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Abstract 

Background Veno‑arterial extracorporeal membrane oxygenation (VA‑ECMO) is applied in patients with refractory 
hemodynamic failure. Exposure of blood components to high shear stress and the large extracorporeal surfaces in the 
ECMO circuit trigger a complex inflammatory response syndrome and coagulopathy which are believed to worsen 
the already poor prognosis of these patients. Mass spectrometry‑based proteomics allow a detailed characterization 
of the serum proteome as it provides the identity and concentration of large numbers of individual proteins at the 
same time. In this study, we aimed to characterize the serum proteome of patients receiving VA‑ECMO.

Methods Serum samples were collected on day 1 and day 3 after initiation of VA‑ECMO. Samples underwent immu‑
noaffinity based depletion for the 14 most abundant serum proteins, in‑solution digestion and PreOmics clean‑up. A 
spectral library was built with multiple measurements of a master‑mix sample using variable mass windows. Individ‑
ual samples were measured in data independent acquisition (DIA) mode. Raw files were analyzed by DIA‑neural net‑
work. Unique proteins were log transformed and quantile normalized. Differential expression analysis was conducted 
with the LIMMA—R package. ROAST was applied to generate gene ontology enrichment analyses.

Results Fourteen VA‑ECMO patients and six healthy controls were recruited. Seven patients survived. Three hundred 
and fifty‑one unique proteins were identified. One hundred and thirty‑seven proteins were differentially expressed 
between VA‑ECMO patients and controls. One hundred and forty‑five proteins were differentially expressed on day 3 
compared to day 1. Many of the differentially expressed proteins were involved in coagulation and the inflammatory 
response. The serum proteomes of survivors and non‑survivors on day 3 differed from each other according to partial 
least‑squares discriminant analysis (PLS‑DA) and 48 proteins were differentially expressed. Many of these proteins 
have also been ascribed to processes in coagulation and inflammation (e.g., Factor IX, Protein‑C, Kallikrein, SERPINA10, 
SEMA4B, Complement C3, Complement Factor D and MASP‑1).
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Conclusion The serum proteome of VA‑ECMO patients displays major changes compared to controls and changes 
from day 1 until day 3. Many changes in the serum proteome are related to inflammation and coagulation. Survivors 
and non‑survivors can be differentiated according to their serum proteomes using PLS‑DA analysis on day 3. Our 
results build the basis for future studies using mass‑spectrometry based serum proteomics as a tool to identify novel 
prognostic biomarkers.

Trial registration: DRKS00011106.

Keywords ECMO, Proteomics, Mortality, Inflammation, Coagulation, Complement

Introduction
Veno-arterial extracorporeal membrane oxygenation 
(VA-ECMO) is applied in patients with hemodynamic 
failure unresponsive to conventional forms of treatment 
[1, 2]. Exposure of blood components to high shear stress 
and the large extracorporeal surface in the ECMO cir-
cuit triggers a complex ECMO-associated inflammatory 
response syndrome and an ECMO-induced coagulopathy 
which are believed to further aggravate the already poor 
prognosis of these patients [3]. Important blood compo-
nents affected include leukocytes [4, 5], platelets [6, 7], 
the coagulation and the complement system [8].

Mass-spectrometry based proteomics allows a detailed 
characterization of the serum proteome as it provides the 
identity and concentration of large numbers of individual 
proteins at the same time [9]. Recent publications investi-
gating patients with cardiogenic shock, COVID-19, after 
cardiopulmonary resuscitation, or in an animal model of 
cardiopulmonary resuscitation and ECMO have dem-
onstrated that the method is highly useful to character-
ize changes in the serum proteome over time, to assess 
pathophysiological relationships between proteins and to 
identify potential prognostic biomarkers [10–13].

In this exploratory study we aimed to characterize 
the serum proteome of patients receiving VA-ECMO 
over time, determine differences in the serum proteome 
between VA-ECMO patients and controls and identify 
changes in the serum proteome of VA-ECMO patients 
related to outcome.

Methods
Patient recruitment and blood sampling
Patients receiving VA-ECMO on the medical and heart 
surgical intensive care units of the University Hospi-
tal in Freiburg, Germany, were recruited for this study 
between January and November 2020. Exclusion crite-
ria were age < 18  years, hematological malignancies and 
hemoglobin < 8  g/dl (to avoid worsening anemia due to 
blood sampling as required by the Ethics Commission). 
Clinical and laboratory parameters from ECMO patients 
were gathered from the electronic patient data manage-
ment system. Major bleeding was defined as previously 

described [14]. In surgical patients, bleeding events that 
were directly related to surgery, were excluded. Survival 
was defined as discharge from the intensive care unit.

