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Main text
We are delighted to announce the launch of a new sec-
tion of the Journal of Translational Medicine on “Cell 
Death and Senescence”.

Eukaryotic cells exposed to extreme perturbations 
of homeostasis, which are relatively rare in nature, suc-
cumb to the unregulated and virtually immediate physi-
cal breakdown of their components, a process that has 
been dubbed accidental cell death (ACD) [1]. Most often, 
however, eukaryotic cells are exposed to relatively mild 
perturbations of their microenvironment, which results 
in the activation of stress-responsive pathways that are 
in place to repair macromolecular damage and recover 
physiological cellular functions [2, 3]. These mecha-
nisms encompass, but are not limited to: the DNA dam-
age response [4], the unfolded protein response [5], and 
autophagy [6]. When cellular damage can be efficiently 
repaired and/or microenvironmental perturbations are 
limited in intensity and duration, cells can recover physi-
ological functions in the context of re-established home-
ostasis [2, 3]. On the contrary, when damage is beyond 
repair and/or stressful stimuli are excessively intense or 
prolonged, the same pathways that initially attempt to 
restore physiological homeostasis instead engage signal-
ing modules that actively promote cellular demise, a pro-
cess that has been dubbed regulated cell death (RCD) [1].

As it stands, a number for different RCD modalities 
has been defined based on key biochemical events [7]. 
These RCD routines include (but are not limited to): (1) 
extrinsic and intrinsic apoptosis: two RCD modes involv-
ing the activation of proteases of the caspase family that 
are initiated by perturbation of extracellular and intra-
cellular homeostasis, respectively, with the latter being 
demarcated by mitochondrial outer membrane permea-
bilization (MOMP) [8, 9]; (2) mitochondrial permeabil-
ity transition (MPT)-driven regulated necrosis, a form 
of RCD initiating with the rapid permeabilization of the 
inner mitochondrial membrane via a mechanism that 
involves peptidylprolyl isomerase F (PPIF, best known as 
CYPD) [10]; (3) necroptosis, a type of regulated necrosis 
that relies on a signaling core platform involving recep-
tor interacting serine/threonine kinase 3 (RIPK3) and 
mixed lineage kinase domain like pseudokinase (MLKL) 
[11]; (4) ferroptosis, an iron-dependent RCD modality 
that is under tonic inhibition by glutathione peroxidase 
4 (GPX4) [12]; and (5) pyroptosis, a variant of necrotic 
RCD that is demarcated by plasma membrane permea-
bilization as driven by gasdermin D (GSDMD) or gasder-
min E (GSDME) [13, 14].

Importantly, most if not all RCD modalities exhibit 
a considerable degree of interconnectivity [15], which 
implies that inhibiting specific components of the sys-
tem generally delays RCD (and changes its morphologi-
cal and immunological correlates) but does not prevent 
it altogether [1]. Moreover, it has now become clear that 
multiple biochemical mechanisms that were initially con-
sidered as the actual drivers of RCD, such as the post-
MOMP activation of caspase 3 (CASP3), only control 
the kinetics of RCD and the interaction of dying cells 
with the host, but do not determine whether or not RCD 
will ultimately occur [1, 16]. Intriguingly, such an inter-
action, which largely (but not exclusively) involves the 
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host immune system, does not emerge only once cells 
have irremediably committed to death but actually much 
earlier, during early adaptation to stress (irrespective of 
whether this will ultimately be successful or not) [17, 18].

Of note, RCD is not the sole mechanism through which 
multicellular organisms control individual cells that are 
damaged beyond repair and hence cannot fulfill their 
functions and perhaps even be dangerous as potentially 
tumorigenic [3]. Indeed, when eukaryotic cells accumu-
late somehow intermediate degrees of macromolecular 
damage, which cannot be efficiently repaired but also 
do not  actively engage RCD, a permanent proliferative 
arrest associated with a considerable shift in the cellular 
secretome occurs [19, 20]. This process, which has been 
dubbed cellular senescence, resembles RCD in that it can 
also be elicited by perturbations of intracellular or extra-
cellular homeostasis [21]. However, while all senescence 
inducers cause an irreversible proliferative arrest, the 
so-called “senescence-associated secretory phenotype” 
(SASP) exhibits considerable degrees of context depend-
ency [21].

Importantly, dysfunctions in the molecular and cel-
lular mechanisms through which individual eukaryotic 
cells respond to stress (either successfully or not) and 
interact with their host in the process, including (but 
not limited to) the DNA damage response, the unfolded 
protein response, autophagy, RCD and cellular senes-
cence have  been attributed pathological significance in 
a plethora of human disorders [9, 22]. The new Journal 
of Translational Medicine section on “Cell Death and 
Senescence” now opens to consider original contribu-
tions, review articles and editorials discussing mechanis-
tic and pathophysiological aspects of all these processes.

The Journal of Translational Medicine is committed to 
providing authors with rapid editorial decisions, not only 
as novel incoming contributions are evaluated for suit-
ability, novelty, and scientific value by Section and Asso-
ciate Editors, but also when expert scientists return their 
criticism as part of the peer-reviewing process. The new 
section on “Cell Death and Senescence” will embrace this 
mission to guarantee high quality and competitive publi-
cations, and its Editorial Board is very much looking for-
ward to receiving your contributions.
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