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Abstract 

Background Osteoporosis is highly polygenic and heritable, with heritability ranging from 50 to 80%; most inherited 
susceptibility is associated with the cumulative effect of many common genetic variants. However, existing genetic 
risk scores (GRS) only provide a few percent predictive power for osteoporotic fracture.

Methods We derived and validated a novel genome-wide polygenic score (GPS) comprised of 103,155 common 
genetic variants to quantify this susceptibility and tested this GPS prediction ability in an independent dataset 
(n = 15,776).

Results Among postmenopausal women, we found a fivefold gradient in the risk of major osteoporotic fracture 
(MOF) (p < 0.001) and a 15.25-fold increased risk of severe osteoporosis (p < 0.001) across the GPS deciles. Compared 
with the remainder of the GPS distribution, the top GPS decile was associated with a 3.59-, 2.48-, 1.92-, and 1.58-fold 
increased risk of any fracture, MOF, hip fracture, and spine fracture, respectively. The top GPS decile also identified 
nearly twofold more high-risk osteoporotic patients than the top decile of conventional GRS based on 1103 
conditionally independent genome-wide significant SNPs. Although the relative risk of severe osteoporosis for 
postmenopausal women at around 50 is relatively similar, the cumulative incident at 20-year follow-up is significantly 
different between the top GPS decile (13.7%) and the bottom decile (< 1%). In the subgroup analysis, the GPS 
transferability in non-Hispanic White is better than in other racial/ethnic groups.

Conclusions This new method to quantify inherited susceptibility to osteoporosis and osteoporotic fracture affords 
new opportunities for clinical prevention and risk assessment.
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Background
Osteoporosis is a common bone disease characterized 
by decreased bone mass and deterioration of bone 
microstructure, leading to decreased bone strength and 
increased risk of fragility fracture [1]. Fragility fracture 
has become a rapidly growing public health issue 
affecting more than 8.9 million people worldwide [2], as 
osteoporosis is a metabolic disease uniquely associated 
with aging. With life expectancy increasing worldwide, 

*Correspondence:
Qing Wu
Qing.Wu@osumc.edu
Department of Biomedical Informatics, College of Medicine, The Ohio 
State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 
43210, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-03974-2&domain=pdf
http://orcid.org/0000-0003-4679-8903
http://orcid.org/0000-0002-9258-5397


Page 2 of 13Wu and Jung  Journal of Translational Medicine          (2023) 21:127 

osteoporosis, fragility fractures, and the subsequent 
devastating consequences of fractures continue to be 
a growing global burden of morbidity, mortality, and 
socioeconomic cost.

Osteoporosis is highly heritable, with heritability rang-
ing from 50 to 85% [3]. Most inherited susceptibility is 
associated with common DNA variants [3]. Genome-
wide association studies (GWASs) and GWAS meta-
analyses have discovered hundreds of loci, including 
thousands of Single Nucleotide Polymorphisms (SNPs), 
associated with osteoporosis, bone mineral density 
(BMD) and osteoporotic fractures [4–6]. Although these 
discovered SNPs are significantly and robustly associ-
ated with osteoporotic fracture and related traits, previ-
ous efforts to create an effective genetic risk score (GRS) 
for osteoporotic fracture and BMD have had only modest 
success [7–9]. These reported GRS only explained a small 
percentage variance of BMD and osteoporotic fracture, 
thus providing limited predictive power for fracture out-
comes [8]. Studies found that the clinical utility of these 
reported GRS in fracture prediction and risk assessment 
is substantially low [8–10].

Therefore, we aimed to utilize the recently developed 
computational algorithms [11] and incorporate a large 
GWAS summary dataset [4] to derive, validate, and test 
a new genome-wide polygenic score (GPS) to improve 
fracture prediction. This new GPS integrates all avail-
able common variants into a single quantitative meas-
ure of inherited susceptibility. The newly developed GPS 
can simultaneously identify a subset of postmenopausal 
women at substantially higher risk of severe fracture, as 
well as lower fracture risk. We hypothesize that this novel 
GPS could provide much higher prediction power for 
osteoporotic fracture and, therefore, could be utilized to 
improve fragility fracture prediction.

Methods
Study cohorts
The Women Health Initiative (WHI) study is the US 
nationwide, long-term health study in postmenopausal 
women, with fragility fracture as one of the major out-
comes. From 1993 to 1998, the WHI enrolled 161,808 
women aged 50 to 79 in randomized clinical trials (CT) 
or an observational study (OS). The WHI OS examined 
predictors and important causes of morbidity and mor-
tality [12], while WHI CT examined the effects of meno-
pausal hormone therapy (HT) vs. placebo, calcium and 
vitamin D supplementation vs. placebo, and low-fat eat-
ing patterns vs. usual eating patterns. Participants were 
provided by mail or telephone with questionnaires annu-
ally in the observational study or semiannually in the 
clinical trials.

This study utilized data from the four WHI sub-stud-
ies: Genomics and Randomized Trials Network (GAR-
NET) (https:// www. ncbi. nlm. nih. gov/ proje cts/ gap/ 
cgi- bin/ study. cgi? study_ id= phs00 0315. v8. p3), Integra-
tive genomics and risk of coronary heart disease and 
related phenotypes (https:// www. ncbi. nlm. nih. gov/ proje 
cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 1335. v2. p3), 
Population Architecture using Genomics and Epidemiol-
ogy (PAGE) (https:// www. ncbi. nlm. nih. gov/ proje cts/ gap/ 
cgi- bin/ study. cgi? study_ id= phs00 0227. v5. p3), and Wom-
en’s Health Initiative Memory Study (WHIMS) (https:// 
www. ncbi. nlm. nih. gov/ proje cts/ gap/ cgi- bin/ study. 
cgi? study_ id= phs00 0675. v4. p3). DNA samples were 
processed from whole blood collected at a dedicated 
research center. Samples have been genotyped using the 
Illumina (Illumina Inc., San Diego, CA, USA) or Affyme-
trix 6.0 Array Set Platform (Affymetrix Inc., Santa Clara, 
CA, USA).