Blood was drawn carefully via an arterial catheter 
into 9  ml serum/gel tubes (S-Monovette® Serum-Gel, 
Sarstedt, Germany). Blood was sampled on day 1 and day 
3 (Fig. 1) of VA-ECMO therapy (i.e.: 6–24 h and 72 ± 12 h 
after VA-ECMO initiation). Only patients from which 
blood could be acquired on both days were included in 
the study. Tubes were kept in an upright position and 
transported to the laboratory where they were centri-
fuged as recommended by the manufacturer (2000  g, 
10  min, 20  °C). Afterwards, serum aliquots were pre-
pared and stored at − 80 °C until further use.

Blood was also taken from 6 healthy adult control sub-
jects from the antecubital vein. All healthy adult controls 
were between 20 and 30 years of age, had no history of 
disease and had not taken any medication in the last 
14 days.

Management of VA‑ECMO patients
Indication for VA-ECMO was at the discretion of an 
experienced ECMO-physician and decided at bedside. 
Cannulation for VA-ECMO was carried out as previ-
ously described [15]. In brief, bifemoral cannulation 
by Seldinger’s technique without primary surgical cut-
down was used. Venous cannulas had a diameter 21 
or 23  F and arterial cannulas had a diameter of 15 or 
17 F. The following ECMO systems were in use: Maquet 
Cardiohelp System with an HLS Set Advanced (Maquet 
Cardiopulmonary GmbH, Rastatt, Germany) and the 

Day 1 Day 3

Placement of
VA-ECMO Survivors (n=7)

Non-Survivors (n=7)

Serum 
sample

Serum 
sample

Fig. 1 Overview of the study design
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Stöckert® centrifugal pump (LivaNova PLC, Lon-
don, United Kingdom). After VA-ECMO placement, 
patients were managed following standard operating 
procedures with modifications made at the discretion 
of an experienced intensivist. Patients without signs of 
thrombosis or bleeding received unfractionated hepa-
rin aiming for an activated partial thromboplastin time 
of 50–60 s. Minimal targets for hemoglobin and platelet 
count were 8 g/dl and 100,000/µl.

Mass spectrometry and bioinformatical analysis
30  µl of thawed supernatant was diluted in buffer 
(MARS reagent kit buffer A, Agilent) to a total volume 
of 100 µl and filtered using 0.22 µm filters centrifuged 
at 16,000 g for 1 min RT. To ensure enhanced reproduc-
ibility, high performance liquid chromatography (Äkta 
explorer, GE Healthcare) was applied for the purpose 
of protein depletion. Multi affinity removal column 
(MARS Human-14, Agilent) was employed to remove 
the 14 most abundant serum proteins (albumin, IgG, 
IgA, transferrin, haptoglobin, antitrypsin, fibrinogen, 
 alpha2-macroglobulin, alpha1-acid glycoprotein, IgM, 
apolipoproteins AI and AII, C3, and transthyretin) 
by immunoadsorption from the samples, to allow for 
identification and quantification of proteins with lower 
abundance. Unbound proteins were collected, dena-
tured at 90  °C with 1% heat and acid labile surfactant 
added in 100  mM HEPES buffer. Reductive alkyla-
tion was performed using 2-Iodoacetamide 20  mM 
and Dithiothreitol 2  mM. Proteins were digested into 
peptides using MS grade trypsin (Promega) added in 
a 1:50 sample to enzyme ratio at 37  °C overnight. For 
desalting, PreOmics (Bavaria, Germany) columns were 
applied. Peptides were eluted with 2% Triethylamine in 
80% Acetonitrile (ACN). Buffer was evaporated, pep-
tides were resuspended in 1% formic acid and iRT pep-
tides were added to monitor the performance of liquid 
chromatography anterior to the mass spectrometer. 
Measurements of a pooled master sample mixed from 
all patients and timepoints were used to create spectral 
library for data-independent acquisition measurements 
using gas-phase fractionation. All measurements were 
done on a Q-Exactive Plus (Thermo Scientific, Bremen, 
Germany). Mass spectra were analyzed using DIANN 
[16] as described previously [17]. Peptide identification 
was performed using a human proteome database con-
taining reviewed UniProt sequences without isoforms 
downloaded from Uniprot on 9th of January 2020. Only 
proteins that were identified and measured in at least 
80% all measured samples were analyzed in this analy-
sis. Residual missing values were imputed with miss-
Forest R package [18].

