion [20]. During reperfusion, blood-gas 
analysis revealed a destabilized electrolyte profile and 
acidosis in the static cold storage group, this was treated 
with repeat infusions of bicarbonate to prevent graft loss. 
These limbs demonstrated depleted sodium and calcium 
levels and increased potassium relative to the machine 
perfusion groups.

The consequences of tissue damage due to ionic metab-
olite imbalance are not well-understood. Despite an 
apparent connection between VCA viability and meta-
bolic activity, measurement of biochemical parameters is 
confounded by the lack of standardized methods in pres-
ervation. Differences in graft model, ischemic duration, 
perfusate composition, and perfusion parameters such 
as flow rate and pressure may influence the accumulation 
of metabolites. In machine perfusion systems, metabolite 
accumulation in the perfusate may indicate the status of 
cellular metabolism and severity of ischemic injury. Per-
fusate choice may also affect metabolite measurement 
yet has not been comparatively assessed in VCA. In one 
study, the impact of perfusate composition was shown in 
relation to lactate abundance. Kruit and colleagues dem-
onstrated lactate level in abdominal wall machine per-
fusion perfused by UW was higher than tissue perfused 
with Custodiol®HTK, which may empirically reflect the 
intended formulation of UW to support cellular metabo-
lism, whereas HTK is designed to stabilize membrane 
potential and minimize cell activity [77]. In order to use 
cellular metabolites as surrogates of tissue injury, further 
research should consider contributions of perfusate com-
position and biophysical parameters to quantified tissue 
status. The forgoing suggests that continued development 
of fully intra-muscularly indwelling physiological status 
monitoring biochips that measure metabolites such as 
glucose, lactate, pH (acidosis) and potassium promises to 
be welcomed additions to the VCA metabolite monitor-
ing arsenal [78–84].

Biophysical biomarkers
Once grafts are removed from the donor and subject to 
static cold storage or perfusion, the biophysical proper-
ties of composite tissues become substantially altered. 
In organ transplantation, donor history including age, 
illness, medication regimen, and cause of death have 
been used to confirm acceptability. Studies applying 
machine perfusion to organs from non-heart-beating 
donors (NHBD) indicate perfusion pressure and vascu-
lar resistance as markers of graft status and perfusion 
efficiency. In a study of NHBD kidneys, pulsatile hypo-
thermic perfusion precedes a reduction in renal vascu-
lar resistance, improved cortical flow, and clot ejection 

from microcirculation [20, 22, 68, 85, 86]. These obser-
vations support that machine perfusion enabled effective 
perfusate delivery. In a similar study, ischemic kidneys 
had an elevated vascular resistance (1.25  mmHg/mL/
min) compared to a perfused group (0.75  mmHg/mL/
min) [87]. Furthermore, warm ischemia time has been 
shown to increase the risk of delayed graft function in 
NHBD organs, which may be due to acute tubular necro-
sis [85]. Vascular resistance in NHBD kidneys has also 
been investigated as prognostic factor of transplanta-
tion outcome in combination with donor history param-
eters. Kidneys transplanted with low vascular resistance 
after 20–30  h of hypothermic perfusion with UW have 
shown improvement in graft survival comparing to aver-
age NHBD kidneys survival [88, 89]. Intra-organ vascular 
resistance at the beginning of perfusion has been dem-
onstrated to directly correlate with warm ischemia time, 
which may be mitigated by prolonging machine perfu-
sion prior to transplantation [90].