Whole blood samples at the baseline were used for 
DNA extraction. Consent for DNA use was obtained 
through written permission. We used minor allele fre-
quency ≥ 0.01 , individual missing value rate < 5% , SNPs 
call rate > 95% , and Hardy–Weinberg equilibrium p 
value < 0.0001 as a quality-control criterion. The qual-
ity control of genotype data was performed using Plink 
[13]. When multiple probes measured the identical gen-
otypes, multiple probes were checked for concordance 
and were set to a missing value if the genotypes did not 
match. Then files were converted to variant call format 
(VCF), separated by chromosomes. Genetic imputation 
was conducted using the TOPMed reference panel [14] 
and the Michigan Imputation Server [15]. For the present 
analysis, up to 19,515 participants with major osteoporo-
tic fracture and genotyping array data were available.

Informed consent and study approval
The WHI’s participants were recruited from areas sur-
rounding forty clinical centers established primarily at 
major academic health centers in 24 states and the Dis-
trict of Columbia [16]. The Institutional Review Board 
of each participating institution approved study proto-
cols and consent forms [17]. At the beginning of the first 
screening visit, each woman was given general informa-
tion about the WHI components and viewed an intro-
ductory video providing an overview of the study. An 
informed consent form was signed to cover initial screen-
ing activities, including processing questionnaire data, 
drawing blood, and obtaining medical records.

The datasets used in this analysis were accessed with 
appropriate approval through the database of Genotype 
and Phenotype (dbGap) online resource [18] with acces-
sion number phs000200.v12.p3 and the approval of the 
institutional review board at the Ohio State University.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000315.v8.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000315.v8.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001335.v2.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001335.v2.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000227.v5.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000227.v5.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000675.v4.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000675.v4.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000675.v4.p3
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Method details
Polygenic score derivation and validation
For the new score derivation, we used published sum-
mary statistics from a recent genome-wide association 
study (GWAS) for bone mineral density estimated from 
quantitative heel ultrasounds (eBMD) [4], including 
genotyping and imputed data in up to 426,824 partici-
pants of the UK Biobank study available for download 
from the GEnetic Factor for OSteoporosis consor-
tium (GEFOS) website [19]. The summary statistics of 
genetic association were available for 13,753,401 SNPs 
for eBMD. To minimize the computational burden and 
have a high-quality variant, we performed the quality 
control of summary statistics only, including the impu-
tation quality score (INFO) > 0.8 and p ≤ 5× 10−8 , 
which resulted in 103,155 variants. The linkage disequi-
librium reference panel of 503 European samples from 
1000 Genomes phase 3 version 5 [20] was employed 
to incorporate the correlated variants. DNA polymor-
phisms with an ambiguous strand (A/T or C/G) were 
removed from the score derivation.

Seven candidate polygenic scores were derived using 
the LDPred computation algorithm [11]. This Bayes-
ian approach calculates a posterior mean effect size for 
each variant based on a prior and subsequent shrinkage 
based on the extent to which this variant is correlated 
with similarly associated variants in the reference pop-
ulation. The underlying Gaussian distribution addition-
ally considers the fraction of causal (i.e., non-zero effect 
sizes) markers via a tuning parameter, ρ . Because ρ is 
unknown for any given disease, a range of ρ values, the 
fraction of causal variants, was used 0.001, 0.003, 0.01, 
0.03, 0.1, 0.3, and 1.

An eighth score was derived with 1,103 conditionally 
independent variants identified from the previously pub-
lished GWAS study of summary statistics results [4]. We 
computed the eighth score using the linkage disequilib-
rium-based clumping procedure in PLINK version 2.0. 
The algorithm identifies a list of independent (r2 < 0.2) 
variants and 1103 associated SNPs were extracted and 
analyzed. The conventional genome-wide significant 
variants score was calculated as a weighted sum of risk 
alleles 

∑
iβ̂ixi , where xi is the expected number of risk 

alleles and β̂i is the log-odds ratio estimate of single-vari-
ant association from the GWAS result [4].

The eight scores were calculated in a validation dataset 
of 2,458 participants of the GARNET WHI sub-study. 
More than 99% of variants in the GPSs were available for 
scoring purposes in the validation dataset with an excel-
lent imputation quality score (INFO > 0.8). The polygenic 
score with the strongest correlation with observed BMD 
(hip and spine) in the validation dataset was determined 
based on Pearson correlation, and the best score was 

carried forward into subsequent analyses in an independ-
ent testing dataset of 15,776 participants.

Since the independent testing dataset (n = 15,776) 
contains diverse ancestry participants, which includes 
American Indian or Alaskan Native, 2.5%; Asian or 
Pacific Islander, < 1%; Black or African-American, 57%; 
Hispanic/Latino, 18.6%; Not-Hispanic White, 21.7%), 
we take advantage of using ancestry-specific polygenic 
score approach by using the principal component anal-
ysis (PCA) since the ancestry-specific polygenic score 
approach provides a better estimation when different 
ancestry participants are included in the data set [21].