Statistics
MixOmics [19] R package was employed to execute 
dimension reduction methods (Principal component 
analysis (PCA) and Partial Least-Squares Discriminant 
Analysis (PLS-DA)). Differential expression analysis was 
performed with LIMMA (R package). ROAST [20] was 
applied to generate gene ontology enrichment analyses. 
An adjusted p-value of < 0.05 was considered statistically 
significant.

Results
Fourteen patients receiving VA-ECMO were recruited 
for this study. Five patients were female, 9 patients were 
male. Seven patients were discharged from the inten-
sive care units and were counted as survivors (Fig. 1 and 
Table  1). The indication for VA-ECMO was refractory 
cardiogenic shock: seven patients received VA-ECMO 
due to protracted cardiogenic shock after cardiovascular 
surgery. The remaining 7 patients suffered from refrac-
tory cardiogenic shock due to medical reasons (e.g., 
myocardial infarction) and did not receive cardiovascu-
lar surgery. Three of these patients received VA-ECMO 
due to refractory cardiac arrest or post-arrest cardiogenic 
shock (summarized as extracorporeal cardiopulmonary 
resuscitation (ECPR) in Table  1). Six patients suffered 
from major bleeding events, with one event of intracer-
ebral bleeding. However, all major bleeding events were 
non-lethal. All patients were severely ill as indicated by 
an elevated SOFA score of 11.0 on day 1.

In total, we identified 351 unique proteins in our sam-
ples. Principal component analysis revealed a high simi-
larity of the serum proteomes in the control group which 
separated clearly from those of VA-ECMO patients 
(Fig. 2A). Principal components 1 and 2 explained 23.5% 
and 11.4%, respectively, of the variation in the serum pro-
teomic dataset (Fig. 2B).

We then focused our analysis on the comparison of the 
serum proteomes of VA-ECMO patients on day 1 and 
controls. Between these two groups, 137 proteins were 
differentially expressed (Fig.  1C and Additional file  1: 
Table S1). Many of these upregulated proteins on day 1 in 
the VA-ECMO group were linked with the inflammatory 
response explaining enriched gene ontology (GO) terms 
such as ‘chronic inflammatory response’ and ‘leukocyte 
aggregation’ (Fig.  3). Several proteins were also down-
regulated on day 1 compared to controls. Therefore, with 
respect to the general topic of inflammation, we found 
that the GO term ‘immune response—activating signal 
transduction’ was downregulated. Moreover, we also 
found that proteins linked to the GO term ‘blood coagu-
lation, fibrin clot formation’ were downregulated, e.g., 
F13A1 ↓, KLKB1 ↓, FBLN1 ↓ and F2 ↓.
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We then assessed the differential protein expres-
sion in the serum proteomes of VA-ECMO patients on 
day 3 vs. day 1 (Fig.  4). In total, 145 proteins were dif-
ferentially expressed between both groups (Additional 
file  2: Table  S2). One protein in particular, SERPINA1, 
was highly upregulated on day 3 vs. day 1  (log2 fold 
change 4.7, p < 0.001). Enrichment analysis showed that 
many proteins linked to downregulation of the immune 
response were upregulated on day 3 (Fig.  5). GO terms 
that were upregulated included, for example, ‘negative 
regulation of complement activation’, ‘negative regula-
tion of humoral immune response’, ‘negative regulation 
of immune effector process’. Proteins associated with 
inflammatory processes which were differentially regu-
lated on day 3 vs. day 1 included ICAM-1  &  2 ↑, SER-
PINA1 ↑, LILRA3 ↑, CRP ↑, CFD ↑, CFI ↑, complement 
C1S ↑, C2 ↑, C4A ↑, C6 ↑, C8 ↑, C9 ↑. Several proteins 
with important functions in coagulation (e.g., HRG  ↓, 
THBS1 ↓, PLG ↓, FGA ↑, VWF ↓, F5 ↑, F12 ↓) were also 
differentially regulated.