Under native physiological conditions, the endothe-
lium maintains vascular homeostasis. The elasticity of 
intact blood vessels and capillaries facilitates an adap-
tive response to varying hemodynamic pressures [91]. 
As a physiological analog to electrical circuits, vascu-
lar resistance is the opposition to hemodynamic flow 
[92]. Generally, organ machine perfusion systems follow 
pressure-controlled protocols. The lower end of physi-
ological blood pressure has been shown as optimal to 
prevent tissue edema [17, 93]. This parameter is influ-
enced by vessel dimensions, perfusate viscosity, flow rate, 
and temperature [20, 41, 50, 91]. Additionally, perfusate 
colloid concentration has been shown to affect vascular 
resistance. In kidneys perfused with a varying colloid 
concentrations, vascular resistance was observed to be 
higher in kidney perfused with lower colloid perfusate 
in comparison with perfusate containing higher col-
loid [94]. Change in vascular resistance is often used as 
a surrogate for perfusion efficacy and vascular integrity. 
Whereas decrease in resistance may occur due to baro-
trauma and vascular collapse, stable resistance may indi-
cate intact vasculature. During extended limb perfusion 
with a pressure-controlled circuit, vascular resistance 
tends to decrease within an hour of perfusion and stabi-
lize thereafter [34, 43, 47]. Gok and colleagues demon-
strated that a perfusion flow rate of approximately 1 mL/
min lead to a gradual increase in perfusion pressure, 
barotrauma, lactate, and limb edema [43]. In another 
instance, a perfusion circuit by Fahradyan and colleagues 
increased flow rate until a physiological arterial pressure 
of 102.9 ± 1.76  mmHg was reached [68]. At the end of 
perfusion, vascular resistance was found to be increased 
by 6.42% ± 18.41%. The authors posit that the observed 
increase in vascular resistance was due to vascular spasm, 
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endothelial edema, and microvascular collapse leading 
to perfusion failure [68]. Generally, regardless of tem-
perature, perfusate and organ intra-organ vascular resist-
ance during long-term perfusion has been recorded as 
high at the beginning of machine perfusion but declines 
and stabilizes as perfusion continues beyond 1  h. Due 
to differences in experimental conditions and perfusate 
composition, a significant change in any of these param-
eters during perfusion may impact pressure reading [95]. 
Global tissue physiology and comparative analysis of per-
fusate parameters must be considered in the evaluation 
of vascular resistance as a surrogate for tissue status.

Aside from ensuring tissues are viable, they must also 
be functional for successful VCA transplantation out-
comes. Due to the accumulation or imbalance of key ions 
and metabolites, muscle tissue contractility and graft 
function deteriorate [47, 69, 86]. Namely, allografts such 
as the face and limbs must enable muscular capabilities 
in the recipient. Ex vivo VCA tissue assessments attempt 
to validate functionality by testing single-muscle con-
tractility, where a decay in force generated by the muscle 
fiber is a sign of reduced graft function. This measure-
ment is often taken by excising and permeabilizing single 
muscle fibers, then placing them in a calcium-containing 
solution. Single fibers are dissected then secured to a 
force transducer. Some researchers have assessed con-
tractional force by immersing tissue in solutions con-
taining high concentrations of calcium and ATP [47, 86]. 
Alternatively, muscle contraction has also been induced 
by using point electrodes to deliver a supramaximal elec-
trical stimulus to whole ex vivo limbs [22, 69]. The force 
generated is normalized to the cross-sectional area of 
the muscle and used to estimate fiber contractility and 
functionality. Constantinescu and colleagues found that 
perfused porcine forelimbs maintained a motor response 
to electrical stimulation for the duration of 12-h perfu-
sion, whereas non-perfused tissue was unresponsive after 
30 min [41]. Across experiments comparing muscle con-
tractility in static cold stored and perfused grafts, the lat-
ter has been shown to sustain muscle contraction for up 
to a maximum of 12 h [69, 86]. Furthermore, it was found 
that reattachment of static cold stored limbs did not 
recover force generation, indicating that perfusion may 
be better suited for long-term ex vivo VCA preservation 
[86]. A correlation between the duration of cold ischemia 
on limb function has been investigated by Tsuji and col-
leagues, who histologically identified muscle degenera-
tion and necrosis in rat hind limbs maintained at 4  °C 
for up to 72  h [96]. The findings were validated using 
electromyography 3  weeks following transplantation, 
which indicated a longer delay in motor response for all 
ischemic groups compared to limbs transplanted imme-
diately. In a separate functional validation, one group 

used porcine abdominal muscle flaps with electrical field 
stimulation used for recording muscle contraction [97]. 
This inherently non-contact electrical field stimulation 
approach may be better suited for graft transport during 
ex  vivo preservation [41, 97]. As a whole, muscle con-
tractility is surrogate for graft function that may inform 
long-term transplant success, although factors such as 
preservation condition, ischemic and/or reperfusion 
damage, and the integrity of nerves and muscles must be 
considered with tissue force generation to identify causes 
of reduced tissue functionality. The continued develop-
ment of multiplexed multielectrode bioimpedance spec-
troscopy used in the measurement of edema, with and 
without electric field stimulation, may be a welcomed 
addition for the continuous monitoring and stratification 
of VCA status during preservation [98–101].