To estimate genetic ancestry, we performed the PCA 
with EIGENSTRAT software to obtain principal com-
ponents (PCs) to measure genetic ancestry [22, 23]. The 
EIGENSTRAT method uses PCA to explicitly model 
ancestry differences across ancestral populations, mini-
mizing spurious associations while maximizing the 
power to detect genuine associations [22]. We obtained 
the top ten PCs for each participant in our independent 
testing dataset. We used the 103,155 genetic variants 
to calculate the unadjusted seven candidate GPS with a 
different fraction of causal variants (Eq. 1). An adjusted 
seven-candidate GPS was calculated with the 103,155 
genetic variants, adjusting for the top ten PCs of genetic 
ancestry to predict the ancestry-specific polygenic score 
(Eq. 2).

We calculated the residual between Eqs.  1 and 2. We 
adjusted the residual in each GPS to create an ancestry-
corrected polygenic score. Throughout our study, we 
used an ancestry-corrected polygenic score in all primary 
analyses.

WHI Phenotypes
At present, the osteoporosis diagnostic criteria were 
established by the World Health Organization (WHO) 
[24]. Osteoporosis is diagnosed by central dual-energy 
x-ray absorptiometry (DXA) measurement if the T-score 
of the spine is -2.5 or less [25, 26]. Within the WHI 
cohorts, using the observed spine BMD and reference 
value based on Looker et  al.’s study [27], we calculated 
T-score for each participant. We defined a participant 
as having normal BMD if a participant’s T-score ≥ −1 , 
osteopenia if a participant’s T-score is between − 1 and 
− 2.5, osteoporosis if a participant’s T-score ≤ −2.5 , and 

(1)GPSunadj =

103,155∑

i=1

β̂iSNPi

(2)GPSadj =

103,155∑

i=1

β̂iSNPi +

10∑

i=1

PCi
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severe osteoporosis if a participant present with one or 
more fragility fracture (s) and a T-score ≤ −2.5.

A major osteoporotic fracture (MOF) was defined as a 
fracture of the hip, spine (clinical), forearm, or shoulder. 
The WHI participants were followed for 12 years on aver-
age from the baseline examination. The follow-up period 
was calculated from the enrollment or randomization to 
the time of the first fracture or death. People who did not 
experience a fracture or death were followed until the 
end of the initial WHI study. Self-reported fracture out-
comes were identified by questionnaires semiannually for 
CT participants and annually for OS participants.

Age and race/ethnicity were collected using the pre-
designed questionnaire at the baseline. Participants in 
WHI enrolled at three clinical centers (Pittsburgh, PA; 
Birmingham, AL; and Tucson/Phoenix, AZ, USA) and 
performed dual-energy x-ray absorptiometry (DXA) 
measurement of the lumbar spine and hip BMD using a 
Hologic machine (QDR 2000, 2000 + , or 4500W, Hol-
ogic Inc, Bedford, Mass). Women were excluded at these 
three BMD centers if their femoral neck BMD was more 
than three standard deviations below the corresponding 
age-specific mean (Z score ≤ −3.0 ) [28]. The baseline 
BMD measurement was used for this study. Participants’ 
weight and height were measured in the clinic using 
standardized protocols. Parental fracture is determined 
by if a participant’s father or mother had a fracture. The 
previous fracture is ascertained if a participant had an 
osteoporosis-related fracture or broken bone. Glucocor-
ticoid use is defined as if a participant had taken a glu-
cocorticosteroid orally and daily. Rheumatoid arthritis is 
defined if a participant who has had rheumatoid arthritis 
ever. Previous osteoporosis is defined if a participant had 
osteoporosis ever before. Smoking was categorized into 
three groups; never smoked, past smoker, and current 
smoker.

Quantification and statistical analysis
Genotyping array data was imputed (described above) 
within the three testing cohorts, and GPS was calculated 
for each individual. Genome-wide significant variants 
score was generated by multiplying the genotype dosage 
of each risk allele by its respective weight, then summing 
across all variants in the score. Incorporating genotype 
dosages accounts for uncertainty in genotype imputation. 
Scoring was completed using the PLINK2 software pro-
gram with the –score command [29].

Within an independent testing dataset, participants 
were stratified according to the ten deciles of the GPS. 
Average BMD (hip and spine), weight, and prevalence of 
severe osteoporosis were determined within each decile. 
The association between high polygenic scores, defined 
as top deciles of the GPS, with severe osteoporosis was 

examined using multiple logistic regression in an inde-
pendent testing dataset.

A multiple logistic regression model was employed to 
calculate the corresponding effect size (odds ratio). Our 
first multiple logistic regression model employed the 
clinical risk factors, adjusting for age, height, weight, 
parental fracture, previous fracture, smoking, glucocor-
ticoid use, rheumatoid arthritis, hip BMD, and previous 
osteoporosis, along with GPS. In the second model, we 
only replaced spine BMD with hip BMD. Another same 
multiple logistic regression model was employed by only 
replacing GPS with GRS in the model.