Next, we analyzed differential protein expression in 
the serum proteomes of non-survivors and survivors. 
On day 1, only 5 proteins were differentially expressed 
between both groups (Additional file  3: Table  S3). For 
day 3, PLS-DA indicated that the proteomes of survivors 
and non-survivors on day 3 are distinguishable (Fig. 6A). 
Components 1 and 2 accounted for 27.8% and 8.4% of 
the variances in the proteomic dataset respectively. On 
day 3, 48 proteins were differentially expressed between 
non-survivors and survivors (Fig.  6B, Additional file  4: 
Table S4 and Additional file 5: Table S5). For the non-sur-
vivor group on day 3, we noticed decreased abundance 
of proteins involved in coagulation including F9, KLKB1, 
PROC, HRG and SERPINA10. Proteins involved in 
inflammatory processes were also differentially expressed 
(non-survivors vs. survivors) including C3  ↓, CFD  ↑, 
MASP1 ↓ and PLA2G7 ↓ (Fig. 6C).

Discussion
This study demonstrates a significantly altered proteome 
in VA-ECMO patients, which changed during VA-ECMO 
therapy. Moreover, the serum proteomes of survivors and 

Table 1 Clinical characteristics of VA‑ECMO patients on day 1

Parameter VA‑ECMO

Patients, n (%) 14 (100)

Survivors, n (%) 7 (50)

Age, y (IQR) 71 (57–75)

Female, n (%) 5 (36)

Duration of ICU‑stay (d, IQR) 12 (7–17)

VA‑ECMO Device, n (%)

 Stöckert Sorin 9 (64)

 Maquet 5 (36)

Duration of ECMO (d, IQR) 7 (6–7)

ECMO Blood Flow (l/min, IQR) 4.3 (3.3–4.6)

Indication for VA‑ECMO, n (%)

 Cardiogenic shock

  Postoperative 7 (50)

  Medical 7 (50)

    eCPR 3 (21)

Coronary Heart Disease, n (%) 9 (64)

Atrial fibrillation, n (%) 7 (50)

Diabetes mellitus, n (%) 1 (7)

Hypertension, n (%) 3 (21)

Active Smoker, n (%) 2 (14)

Hypercholesterolemia, n (%) 1 (7)

Cancer, n (%) 0 (0)

Acute renal failure, n (%) 10 (71)

Continuous hemodialysis, n (%) 6 (43)

 Major bleeding, n (%) 6 (43)

Intracerebral bleeding, n (%) 1 (7)

Minor bleeding, n (%) 4 (29)

Heparin, n (%) 13 (93)

Dual anti‑platelet therapy, n (%) 6 (43)

Steroids, n (%) 1 (7)

Mechanical ventilation, n (%) 14 (100)

SOFA score (IQR) 11.0 (8.0–11.0)

Hb (g/dl, IQR) 8.5 (8.3–8.9)

Platelets (×  103/µl, IQR) 109 (79–154)

Creatinine (mg/dl, IQR) 1.3 (1.0–2.5)

Urea (mg/dl, IQR) 51.0 (38.0–71.0)

Bilirubin (mg/dl, IQR) 2.2 (1.6–2.9)

AST (U/l, IQR) 157.0 (58.8–509.3)

ALT (U/l, IQR) 55.0 (21.8–123.8)

Lactate (mmol/l, IQR) 3.6 (1.5–5.3)

Leukocytes (×  103/µl, IQR) 8.9 (6.9–11.2)

CRP (mg/l, IQR) 54.1 (24.5–90.6)

IL‑6 (pg/ml, IQR) 370.5 (308.5–784.8)

paO2 (mmHg, IQR) 111.0 (81.8–239.0)

paCO2 (mmHg, IQR) 38.4 (35.3–50.0)

FiO (%, IQR) 47.5 (40.0–50.0)

PEEP (mbar, IQR) 8.0 (7.0–10.0)

Respiratory rate (/min, IQR) 14.0 (11.0–18.0)

Table 1 (continued)
Data are presented as median (interquartile range, Q1-Q3) or number of patients 
(%). Denominator of the percentage is the total number of subjects in the group. 
Parameters that were closest to the time point of blood sampling for proteome 
analysis are presented. Major and minor bleeding events are presented as 
defined by the International Society on Thrombosis and Haemostasis [14]. 
Macroscopic signs of thrombosis in the extracorporeal circuit were judged as 
such by an experienced ECMO-physician or ECMO-nurse

ALT; alanine aminotransferase, AST; aspartate aminotransferase, CRP; C-reactive 
protein, eCPR; extracorporeal cardiopulmonary resuscitation,  FiO; fraction of 
inspired oxygen, ICU; intensive care unit, PEEP; positive end-expiratory pressure, 
SOFA; sequential organ failure assessment score
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non-survivors differed substantially on day 3 according to 
PLS-DA analysis. To the best of our knowledge, this is the 
first study to perform mass-spectrometry based serum 
proteomics in a group of adult VA-ECMO patients.