Histopathology and tissue composition biomarkers
Aside from biochemical and biophysical VCA compo-
nents, additional factors within the tissue may inform 
graft viability. Markers of inflammation such as edema, 
cytokine profiles, and immune cell subsets have been 
explored as potential biomarkers in VCA. In skin-con-
taining allograft preservation and transplantation, edema 
is commonly used as an indication of graft injury or 
rejection [55, 57, 102–104]. Typically, during experimen-
tal VCA, samples of tissue are isolated then desiccated, 
the initial “wet” weight and subsequent “dry” weight 
yield a ratio used as a surrogate metric of edema [105]. 
Alternatively, histology is commonly used to increase the 
resolution of tissue assessment and identify edema on a 
cellular level. Figure 3 is a collage illustrating the signifi-
cance of edema as a clinical indicator of acute rejection 
in VCA. In a porcine skin-containing VCA flap model, 
Rosales and colleagues used histology to determine 
extent of inflammation, as evidenced by immune infil-
trate and edema [57]. From transplant recipients of either 
haploidentical or class I MHC mismatched groups, 28 
serial biopsies were taken from 8 animals and ranked by 
the relative amount of inflammatory infiltrate for correla-
tion to graft survival time. Biopsies from the mismatched 
transplant indicated a greater presence of immune cells 
as well as marked edema compared to the matched group 
where mild edema was noted. The MHC mismatched 
transplants were ultimately rejected. While the scoring 
methodology delineated relative degrees of inflammatory 
infiltrate, the correlation of edema with graft survival 
lacks quantitative rigor. Therefore, the extent of edema 
across the two groups was difficult to associate with graft 
survival. In a swine hindlimb transplantation model, Etra 
and colleagues applied the Banff grading system to char-
acterize skin rejection [55]. Grafts that exhibited a pat-
tern of severe edema, erythema, and local inflammation 
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were stratified for abandonment rather than treated with 
immunosuppressive therapy. This was due to the pur-
ported low feasibility of graft rescue. Furthermore, the 
authors noted that the Banff grading criteria was not 
sufficient for categorizing the range of graft conditions 
observed. Additionally, some edematous transplants 
recovered from mild tissue swelling, thus indicating that 
more quantitatively rigorous VCA stratification may be 
necessary [106]. Quantifying the extent of edema may 
identify a definitive correlation between tissue swelling 

and graft outcomes, thereby expanding the toolkit of bio-
markers applicable to ex vivo VCA [99, 100]

In solid organ transplantation, in vivo biomarkers have 
been explored as surrogates to predict long-term sur-
vival [109–112]. Components present in blood or serum 
are often targets for indirect biomarker discovery due to 
the inherent challenge of sampling from internal organs. 
For example, blood accumulation of myoglobin, a pro-
tein that binds oxygen to facilitate its diffusion in mus-
cle, has been used as a surrogate for cardiac and skeletal 