In addition, we categorized an independent testing 
dataset into four different groups; top 30% vs. remain-
ing 70%, top 20% vs. remaining 80%, top 10% vs. remain-
ing 90%, and top 5% vs. remaining 95%. We estimated 
the odds ratio and 95% CI for individuals in the top 30%, 
20%, 10%, and 5% of the GPS and GRS compared with 
the remaining individuals. We assessed the transfer-
ability of GPS by comparing the odds ratio and 95% CI 
estimates between the Non-Hispanic White, Black or 
African American, Hispanic/Latino, and others (includ-
ing American Indian or Alaskan Native, and Asian or 
Pacific Islander). We estimated the odds ratio and 95% 
CI for individuals in the top 30%, 20%, 10%, and 5% 
of the GPS in the Non-Hispanic White, Black or Afri-
can American, Hispanic/Latino, and others (including 
American Indian or Alaskan Native, and Asian or Pacific 
Islander), compared with the remaining individuals. To 
gauge the potential clinical impact of GPS, we calcu-
lated the prevalence of severe osteoporosis subjects by 
20 years of follow-up in an independent testing dataset. 
GPS was stratified into top deciles, deciles 2–9, and bot-
tom deciles.

To assess and compare the discriminative capacity of 
the GPS or GRS with clinical risk factors, we obtained 
Harrell C statistic [30] in an independent testing dataset 
(n = 15,776) using a multiple logistic regression model. 
The C statistics of individual clinical risk factors, GRS, 
or GPS were assessed on top of a baseline model of age, 
height, and weight in an independent testing dataset 
(n = 15,776).

Statistical analyses were conducted using R ver-
sion 3.6.1 software (The R Foundation) [31]. A p-value 
of < 0.05 was considered statistically significant.

Results
GPS derivation and selection
To calculate a GPS, we used a recently developed compu-
tational algorithm, LDPred [11], to reweight each variant 
and obtain the average effects for each of 103,155 genetic 
variants on fracture and estimated BMD from the most 
extensive GWAS study of osteoporosis published to date 
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[4]. This algorithm can reweight each variant accord-
ing to the given effect size of the prior distribution and 
incorporate more variants observed in the prior GWAS. 
Moreover, with the input of a comprehensive reference 
panel, this method can incorporate the degree of corre-
lation between a variant and others nearby and a tuning 
parameter that denotes the proportion of variants with 
non-zero effect size [11]. Vilhjálmsson et al. [11] recom-
mended testing a range of different tuning parameters to 
capture the non-zero effect size. In our study, we tested 
the seven candidate tuning parameter values in order to 
identify the best GPS.

We tested the seven candidate-GPSs with measured hip 
and spine BMD in a validation dataset of 3739 women 
from the Women’s Health Initiative (WHI) Genomics 
and Randomized Trials Network (GARNET) study. The 
WHI GARNET study aimed to identify genetic factors 
affecting myocardial infarction, stroke, venous throm-
bosis, and diabetes phenotypes through genome-wide 
analysis using a nested case-control study design [32]. 
Of the 3739 women in the GARNET study, 2458 partici-
pants had genotype and BMD measurements available. 
All 2458 participants were Non-Hispanic White popula-
tion. We compared the maximal correlation coefficient 
with each BMD to select the best GPS. Each candidate-
GPS was strongly correlated with measured BMD at 

both spine and hip (all p < 0.001). The correlation coef-
ficients ranged from − 0.22 to 0.21 for hip BMD (Addi-
tional file  1: Figure S1) and from 0.22 to 0.21 for spine 
BMD (Additional file  1: Figure S2), respectively. Similar 
results were obtained for each GPS after the adjustment 
of genetic background, which was evaluated and quanti-
fied by the top ten principal components of ancestry.

The highest correlation with BMD in both spine 
(−  0.22) and hip (−  0.22) was achieved with the GPS 
( ρ = 0.03 ); hence we used the GPS ( ρ = 0.03 ) as the best 
one to move forward in the analysis of the testing dataset. 
The best-performing GPS (ρ = 0.03) contains all 103,155 
variants. The GPS (ρ = 0.03) is normally distributed 
with the empirical risk of fracture (Fig.  3). The median 
GPS (ρ = 0.03) percentile score was −25 for individuals 
without the fracture vs. 42 for individuals with the 
fracture. The testing dataset (n = 15,776) is independent 
of the validation dataset (n = 2458) studied above. 
Additional details of GPS derivation and validation are 
shown in Fig. 1.

Our GPS of 103,155 variants showed significantly 
higher predictive power than the conventional GRS, 
which comprises the conditionally independent 1103 
SNPs [4] from a comprehensive GWAS study. Within the 
validation dataset ( n = 2458) , correlation with each BMD 
for GRS derived from 1103 SNPs [4] ranged from − 0.146 

Fig. 1 Study Overview. Derivation, Validation, and Testing of a Genome-wide Polygenic Score (GPS) for Osteoporosis. A genome-wide polygenic 
score for osteoporosis was used, including 103,155 variants from the previously published [4] GWAS study. The LDPred computational algorithm 
[11] was used to calculate GPS vary for the tuning parameter, ρ , the fraction of causal variants, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, and 1. A conventional 
genome-wide significant variants score with conditionally independent 1,103 variants from the previously published GWAS study [4]
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to − 0.159. This lower strength of association with BMD 
using only the conditionally independent, genome-wide 
significant 1103 SNPs was consistent with the previ-
ous study [33], ranging from − 0.154 to − 0.188. Having 
derived and validated a new polygenic score that consid-
erably outperformed the conventional GRS calculated 
from the 1103 SNPs, we further studied the predictive 
power of the new GPS on major osteoporotic fracture, 
weight, and osteoporosis in an independent testing data-
set (n = 15,776).