Although other groups have performed mass-spec-
trometry based serum or plasma proteomics in patients 
with cardiopulmonary bypass [21–23], results are not 
directly transferable to VA-ECMO patients as these sys-
tems and the patients differ in several aspects, e.g., the 
shorter duration of cardiopulmonary bypass, the differ-
ences in cannulation, the dosage of anticoagulation and 
the underlying indication (often stable elective patients 
receiving cardiopulmonary bypass as opposed to criti-
cally ill patients with VA-ECMO) [3].

We identified 351 unique proteins, which is simi-
lar or higher compared to other recent studies per-
forming serum or plasma proteomics, e.g. Bernhard 

et  al. (n = 388) [10], Distelmaier et  al. (n = 299) [12] and 
Umstead et  al. (n = 134) [24]. Our methodology allows 
for the quantification of a large number of proteins using 
only a minimal amount of blood (approximately 30  µl) 
per time point, which is lower than previously described, 
e.g., by Umstead et  al. (~ 100  µl). This is advantageous 
compared to other blood-based analyses, ELISA or con-
ventional laboratory analyses which usually require com-
parably large amounts of blood for the limited amount 
of biological information gathered. Moreover, selecting 
certain markers for conventional laboratory analysis risks 
‘selection bias’, i.e., missing unexpected changes in cer-
tain protein levels associated with clinical conditions, the 
risk of which is avoided or at least minimized by mass-
spectrometry based serum proteomics since this method 
allows characterization and quantification of large num-
bers of proteins in parallel [25]. Additionally, proteomics 
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is inherently specific as it measures the mass and frag-
mentation spectra of peptides derived from sequence 
specific digestion of peptides [9]. This is an advantage, for 
example, compared to immunoassays, which may suffer 
from non-specific binding [26].

We demonstrated that the serum proteome of VA-
ECMO patients on day 1 differed strongly from the con-
trol group, as expected. We therefore did not analyze 
differences on day 3 of VA-ECMO vs. controls to avoid 
redundancy. As the initiation of ECMO triggers a strong 
systemic inflammatory response syndrome, we observed 
upregulation of the GO term ‘leukocyte aggregation’ 

associated with inflammation in VA-ECMO patients 
on day 1 compared to controls. Leukocyte aggregation 
occurs when activated neutrophils migrate to areas of 
local inflammation [27]. In this line of evidence, previ-
ous studies have demonstrated neutrophil activation 
in ECMO patients [28, 29]. Neutrophil activation may 
also be an explanation for the most likely, compensatory 
upregulation of SERPINA1 in VA-ECMO patients on 
day 3 vs. day 1, as SERPINA1 has been shown to inhibit 
the excess of free elastase and neutralize proteinase-3 
and myeloperoxidase from neutrophils [30] and is upreg-
ulated during the acute phase response [31].
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Fig. 3 Ridgeline plot illustrating significantly up‑ (red) or downregulated (blue) GO terms in the serum proteome of VA‑ECMO patients on day 1 vs. 
controls based on Rotation Gene Set Tests (ROAST). GO terms were filtered for those relevant in blood/serum
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Continuous ECMO is associated with ‘immunoparaly-
sis’ [32], a complex phenomenon which may be the result 
of multiple factors, such as high shear stress in the extra-
corporeal circuit, large extracorporeal surfaces and the 
severe underlying disease and likely increases patient vul-
nerability towards infection. Immunoparalysis has also 
been described in patients with cardiopulmonary bypass 
[33] and sepsis [34]. Leukocyte dysfunction, affecting 
particularly monocytes and lymphocytes seems to be an 
important characteristic [4, 5]. In line with these reports, 
we found that the GO term ‘immune response—activat-
ing signal transduction’ associated with a suppressed 
cellular immune response was downregulated on day  1 
vs. controls. This indicates that immune cell dysfunc-
tion may be developing as early as day 1 in VA-ECMO 
patients while there is still an ongoing pro-inflamma-
tory systemic immune response. Whether the humoral 
immune system, especially the complement system is 
also dysfunctional is less clear. In our study, enrichment 
analysis on day 3 revealed GO terms indicating a down-
regulation of the complement and humoral immune 

response. Our findings are supported by in-vitro data 
which demonstrate an initial activation of the comple-
ment system [35–37] which is likely followed by an anti-
inflammatory response on day 3 as demonstrated in our 
study.