Fig. 3 Edema is the main Indicator of acute rejection in VCA. A Representative images of edema manifestation in face allograft acute rejection 
i. No rejection (POM21), ii. early rejection (POM 8) and iii. late rejection (POM26). (Images reproduced with permission from [2] © 2019 Mary Ann 
Liebert, Inc.) B Edema manifestation in hand allograft acute rejection (Images reproduced with permission from [107] © John Wiley & Sons, Inc.) C 
Skin allograft acute rejection graded based on Banff Scoring System. Normal skin: unaffected skin, GradeI: mild perivascular infiltration, GradeII: mild 
perivascular infiltration with/without mild epidermal or adnexal involvement. No epidermal dyskeratosis or apoptosis, Grade III: dense inflammation 
and epidermal involvement with apoptosis, dyskeratosis, and/or keratinolysis, Grade IV: necrotizing acute rejection. necrosis of skin structures. 
(Images reproduced with permission from [108] © 2013 Ravi Starzl et al.) D Association of clinical signs or subtherapeutic tacrolimus levels 
with acute rejection episodes. (Image reproduced with permission from [2] © 2019 Mary Ann Liebert)
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muscle injury [113, 114]. In VCA, limited studies have 
explored non-invasive biomarkers for tissue viability 
[115]. Honeyman and colleagues have described the fol-
lowing biomarkers identified in VCA: T cell infiltration, 
T cell effector molecules, and mRNA transcripts of genes 
associated with rejection [115]. Similarly, Puscz and col-
leagues have assessed histological and immunological 
indicators in their study of rat hindlimb transplantation 
[116]. Chronic rejection (CR) in grafts was identified as 
the appearance of erythema or edema and subsequently 
rescued with cyclosporine A and dexamethasone. Com-
pared to non-immunosuppressed rats and those receiving 
constant cyclosporine A, the CR group exhibited intimal 
hyperplasia with an approximate three-fold increase in 
proliferation of intimal cells within the femoral artery. 
Additionally, immunohistochemistry (IHC) revealed an 
increased accumulation of  CD4+ and  CD68+ cells in the 
CR group. Gene expression analysis of interleukin 6 (IL6), 
tumor necrosis factor (TNF), and interferon gamma 
(IFNG) indicated a statistically significant increase in 
IFNG. In cytokine microarrays, upregulation of vari-
ous interferon genes was observed in the CR group. In a 
similar manner, proteomics in chronic rejection has been 
explored in  vivo. Kollar and colleagues evaluated longi-
tudinal serum samples from face transplant recipients to 
identify potential proteins of interest [117]. The following 
were found to be highly abundant in instances of severe 
rejection: MMP3 (Matrix Metalloproteinase 3), ACY1 
(Aminoacylase-1), IL1R2 (Interleukin-1 receptor type 
2), SERPINA4 (Kallistatin) and CPB2 (Carboxypeptidase 
B2). As an advantage to IHC or biopsy, proteomic analy-
sis enables non-invasive detection of potential markers of 
tissue status. The novelty of using proteomic discovery 
tools in VCA biomarker research presents a promising 
non-invasive method to evaluate tissue status in vivo, and 
potentially during ex vivo preservation.

Circulating donor-derived DNA and microRNA is 
another direction for biomarker development that has 
been explored in solid organ transplantation and in vivo 
VCA [118–121]. When cells and tissues of the donor allo-
graft degrade in  vivo, fragmented nucleic acids release 
into the bloodstream and are cleared within 30  min to 
two hours. The resulting cell-free donor DNA can be 
detected in blood or urine [121–123]. In a preliminary 
study, Haug and colleagues quantified cell-free donor-
derived DNA from plasma samples from a face transplant 
recipient as well as a bilateral arm transplant recipient 
[124]. The accumulation of cell-free donor-derived DNA 
was correlated with rejection, although its increased 
concentration was not solely dependent on rejection 
onset. While measuring cell-free DNA is non-invasive 
and quantitative, detection sensitivity and enhanced 
understanding of cell degradation in transplanted VCA 

is still under refinement. In infectious disease and can-
cer, microRNAs (miRNAs) have long been a source of 
interest as potential diagnostics [125–128]. In particu-
lar, circulating nucleic acids such as miRNAs can serve 
as evidence for pathology due to its highly specific and 
unique signature [129]. Recently, Di Stefano and col-
leagues have reviewed miRNAs identified in VCA for the 
detection of allograft rejection [130]. Various miRNAs 
with immunomodulatory or effector roles were described 
with their relation to incidence of rejection. In one study, 
graft deterioration due to ischemia was discussed in the 
context of myocardial injury, however a correlation was 
not observed for the prognostic miRNAs identified. 
Despite significant developments in miRNA applications 
to solid organ transplantation, comparable progress in 
VCA is lacking [131–133]. Nonetheless, the prognostic 
modality has potential for limited applications in ex vivo 
tissue assessment such as screening for immunogenicity 
and ischemic damage.

Non‑invasive VCA evaluation methods
Clinically relevant avenues to expand upon the appli-
cability of VCA biomarkers include spatial capability, 
continuous feedback, and real-time quantitation. Medi-
cal imaging technology confers these properties and has 
been applied to ex vivo and in vivo VCA analysis. Con-
ventional methods including x-ray, computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and 
high-resolution ultrasound have been leveraged to visu-
alize tissues on a cellular level. An increased resolution 
in VCA monitoring has been used to reveal dynamic pro-
cesses such as microcirculation and perfusion, relative 
change in cellular metabolism, and the development of 
pathophysiology. These methods have been used primar-
ily for peri-operative monitoring of in  vivo VCA [134]. 
Nonetheless, medical imaging presents advantages to 
existing VCA biomarkers and has the potential for wide-
spread clinical utility, particularly for monitoring tissues 
during preservation (Table 2).