Polygenic susceptibility to major osteoporotic fracture 
(MOF) and osteoporosis
We examined the extent to which the GPS predicted 
MOF and osteoporosis in an independent testing data-
set (total n = 15,776) of WHI three sub-studies, including 
Integrative genomics and risk of coronary heart disease 
and related phenotypes, Population Architecture using 
Genomics and Epidemiology (PAGE), and Women’s 
Health Initiative Memory Study (WHIMS). This test-
ing dataset is independent of the validation dataset 

(n = 2458) used earlier in this study. We also investigated 
the transferability of GPS in the independent testing 
dataset of 15,776 participants stratified by race/ethnicity: 
the Non-Hispanic White (n = 3427), Black or African-
American (n = 9742), Hispanic/Latino (n = 2929) and 
others (n = 429, including American Indian or Alaskan 
Native, and Asian or Pacific Islander).

The baseline characteristics of the participants in an 
independent testing dataset were stratified by MOF sta-
tus (Table  1). About 6% (n = 941) of participants had 
at least one major osteoporotic fracture (MOF) during 
an average of 12  years of follow-up. The participants 
with MOF have significantly higher GPS (p < 0.001), 
are older, have a lower weight, and decreased BMD in 
both hip and spine. 50% of participants with MOF are 
Not-Hispanic White, and 59% without MOF are Black 
or African-Americans. Rheumatoid arthritis, previous 
fragility fracture, previous osteoporosis, and paren-
tal fracture history significantly differ between MOF 
and non-MOF participants. In particular, the partici-
pants with MOF have higher previous osteoporosis 

Table 1 Baseline descriptive statistics of 15,776 women in an independent testing dataset stratified by Major osteoporotic fracture 
(MOF) status

SD standard deviation
* P-value was obtained by t-test for continuous variables and chi-square tests for the categorical variable
** GPS: Genome-Wide Polygenic Risk Score (LDPred with ρ = 0.03)
*** GRS: Genetic Risk Score was calculated based on 1103 eBMD-related SNPs

Variable Participants without MOF (n = 14,835) Participants with MOF (n = 941) P-value*

Age (years), mean (SD) 61.0 (7.07) 65.5 (7.95)  < 0.001

Height (cm), mean (SD) 162 (5.99) 161 (6.23) 0.095

Weight (kg), mean (SD) 82.0 (17.6) 76.8 (16.4)  < 0.001

Hip BMD (g/cm2), mean (SD) 0.927 (0.150) 0.840 (0.129)  < 0.001

Spine BMD (g/cm2), mean (SD) 1.03 (0.175) 0.974 (0.167)  < 0.001

GPS**, mean (SD) 31.8 (132) 76.0 (147)  < 0.001

GRS***, mean (SD) 31.5 (0.420) 31.5 (0.366) 0.009

RACE/ethnicity, n(%)

 American Indian or Alaskan Native 356 (2.5%) 46 (4.9%)  < 0.001

 Asian or Pacific Islander 4 (< 1%) 8 (0.9%)

 Black or African-American 8742 (58.9%) 249 (26.5%)

 Hispanic/Latino 2761 (18.6%) 168 (17.9%)

 Not-Hispanic White 2957 (19.9%) 470 (49.8%)

Smoking, n(%)

 Never Smoked 8672 (58.5%) 472 (50.2%)  < 0.001

 Past Smoker 4833 (32.5%) 419 (44.5%)

 Current Smoker 1183 (8.0%) 50 (5.3%)

Rheumatoid Arthritis, n(%) 1260 (8.5%) 150 (15.9%)  < 0.001

Previous fragility fracture, n(%) 426 (2.9%) 7 (0.7%)  < 0.001

Previous osteoporosis, n(%) 838 (5.6%) 118 (12.5%)  < 0.001

Glucocorticoid use, n(%) 30 (0.2%) 2 (0.2%) 1

Parental fracture history, n(%) 1142 (7.7%) 142 (15.1%)  < 0.001



Page 7 of 13Wu and Jung  Journal of Translational Medicine          (2023) 21:127  

and parental fracture history. 46.9% of participants in 
the testing dataset had normal BMD (T-score ≥ −1.0 ), 
37.2% of the participants were osteopenia ( −2.5 < 
T-score < −1.0 ), 13.6% of the participants were osteo-
porosis (T-score ≤ −2.5 ), and 2.3% met criteria for 
severe osteoporosis (T-score ≤ −2.5 and presence of 
one or more fragility fractures).

The baseline characteristics of the participants in 
the independent testing dataset were also stratified by 
race/ethnicity: Non-Hispanic White (n = 3427), Black 
or African-American (n = 8991), Hispanic/Latino 
(n = 2,929), and others (including American Indian or 
Alaskan Native, and Asian or Pacific Islander) (n = 429). 
(Additional file  1: Table  S1). Among the participants 
who had at least one MOF in the independent testing 
dataset (n = 941), the Non-Hispanic White participants 
had a significantly higher percentage of MOF (49.9%), 
followed by Black or African-American (26.5%), His-
panic/Latino (17.9%), and others (5.7%). The partici-
pants in the Non-Hispanic White group are older and 
have higher GPS, lower weight, and lower BMD in both 
hip and spine compared with other racial and ethnic 
groups.