Bleeding is a severe complication of VA-ECMO and 
indeed, six patients in our study developed major bleed-
ing complications. Many factors contribute to the 
ECMO-induced coagulopathy, e.g., thrombocytope-
nia, anticoagulation [38], platelet dysfunction [6, 7], an 
acquired von Willebrand Syndrome [39] but also con-
sumption of coagulation factors [40]. Adsorption of 
coagulation factors and thrombus formation in the extra-
corporeal circuit, particularly the oxygenators, is one of 
the main contributors to the consumption of coagulation 
factors [37, 41]. In our study, this was also reflected on 
the level of the proteome and translated to the downreg-
ulated GO term ‘blood coagulation, fibrin clot formation’ 
in VA-ECMO patients on day 1 compared to controls.

Overall, our findings are in line with a recent study 
published by Bernhard et  al. who analyzed the serum 
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proteome of pigs before and during VA-ECMO therapy 
in an experimental resuscitation model. The authors also 
observed serum proteomic changes related to coagula-
tion and inflammation [10].

Moreover, we report differences in the proteomes 
of survivors and non-survivors on day 3 as illustrated 
by PLS-DA analysis. Differential expression analysis 
indicated several strongly regulated proteins, e.g., GPI 
was strongly upregulated in non-survivors. GPI’s main 
function is in glycolysis, but it can also act as a lym-
phokine [42]. FETUB, on the other hand, is an example 
of a strongly upregulated protein in survivors. It usu-
ally acts as a cysteine protease inhibitor, and has been 
associated with coronary artery disease [43], a common 
underlying disease in our cohort. Interestingly, sev-
eral proteins differentially regulated between survivors 
and non-survivors are also involved in inflammatory 
(PLA2G7, MASP1, SEMA4B, C3, CFD) and coagula-
tory (SERPINA10, F9, KLKB1, HRG, PROC) processes. 
As coagulation and inflammation are closely linked 
processes and related to outcome [8], these proteins 

may serve as future biomarker candidates in valida-
tion studies. These results highlight the potential of 
mass-spectrometry based serum proteomics from a 
clinical perspective. Since large numbers of proteins 
are detected and quantified in parallel, the method can 
help identify previously unknown proteins associated 
with patient outcome, but it also allows for the iden-
tification specific protein patterns in the serum. The 
identification of such patterns may be further aided 
by machine learning algorithms and could outper-
form individual biomarkers [9, 44]. Future studies will 
have to determine whether the proteins differentially 
expressed between survivors and non-survivors on day 
3 can act as individual biomarkers or may be combined 
as ‘protein patterns’ to predict survival of VA-ECMO 
patients. In this line of evidence, researchers recently 
used quantitative proteomics to perform risk stratifi-
cation for mortality in patients with cardiogenic shock 
[45]. Protein patterns identified by mass-spectrometry 
based serum proteomics have also been used for the 
early and non-invasive detection of subclinical disease, 
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for example in patients with esophageal carcinoma 
[46] or patients with carotid atherosclerosis [47]. Pro-
tein patterns may also allow to predict the response to 
certain treatments, which could be a valuable tool for 
VA-ECMO patients. This is supported by a recent clini-
cal study which demonstrated that mass-spectrometry 
based serum proteomics could be used to predict the 

response to immunotherapy in patients with melanoma 
and non-small cell lung cancer [48].

This study is not without its limitations. As this was an 
exploratory study, the study was limited to 14 patients. 
Moreover, power calculations were not performed before 
study initiation, since the required knowledge of levels 
of biological heterogeneity and fold changes between 
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conditions was not available before study initiation. Fur-
thermore, due to the study’s observational nature, we 
cannot exclude effects of the underlying disease on the 
patients’ serum proteomes. Although we demonstrated 
that there are significant differences in the serum pro-
teomes of survivors and non-survivors on day 3, future 
studies will have to determine whether this data can be 
used to predict the outcome of VA-ECMO patients using 
a predictive model.

Conclusion
The serum proteome of VA-ECMO patients displays 
major changes compared to controls and changes from 
day 1 until day 3. Many changes in the serum proteome 
are related to inflammation and coagulation. Survivors 
and non-survivors can be differentiated according to 
their serum proteomes using PLS-DA analysis on day 3. 
Our results build the basis for future studies using mass-
spectrometry based serum proteomics as a tool to iden-
tify novel prognostic biomarkers.
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