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Abstract 

Background:  Microbiota and its metabolites are known to regulate host metabolism. In cross-sectional study 
conducted in postmenopausal women we aimed to assess whether the microbiota, its metabolites and gut barrier 
integrity marker are correlated with cardiometabolic risk factors and if microbiota is different between obese and 
non-obese subjects.

Methods:  We analysed the faecal microbiota of 56 obese, postmenopausal women by means of 16S rRNA analysis. 
Stool short chain fatty acids, calprotectin and anthropometric, physiological and biochemical parameters were cor‑
relates to microbiome analyses.

Results:  Alpha-diversity was inversely correlated with lipopolysaccharide (Rho = − 0.43, FDR P (Q) = 0.004). Bray–
Curtis distance based RDA revealed that visceral fat and waist circumference had a significant impact on metabolic 
potential (P = 0.003). Plasma glucose was positively correlated with the Coriobacteriaceae (Rho = 0.48, Q = 0.004) and 
its higher taxonomic ranks, up to phylum (Actinobacteria, Rho = 0.46, Q = 0.004). At the metabolic level, the strongest 
correlation was observed for the visceral fat (Q < 0.15), especially with the DENOVOPURINE2-PWY, PWY-841 and PWY0-
162 pathways. Bacterial abundance was correlated with SCFAs, thus some microbiota-glucose relationships may be 
mediated by propionate, as indicated by the significant average causal mediation effect (ACME): Lachnospiraceae 
(ACME 1.25, 95%CI (0.10, 2.97), Firmicutes (ACME 1.28, 95%CI (0.23, 3.83)) and Tenericutes (ACME − 0.39, 95%CI 
(− 0.87, − 0.03)). There were significant differences in the distribution of phyla between this study and Qiita database 
(P < 0.0001).

Conclusions:  Microbiota composition and metabolic potential are associated with some CMRF and fecal SCFAs 
concentration in obese postmenopausal women. There is no unequivocal relationship between fecal SCFAs and the 

†Igor Łoniewski and Monika Szulińska contributed equally to this work

*Correspondence:  karzyd@pum.edu.pl

1 Department of Biochemical Sciences, Pomeranian Medical University 
in Szczecin, Broniewskiego 24, 71‑460 Szczecin, Poland
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03801-0&domain=pdf
http://orcid.org/0000-0002-3430-9079


Page 2 of 16Łoniewski et al. Journal of Translational Medicine          (2022) 20:585 

marker of intestinal barrier integrity and CMRF. Further studies with appropriately matched control groups are war‑
ranted to look for causality between SCFAs and CMRF.

Keywords:  Microbiota, SCFA, Metabolism, Cardiometabolic risk, Obesity, Menopause

Background
Cardiometabolic risk factors (CMRFs), including obesity, 
abnormal lipid profile, hypertension, insulin resistance, 
and aberrant glycemic control, play a role in the patho-
genesis of cardiovascular diseases (CVD), which is one 
of the leading causes of mortality. Gut microbiota has 
been recently acknowledged as pivotal for human meta-
bolic health [1, 2]. Indeed, high richness has been linked 
to a favourable metabolic profile [3, 4]. On the contrary, 
low bacterial gene counts with metabolic risk factors as 
demonstrated in a group of postmenopausal women with 
obesity [5]. Historically, germ-free mice colonized with 
microbiota transplant from the obese donors elevated 
their weight and body fat significantly more than in case 
of lean donors [6]. Also, a dozen of microbiota-originated 
or microbially-modified molecules has been recently 
acknowledged as factors contributing to metabolic out-
come [7]. Interestingly, the production of these is strictly 
dependent on obesity status thus the microecological 
niche as elegantly shown in an in vitro study [8]. Impor-
tantly, some of microbiota-related markers were shown 
to be correlated significantly with type-2 diabetes (T2D) 
to a more considerable extent than anthropometric [9] 
and human genome-originated ones [10].

Excessive storage of lipids and diminished sensi-
tive toward insulin have also been linked to mitochon-
drial dysfunction [11]. Interestingly, the condition of 
this organelle echoes the condition of microbiota [12]. 
For instance, in obese and diabetic patients subjected 
to bariatric surgery faster sugar control correlated with 
changes in Krebs cycle, ketone and short chain fatty acid 
metabolism [13]. To add, the oxidation of SCFAs inhib-
its lipolysis and synthesis improving lipid profile [14]. As 
certain antioxidants were found to increase the synthesis 
of SCFA [15], their use in prevention of cardiometabolic 
malfunctions is advised. Consequently, microbial indices 
might serve as markers for the early identification of met-
abolic disturbances [4].