The GPS approximated a normal distribution in the 
independent testing dataset (Fig.  3A). The correlation 
between the GPS and observed BMD (hip and spine) 
ranged from − 0.225 to − 0.218. These results are similar 
to our observation in the validation dataset. We then 
stratified the participants in the testing dataset according 
to GPS decile and found a remarkable gradient with 
respect to BMD, MOF, and body weight (Fig.  2A–C). 
For each decile group, we calculated the mean for the 
continuous phenotype variable and frequency for the 
categorical variable. For example, the mean hip BMD was 
0.862  g/cm2 for those in the top decile of the GPS and 
0.931  g/cm2 for those in the bottom decile, a difference 
of 0.069  g/cm2 (p < 0.001). Similarly, the average body 
weight was 76.5 kg for those in the top decile of the GPS 
and 82.2 kg for those in the bottom decile, a difference of 
5.8 kg (p < 0.001). MOF was present in 139 of 941 (14.7%) 
in the top decile of the GPS versus 27 of 941 (2.8%) in the 
bottom decile, corresponding to a fivefold gradient in 
fracture risk (p < 0.001).

Despite the strong associations observed in this study, 
polygenic susceptibility of the GPS to osteoporosis is not 
deterministic. Among those in the top decile of the GPS, 
57.5% of participants in the testing dataset were osteo-
porosis and severe osteoporosis (Fig.  2D). In contrast, 
among those in the bottom decile of the GPS, 29.2 % of 
participants were osteoporosis and severe osteoporosis. 
However, among those in the top decile of the GPS, 15.8% 
had a normal range (Fig.  2D). These results were very 
similar after adjusting the top ten principal components.

A high polygenic score is common among those 
with severe osteoporosis
Conventional analyses of rare genetic mutations are 
conducted by comparing heterozygous mutation carriers 
with non-carriers. Individuals carrying the variants 
within or close to the LRP5, SOST, OPN, and TNFRSF11A 
genes had a significantly higher fracture risk, with odds 
ratios ranging from 1.13 and 1.43 per allele [34]. We tried 
to mimic this method using the new GPS by labeling 
the top decile of the GPS distribution as “carriers” and 
those in the remainder of the distribution as non-carriers 
(Fig. 3A). The magnitude of risk conferred by a high GPS 
increased at more extreme levels of observed disease risk. 
The proportion of high-GPS carriers was 15.8% among 
the 7410 individuals with normal BMD, 26.7% among 
the 5872 individuals with osteopenia, 29.8% among the 
2140 individuals with osteoporosis, and 27.7% among 
the 354 individuals with severe osteoporosis. Compared 
with the remainder of the GPS distribution, the top GPS 
decile was associated with a 15.25-, 3.62-, and 1.89-fold 
increased risk of severe osteoporosis, osteoporosis, 
and osteopenia, respectively (Fig.  3B). Using the same 
method, we calculated the odds ratio of various fracture 
types for the top GPS decile versus the 90% remainder 
of the distribution with adjustment of clinical factors 
including age, height, weight, parental fracture, previous 
fracture, smoking, glucocorticoid use, rheumatoid 
arthritis, BMD (hip or spine), and previous osteoporosis. 
The results show that compared with the remainder of 
the GPS distribution, the top GPS decile was associated 
with a 3.59-, 2.48-, 1.92-, and 1.58-fold increased risk 
of any-fracture, MOF, hip fracture, and spine fracture, 
respectively (Fig. 3B).

We further estimated the odds ratio and 95% CI for 
individuals in the top 30%, 20%, 10%, and 5% of the GPS 
compared with the remaining individuals (Table 2). The 
odds ratio per standard deviation increment of MOF 
risk in the top 5% and 10% of GPS distribution were 3.12 
(95% CI 2.25–5.42, p < 0.001) and 2.48 (95% CI 1.86–2.76, 
p < 0.001), compared with the remaining 95% and 90% of 
the individuals, respectively. In contrast, the odds ratio 
per standard deviation increment of MOF risk in the top 
5% and 10% of GRS distribution were 1.25 (95% CI 0.98–
1.75, p < 0.13) and 0.97 (95% CI 0.67–1.68), respectively.

We also examined the transferability of GPS by 
comparing the odds ratio and its 95% CI stratified by 
four populations: Non-Hispanic White (n = 3427), 
Black or African-American (n = 8991), Hispanic/Latino 
(n = 2929) and others (including American Indian or 
Alaskan Native, and Asian or Pacific Islander) (n = 429). 
(Additional file 1: Table S2). The odds ratio per standard 
deviation increment of MOF risk in the top 5% of GPS 
distribution in the Non-Hispanic White, Black or African 
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American, and Hispanic/Latino were 2.26 (95% CI 
1.56–2.63, p < 0.001), 1.53 (95% CI 1.13–1.84, p < 0.001) 
and 1.19 (95% CI 1.01–1.47, p < 0.001), compared to the 
remaining 95% of GPS distribution, respectively.

Postmenopausal women’s risk of developing severe 
osteoporosis varies according to polygenic score
Although only a small percentage of postmenopausal 
women experienced severe osteoporosis in their middle 
age (around 50) at the baseline, the prevalence of severe 
osteoporosis increases substantially over subsequent 
decades at the 20-year follow-up. We hypothesized that 
the GPS might significantly predict who will develop 
severe osteoporosis during the transition from middle age 

to the elderly. Among individuals in the top decile of the 
GPS, 215 of 1565 (13.7%) developed severe osteoporosis 
compared with 6.2% of those in deciles 2–9 (Fig.  4). By 
contrast, among those in the lowest decile, only 35 of 
12,522 (< 1%) individuals developed severe osteoporosis.

With respect to the discriminative capacity, we first 
evaluated a baseline model of age, height, and weight, 
yielding a C statistic of 0.681 (95% CI 0.674–0.689). 
Each of the nine additional risk factors was then added 
(individually) to this baseline model for the outcome of 
major osteoporotic fractures (Fig.  5). GPS had a higher 
discriminative capacity with a C statistic of 0.723 (95% 
CI 0.715–0.729). By contrast, the addition of GRS has a C 
statistic of 0.708 (95% CI 0.703–0.714).