Imaging in the infrared and visible spectrum
In VCA transplantation, vascular patency and occlu-
sion are parameters relevant to graft failure as perfu-
sion is associated with microcirculatory damage [135]. 
For this reason, methods to assess VCA tissue lever-
age flow dynamics to quantify microcirculation [136, 
137]. Laser Doppler imaging (LDI) has been used to 
dynamically visualize vasculature, blood flow, and per-
fusion in superficial tissues [138, 139]. In a rat hind 
limb free flap transplant model, the method has been 
used to visualize tissue perfusion to diagnose vascu-
lar stenosis in VCA in  vivo. [140]. Similarly, thermo-
graphic imaging has also been used for the noninvasive, 
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non-contact detection of vascular disorder and inflam-
mation in vivo. [68, 141, 142]. It has also been used to 
monitor limb temperature during perfusion to verify 
normothermia [68]. Recent advancements in hardware 
have simplified thermographic measurement to enable 
rapid data acquisition using smartphone-compatible 
technology [143]. While vascular integrity and neo-
angiogenesis are relevant markers in  vivo, pre-trans-
plantation biomarkers of VCA remain unestablished. In 
order to elucidate fluid dynamics of VCA during pres-
ervation, near-infrared detection methods have been 
used to develop models of pathology [139]. Building 
upon optical technology, near-infrared (NIR) methods 
including ICG lymphoscintigraphy and lymphangiog-
raphy enable deeper light penetrance into tissue [139, 
144]. For example, ICG lymphangiography can be used 
to track real-time fluid movement in VCA for the quan-
tification of lymphatic drainage [145, 146]. Lymphangi-
ography involves administration of contrast agents and 
requires high technical skill to accomplish delivery via 
cannulation. Similarly, fluorescence angiography with 
indocyanine green (ICG) has been used to visualize 
microcirculatory and peripheral perfusion in VCA [68, 
147]. Although fluorescence imaging has high diagnos-
tic sensitivity, signal attenuation in deeper tissues may 
occur due to limited light penetrance and scattering 
[139, 148, 149]. Furthermore, ICG can bind proteins 
present in the fluid, leading to reduced image resolu-
tion [146]. Nonetheless, this method non-destructively 
enables real-time visualization of fluid circulation in 

ex vivo models of VCA, which may be used to indicate 
perfusion efficacy.

Imaging methods that use visible light are semi-
quantitative and have relatively minimal hardware 
requirements. Optical 3D scanning using camera-based 
measurement has been applied experimentally for the 
quantification of leg edema in  vivo [150]. Parameters 
including leg curvature and instep height can be derived 
from 3D coordinates in order to correlate measurements 
to fluid retention. However, confounding factors such as 
patient activity and measurement error based on selected 
reference points reduce reliability (r = 0.64). Opti-
cal coherence tomography (OCT) increases the imag-
ing resolution to a micrometer scale and is commonly 
used to detect macular edema [151–153]. In soft tissue, 
OCT has been applied to temporally quantify edema in 
a mouse ear burn model [145]. However, due to the use 
of visible light, this method has low penetrance of non-
opaque tissues [145]. While OCT has been demonstrated 
in macular and auricular tissues to detect interstitial fluid 
accumulation, this method currently has not been dem-
onstrated for use in VCA.

X‑ray and computed tomography
Under appropriate contrast enhancement, X-ray and 
computed tomography (CT) enable visualization of soft 
tissue features such as blood vessels, blood clots, and 
tumors [154]. MicroCT (µCT) is an application of X-ray 
imaging with miniaturized hardware and enhanced res-
olution. The technology is commonly used to visualize 

Table 2 A comparison of clinically relevant features of VCA assessment modalities

• Demonstrated to be valid in experimental and/or clinical settings

○ Not applicable to the listed detection method

◒ Partially applicable

Technique Non‑
destructive

Portable Rapid Continuous High Res Quantitative Facile 
analysis

Low cost Refs.