Fig. 2 Relationship of a Genome-wide Polygenic Score (GPS, LDPred with ρ = 0.03 ) distribution in the testing dataset ( n = 15, 776) with A Hip 
bone mineral density, B Major osteoporotic fracture (MOF), and C Body weight. Significant differences in osteoporosis categories were observed D 
when participants were stratified into the bottom decile, deciles 2–9, and top decile
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Fig. 3 Association of High Genome-wide Polygenic Score (GPS, LDPred with ρ = 0.03 ) with osteoporosis category and fracture status in the testing 
dataset ( n = 15, 776) . A The top 10% of the GPS distribution was considered high GPS “Carriers,” shaded in red, compared to the remaining 90%. B 
The relationship of high GPS to the osteoporosis category and fracture status was measured using a multiple logistic regression. OR, odds ratio, CI, 
confidence interval, MOF, major osteoporotic fractures. 1) Osteopenia: T-score between − 1 and − 2.5. 2) Osteoporosis: T-score ≤ −2.5 . 3) Severe 
Osteoporosis: Reserved for patients with a fragility fracture(s) and a T-score ≤ −2.5

Table 2 The Odds Ratio (OR) estimate of Major osteoporotic fractures (MOF) is derived from two methods in an independent testing 
dataset ( n = 15, 776)

The odds ratio (OR) was calculated for the top 30%, 20%, 10%, and 5% of the GPS and GRS compared with the remaining individuals. CI confidence interval. The odds 
ratios were calculated in a multiple logistic regression model adjusted for the clinical risk factors of age, height, weight, parental fracture, previous fracture, smoking, 
glucocorticoid use, rheumatoid arthritis, hip BMD, and previous osteoporosis. In a separate analysis, we replaced spine BMD with hip BMD. The results were similar, not 
shown in this table

GPS (LDPred with ρ = 0.03) GRS (1,103 SNPs from GWAS)

OR (95% CI) p-value OR (95% CI) p-value

Top 30% vs. Remaining 70% 1.67 (0.94, 2.82) 0.06 0.72 (0.32, 1.42) 0.38

Top 20% vs. Remaining 80% 2.36 (1.42, 3.80) 0.01 0.82 (0.38, 1.56) 0.57

Top 10% vs. Remaining 90% 2.48 (1.86, 2.76)  < 0.001 0.97 (0.67, 1.68) 0.11

Top 5% vs. Remaining 95% 3.12 (2.25, 5.42)  < 0.001 1.25 (0.98, 1.75) 0.13

Fig. 4 Association of High Genome-wide Polygenic Score (GPS, LDPred with ρ = 0.03 ) with incident severe osteoporosis. Among 15,776 individuals 
in an independent testing dataset, GPS was stratified into top decile, deciles 2–9, and bottom decile. Incident severe osteoporosis is plotted with 
three GPS group stratification
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Discussion
We demonstrate a systematic approach to deriving 
and validating a GPS, incorporating information from 
103,155 common genetic variants, to predict polygenic 
susceptibility to osteoporosis and osteoporotic fracture. 
We tested the GPS in 15,776 participants from an inde-
pendent testing dataset, including three cohorts. The 
GPS we derived herein remarkably improved the predic-
tion of BMD, severe osteoporosis, and major osteoporo-
tic fractures in middle-aged postmenopausal women. The 
extreme of the GPS distribution inheriting susceptibility 
to osteoporotic fracture risk is equivalent to an individ-
ual who carries the variants within or close to the LRP5, 
SOST, OPN, and TNFRSF11A genes. Moreover, the GPS 
was strongly associated with a gradient in BMD that 
started to emerge in five years of follow-up and showed 
more enormous differences in fracture risk in subsequent 
years of follow-up (Fig.  4). Our finding suggests that 
although the relative risk of severe osteoporosis for post-
menopausal women is relatively similar at age around 50 
(baseline), the cumulative incident is significantly differ-
ent between high (the top decile of the GPS) and lower-
risk groups (the bottom decile of the GPS) at the 20 years 
of follow-up.

The GPS far and significantly outperformed a con-
ventional GRS based only on the 1103 conditionally 
independent genetic variants that have a genome-wide 
significant association with fracture and estimated BMD. 
The findings with the novel GPS are more consistent with 

the highly polygenic nature of BMD and osteoporosis. 
For example, in a direct comparison in an independent 
testing dataset of 15,776 participants, the correlation 
of the GPS with observed hip BMD was −  0.225 com-
pared with −  0.146 for the 1103 genetic variants score. 
Similarly, the correlation of the GPS with observed spine 
BMD was − 0.218 compared with − 0.159 with the GRS 
derived from the 1103 SNPs.

The performance of the new GPS using a genome-wide 
set of 103,155 variants was substantially improved, which 
was anticipated by a previous theoretical projection study 
that analyzed early GWAS findings [35]. Our results 
suggested minimal “missing heritability” of BMD when 
accounting for the entire range of discovered genetic var-
iation. In the present study, we employed a newly devel-
oped computational algorithm that can explicitly model 
the correlation structure between genetic variants in cal-
culating the weight of each variant [11]. This new algo-
rithm has been demonstrated to outperform a number of 
prior methods for a range of complex diseases and traits, 
including colorectal cancer [36] and Alzheimer’s disease 
[37].