Histology ○ ○ ○ ○ • ○ • • [55, 200]

Wet:dry weight ○ • ○ ○ ○ • • • [105, 201]

Optical 3D scanning • • • ○ ○ • • • [150, 202]

OCT • ○ ○ ○ • ○ ○ ○ [145]

Laser Doppler imaging • • • • ○ ◒ ○ •

Thermographic imaging • • • • ○ • • • [138–140, 143]

NIR lymph‑angiography • ○ • • • ◒ • ○ [146, 149]

X‑ray ◒ • • ○ ○ ○ ○ • [144]

CT and µCT ◒ ○ ○ ○ • ◒ ○ ○ [144, 155, 156, 
181]

fMRI • ○ ○ ○ • ◒ ○ ○ [160, 162, 163]

Ultrasound • • • ○ • ◒ • • [170, 171, 173, 
174]

Bioimpedance spectroscopy • • • • ◒ • ◒ • [184, 195, 203]
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vasculature in high resolution and has been used in 
ex  vivo VCA, namely to visualize tissue perfusion and 
pressure-induced damage and to inform perfusion 
regimens during preservation [155]. While µCT imag-
ing can measure surrogates of transplantation success, 
such as neo-vascularization, its utility in ex  vivo VCA 
has not been thoroughly established. Furthermore, long 
data acquisition times of multiple hours for dense tis-
sue, limits its applicability in VCA preservation. Addi-
tionally, evaluating cellular and molecular tissue details 
requires the injection of molecular agents to increase 
soft tissue contrast [139, 156]. Despite its current limi-
tations, the high resolution spatial information provided 
by µCT yields prognostic value in a preservation setting 
and the miniaturized technology is deployable for ex vivo 
monitoring.

Magnetic resonance imaging
Magnetic resonance imaging (MRI) provides high spatial 
resolution and extensive visualization of soft tissue [157]. 
In T2-weighted images, edema can be detected in soft 
tissues using standardized procedures [158, 159]. Sub-
sequently, T2-weighted methods can assess edema for 
VCA in  vivo. [160, 161]. Beyond traditional MRI, func-
tional MRI (fMRI) techniques reveal dynamic processes. 
This method has been used to obtain spatiotemporal 
information in kidney transplantation, myocardial infarc-
tion, and cerebral tumors for edema detection [160, 162, 
163]. In VCA, the functional MRI method of flow MRI 
has been used for longitudinal follow-up of transplant 
vascularization by measuring intravascular flow [164]. In 
contrast to X-ray or CT methods, flow MRI can be used 
to evaluate hemodynamics in the absence of an injected 
contrast agent, thereby minimizing shortcomings asso-
ciated with uptake of contrast agents by tissue. Alterna-
tively, blood-oxygen-level-dependent (BOLD) fMRI has 
been presented as a novel, noninvasive alternative to 
oxygen-sensing electrodes for obtaining prognostic met-
rics in vivo. [165]. Oxygen saturation measured by BOLD 
fMRI may serve to illuminate VCA reperfusion-injury to 
elucidate mechanisms of graft deterioration. Expanding 
upon this method, four-dimensional flow MRI increases 
data acquisition to derive hemodynamic parameters 
such as shear stress, pressure change, turbulent kinetic 
energy, and pulse wave velocity [166]. This has been 
applied extensively in cardiology to obtain detailed 
images of blood flow through the cardiovascular system 
and may be adapted to assessment of VCA perfusion 
efficacy and vascular integrity [167]. However, the high 
resolution images obtained by fMRI necessitate power-
ful equipment. MRI machines of up to 7 Tesla were used 
in aforementioned hemodynamic studies. Currently, MRI 

miniaturization, while being aggressively pursued, has 
not reached the stage of portability needed for transplant 
monitoring [168]. Subsequently, MRI serves more effec-
tively to assess VCA transplants in  vivo for long-term 
study of vasculature.

Ultrasound imaging
The most significant advantages of ultrasound over 
MRI are the widespread access to ultrasound machines 
and feasibility of real-time tissue assessment. In one 
instance, ultrasound biomicroscopy identified mark-
ers of chronic rejection in in  vivo VCA by detecting 
transplant arteriopathy in face transplants [169]. The 
high resolution of ultrasound biomicroscopy enables 
measurement of blood vessel wall thickening, currently 
explored as an indicator of graft vasculopathy and 
potential marker of chronic rejection [170, 171]. Ultra-
sound has also been used to intraoperatively assess 
blood flow patency on the day of surgery and one week 
post-operatively to ensure blood vessels have been suc-
cessfully connected [172]. Measurements of blood flow 
and vessel structure were used to demonstrate that 
the microsurgery and perfusion with blood did not 
induce subsequent graft deterioration. The high-reso-
lution imaging afforded by ultrasound biomicroscopy 
is a promising application to allograft monitoring and 
has potential to be leveraged for ex  vivo applications, 
although suitability for the complex tissue architecture 
of VCA has not been established.

A limited number of novel developments strive to lev-
erage ultrasound to quantify observations of edema and 
to measure the depth of pitting edema [173–175]. In a 
clinical study, the relationship between surface imprint 
depth, circumferential measurement, and tissue thick-
ness revealed that depth of surface imprints correlate 
with subcutaneous tissue thickness by a coefficient of 
0.736 [174]. In a similar manner, Pitre and colleagues 
considered the viscoelasticity of tissue as a measure of 
edema status and simplified hardware by designing a 
single-element ultrasound transducer [175]. Graphing 
tissue viscoelasticity across simulated edema condi-
tions indicated depth dependency, therefore providing 
enhanced quantification of superficial edema. Ultra-
sound-based prognostic methods provide advantages 
of being widely available, nondestructive, portable, and 
simple to use (Table  2). However, ultrasound analy-
sis requires expert knowledge of anatomical features 
and requires further analysis for quantification. Fur-
thermore, efforts to correlate echogenicity with edema 
have been limited to superficial tissues, emphasizing 
that sufficient resolution in deeper tissue has not been 
established. While moving toward clinically accessi-
ble technology, the feasibility of ultrasound in ex  vivo 
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transplant medicine is currently limited by the lack of 
robust quantification and hardware compaction yet has 
promise as a non-destructive and high-resolution tissue 
monitoring tool.

Bioimpedance in monitoring and imaging
Bioimpedance spectroscopy (BIS) and electrical imped-
ance tomography (EIT) are methods entrenched in 
diverse fields including agriculture, nutrition, and cel-
lular biology [176–178]. To measure bioimpedance, 
an electric current is injected through the tissue then 
potential difference is collected [99]. Bioimpedance is 
calculated as the ratio of the injected current and col-
lected potential. By varying the frequency of the cur-
rent, specific cellular compartments can be probed. At 
lower frequencies, the current flows through the extra-
cellular space. As frequency increases, current passes 
through the cell membrane and into the intracellular 
space [179]. Properties such as tissue density, cellular 
integrity, and fluid accumulation contribute to the total 
impedance. The application of bioimpedance for edema 
detection is a well-established method in lymphedema 
diagnosis [180]. Additionally, bioimpedance sensing 
has been used to monitor edema manifesting in cere-
bral hemorrhage, colitis, and in superficial tissue [148, 
181–186].

The current range of noninvasive methods to evalu-
ate VCA includes high-contrast, spatiotemporal imag-
ing sufficient to resolve relevant pathophysiological 
tissue features such as vasculopathy and interstitial 
edema. However, these methods often require sophis-
ticated instrumentation and specialized equipment. 
Bioimpedance analysis uses relatively minimal instru-
mentation for quantitative tissue assessment based on 
intrinsic electrical properties, with subcellular and tis-
sue resolution depending on applied frequency ranges 
[187–193]. Limitations to bioimpedance applications in 
VCA include the lack of standardization in protocols, 
as well as unknown baselines for parameters measured. 
Standardization including optimal electrode place-
ment, frequencies for measuring VCA impedance, and 
magnitude and phase threshold of impedance values 
in varying tissue types must be established for robust 
tissue analysis [194–196]. Furthermore, the complex 
architecture of VCA complicates analysis since the flow 
of electric current and therefore impedance depends 
on the orientation of cells [197]. Additionally, imped-
ance measurements are affected by the anisotropic 
properties of nerve fibers, muscle, and blood vessels 
[198]. Judicious electrode configurations that mitigate 
anisotropic effects should be considered when apply-
ing impedance to tissue analysis [199]. The prospect 

of multimodal data fusion (MMDF) of temporal bio-
impedance data, reflective of edema, with metabolic 
and cytokine profile data, and histology data to achieve 
VCA stratification has recently been advanced [100].