The new GPS has several advantages over a 
conventional GRS. First, the novel GPS includes more 
associated SNPs in the linkage disequilibrium region 
where a significant SNP lead is located. Second, several 
studies showed that genetic correlation matters [38–40]; 
unlike conventional GRS, our new GPS has accounted 
for correlations between genetic variants. Third, 

Fig. 5 Discriminative capacity of the genome-wide polygenic score and clinical risk factors in the testing dataset ( n = 15, 776) . The C statistic 
estimate of major osteoporotic fractures is first obtained with a baseline model of age, height, and weight using a multiple logistic regression 
model. Next, the C statistic was calculated after the additional inclusion of individual clinical risk factors; parental fracture, previous fracture, 
smoking, glucocorticoid use, rheumatoid arthritis, hip bone mineral density, spine bone mineral density, genetic risk score (1103 SNPs from GWAS), 
and genome-wide polygenic score (LDPred with ρ = 0.03)
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osteoporosis is a polygenic disorder where several genes 
contribute with relatively modest effects on bone mass, 
microstructure, and other determinants of fracture risk 
[41]. It is well-known that many complex diseases contain 
multiple-associated loci on the same chromosome [42]. 
Our results are consistent with a liability threshold 
model where the probability of any given pathogenic 
variant carrier crossing the threshold into the disease 
is influenced by the underlying liability conferred by 
the polygenic background [43]. Thus, accounting for 
polygenic susceptibility is likely to increase the accuracy 
of osteoporotic fracture risk estimation.

Recently, Lu et  al. [44] found that a polygenetic score 
derived from heel quantitative speed of sound performed 
better than other clinical risk factors and improved frac-
ture risk prediction. Similarly, studies on other disease 
outcomes found that GPS performs better than conven-
tional GRS in assessing the risk of colorectal cancer 12 
and Alzheimer’s disease 13. Our results in comparing GPS 
with GRS in fracture risk prediction are consistent with 
these observations. The limitations of these conventional 
GRSs could be due to multiple reasons. The conventional 
GRS included SNPs restricted to the genome-wide signif-
icant levels and did not consider the genetic correlation 
between genetic variants [38]. Notably, the osteoporosis-
related GRS may not sufficiently capture the underlying 
genetic predisposition of osteoporotic fractures where 
several genes contribute with relatively modest effects 
from multiple genome locations [41]. Thus, these con-
ventional GRSs only have the capacity to account for 
a small proportion of variance in disease risk [45]. Our 
study demonstrated that the novel polygenetic risk score 
developed herein significantly improves osteoporotic 
fracture prediction and risk assessment.

To take advantage of participant diversity in 
our independent testing dataset, we examined the 
transferability of GPS in several racial/ethnic groups. 
We found that the new GPS has a better fracture 
prediction in the Non-Hispanic White group than Black/
African American and Hispanic/Latino. The underlying 
reasons are that the new GPS was derived from GWAS 
summary statistics of the Non-Hispanic White study 
sample, and a European reference panel was used in the 
GPS development. A few other studies have reported 
GRS transferability of other disease risks in different 
populations; however, these studies only examined the 
GRS based on a limited number of variants, e.g., tens 
to a few hundred genetic variants [46, 47]. To the best 
of our knowledge, the present study is the first attempt 
to examine the transferability of osteoporosis-related 
GPS in various racial and ethnic groups. We found that 
GPS derived from the study sample, consisting mainly 

of Caucasians, had a lower prediction power for fracture 
risk in minority populations. Our observations are 
consistent with a recent study [48] focused on type 2 
diabetes and coronary artery disease.

Our study should be interpreted in light of a few limi-
tations. First, although our GPS strongly associates 
osteoporosis and fracture, it was developed from the 
non-Hispanic White population; additional genetic dis-
covery studies, including sufficient other racial/ethnic 
study samples, are warranted to derive GPS that is more 
generalizable to minorities. However, comprehensive 
GWAS studies that included sufficient minority partici-
pants are still lacking. Secondly, because the study pop-
ulation of WHI only includes postmenopausal women, 
caution should be taken when applying our findings to 
pre-menopausal women and men. Lastly, we should alert 
readers that other sample-related factors such as age, 
sample ascertainment, or variation in other clinical risk 
factors may affect the transferability of our GPS in differ-
ent patient groups [49].

In the era of precision medicine, one of our goals is 
to accurately predict disease risk based on an individu-
al’s genetic information [50]. With advanced genomic 
sequencing technology, more genetic variants will be 
discovered, and genetic information for more individu-
als, including racial/ethnical minorities, will be more 
accessible. We expect that the newly developed GPS 
can be utilized in healthcare to identify individuals who 
inherit high susceptibility before the related clinical dis-
eases manifest. These patients may otherwise not be 
identified early on using existing tools. Early detection 
can help mitigate the disease burden with low-cost life-
style changes or more frequent screening [51]. The novel 
GPS could also be utilized to identify low-risk individuals 
who might otherwise be enrolled unnecessarily in more 
frequent conventional screening based on age and other 
clinical risk factors. However, further genetic discovery 
research in minority groups is warranted to improve the 
transferability of the updated GPS in diverse patients. 
Our GPS can be updated with more genetic discoveries 
in diverse populations and further optimize trans-ances-
try polygenic fracture prediction.

Conclusions
In summary, we developed and validated a comprehen-
sive GPS with a substantially higher capacity for predict-
ing osteoporotic fracture risk. Moreover, the new GPS 
can potentially improve identifying both high and low-
risk patients in clinical settings. More GWASs that focus 
on minority populations are warranted for future stud-
ies to improve the transferability of this new GPS across 
diverse populations.
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