Opportunities and future directions
While much work is still necessary for the clinical accept-
ance of methods other than static cold storage, evidence 
for effective and novel VCA preservation solutions 
shows promise. Introducing nutrient flow and metabo-
lite removal may overcome consequences of ischemia. 
Maintaining normothermia limits tissue damage associ-
ated with cold storage. Long-term VCA outcomes stand 
to be improved by developments in perfusion technol-
ogy including electrical myostimulation (EMS) to main-
tain muscle tone and reduce atrophy [204, 205] support 
endothelial angiogenesis [206], and support nerve regen-
eration [207–209]. Before these methods can be estab-
lished, it is necessary to verify improvements in tissue 
status to evaluate the merits of novel preservation solu-
tions. Decline in tissue viability occurs progressively dur-
ing storage and is associated with molecular and physical 
biomarkers. Current preservation strategies strive to pro-
long allograft viability and mitigate rejection by reduc-
ing pathophysiologic symptoms. Ex  vivo tissue analysis 
can provide an empirical basis for clinical decisions to 
discard, treat, or transplant allografts. Ultimately, robust 
diagnostic monitoring can complement therapeutics to 
expand VCA feasibility.

Technological advancement
Given the relatively recent development of VCA surgery, 
progress in the diversity of tissue assessment modalities 
has been relatively slow, but promising. Liquid biopsies 
allow quantitative observation of cellular and molecu-
lar tissue changes. Noninvasive tools from solid organ 
transplantation have been adapted to visualize tissues 
of VCA on a microvascular scale. While insightful, fur-
ther technological advancement is necessary for use in 
ex vivo tissue monitoring. Rather than using sample tis-
sue or perfusate for proteomic and metabolomic analysis, 
in-line sensors complement machine perfusion to enable 
real-time and continuous monitoring to enable auto-
mated adaptation using perfusate supplements [70]. To 
meet the needs of VCA, commercial in-line sensors must 
be calibrated to specific models of ex vivo grafts and their 
perfusion conditions; moreover further improvement in 
their limit of detection is required to permit detection on 
a sub-millimolar scale. The non-invasive tools that were 
discussed in this review rely principally on conventional 
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medical imaging technologies. A significant area of 
development for ex vivo monitoring is hardware size, as 
many high resolution methods lack portability. While 
recent technological advancements have enabled minia-
turization, image analysis remains semi-quantitative and 
requires substantial expertise for data analysis and inter-
pretation. A promising avenue of development leverages 
bioimpedance for non-invasive and continuous tissue 
evaluation. However, further investigation is warranted 
as the electrical properties of tissues are impacted by tis-
sue composition, fluid retention, differences in preserva-
tion conditions, and other experimental variables [210].

Graft pre‑conditioning
As a step beyond VCA preservation, recent develop-
ments in machine perfusion apply graft conditioning 
prior to transplantation. Both immunomodulatory mol-
ecules and hematopoietic cells have been used to lower 
the probability of transplant rejection [18, 57, 211–216]. 
As discussed, VCA is highly immunogenic and presents 
a high risk of acute rejection. While rejection can be 
treated following transplantation with standard immu-
nosuppression regimens, medication is also a signifi-
cant source of non-compliance due to the high volume 
needed [217]. Notable instances of acute rejection have 
occurred in which grafts had to be removed due to non-
compliance with medication [218–220]. Furthermore, 
long-term immunosuppression increases the risk of 
developing infectious complications. Immunomodula-
tion of the VCA to immunologically condition the graft 
prior to transplantation may enhance graft acceptance 
by the recipient immune system and potentially reduce 
immunosuppressive treatment regimens.

Conclusion
Vascularized composite allotransplantation is a com-
plex and multifaceted procedure that may significantly 
improve patient quality of life. However, logistical chal-
lenges and heightened risks of immune rejection limit 
the number of feasible procedures. These challenges are 
compounded by damage-susceptible muscle and nerve 
tissues, which must remain intact to restore functional 
motor capabilities. The development of effective pres-
ervation methods would allow the potential to perform 
VCA transplantation outside the restrictive 4- to 6-h 
time window of current standard methods, thus expand-
ing the pool of acceptable allografts and buying time for 
complex transplantation procedures without compro-
mising graft functionality. As further research seeks to 
develop methods to minimize graft damage while sus-
taining viability for extended periods of time, advance-
ments in status monitoring technology must establish 

their efficacy. Quantitative, substantive evidence for the 
efficacy of ex  vivo perfusion and varying storage condi-
tions are currently limited. To bridge the gap between 
modern technology and VCA transplantation, it is nec-
essary to develop analytical tools that evaluate surrogate 
biomarkers of tissue status and connect their significance 
to transplant outcomes.
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