Short Chain Fatty Acids (SCFA)—the main microbiota 
metabolites, represented mainly by acetate (C2), propi-
onate (C3), and butyrate (C4) [16], are linked to multiple 
favourable metabolic functions [17]. For example, C2 is 
a significant source of energy for colonocytes [18], C3 
might be a substrate for gluconeogenesis [17], and C4 
might enter lipogenesis and cholesterol metabolism and, 
importantly, control appetite via the gut-brain axis [19]. 
Furthermore, SCFA positively affect cardiometabolic 

health, among other, via improving gut-barrier integ-
rity [20–22], in particular elevating the expression of 
GAP and tight junction proteins [23] and, consequently, 
decreasing inflammation [24]. On the other hand, SCFA, 
however, can harm human metabolism. They are a source 
of about 5 -10% of the calories consumed daily, and their 
metabolites are involved in synthesizing lipids and glu-
cose [25]. Moreover, faecal SCFA are positively asso-
ciated with body weight [6, 26, 27], and in the obesity 
phenotype, there is a substantial upregulation of path-
ways related to SCFA production [28]. Additionally, de la 
Cuesta et al. [29] observed the association between SCFA 
excretion and gut dysbiosis, increased gut permeability, 
adiposity, and cardiometabolic risk factors.

Gut barrier dysfunction is increasingly recognized as 
a key factor in the pathogenesis of obesity, diabetes and 
metabolic disorders [30]. Calprotectin has the potential 
to be used as an indirect marker of gut permeability [31]. 
It is a 24  kDa dimer formed by the protein monomers 
S100A8 (10,835 Da) and S100A9 (13,242 Da) and makes 
up to 60% of the soluble proteins in the cytosol of human 
neutrophils [32, 33]. This marker is used mainly in older 
children and adults as a marker for inflammatory bowel 
diseases (IBD) [34].

The study of Brahe et al. of the Danish cohort of post-
menopausal women with obesity showed that several 
gut bacterial species are linked to metabolic risk mark-
ers, also after adjustment for potential confounders 
[2]. They also observed that dietary fibre and fat could 
modify a negative correlation with insulin resistance 
biomarkers for B. longum and F. prausnitzii. However, 
the study by Brahe et al. was performed using a not very 
common technology and analytical pipeline. Metabo-
lome and intestinal permeability parameters were also 
not analyzed. Moreover, the adjustment for differences 
in age, body fat percentage and diet caused the disap-
pearance of many correlations. Therefore we decided to 
perform a similar analysis on the Polish population of 
obese postmenopausal women using anthropometric and 
biochemical metadata and assessing the cardiovascular 
function. In addition, we assessed the metabolic func-
tion of the bacteria by analyzing SCFA in the stool and 
the intestinal barrier status by employing faecal calpro-
tectin. Thanks to the commonly used sequencing tech-
nology (Illumina) and bioinformatic pipelines, we were 
able to compare the observed results with data from a 
public database. We also used very demanding models of 
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data adjustment. The study aimed to verify the following 
research hypotheses: (1) microbiota, SCFA and calpro-
tectin are correlated with anthropometric, physiological 
and biochemical parameters in postmenopausal women 
suffering from obesity, and (2) stool microbiota composi-
tion is different between obese and non-obese postmeno-
pausal women.

Methods
The study took place from 27 February 2016 to 31 
December 2017 and analysed the faecal microbiota in 
a population of obese postmenopausal women. It was 
conducted at the Department of Education and Treat-
ment of Obesity and Metabolic Disorders University of 
Medical Sciences in Poznań, Poland. The protocol was 
registered at the U.S. National Institute of Health (Clini-
calTrials.gov; Identifier: NCT03100162). Ethical approval 
was obtained from the Bioethical Committee of Poznan 
University of Medical Sciences (No. 871/2015) and prior 
written informed consent was obtained from all partici-
pants. The informed consent allowed samples to be used 
for future analyses. The material obtained during this 
study was analysed in a multidirectional manner, and the 
results were presented in peer-reviewed scientific publi-
cations [35–38].

Subjects
The studied cohort has been described in detail previ-
ously [35]. A total of 110 postmenopausal obese women 
were invited to participate in the study. The inclusion 
criteria were as follows: (1) women aged 45–70  years, 
(2) ≥ 1 year since last menstruation, (3) body mass index 
(BMI) 30–45 kg/m2, (4) abdominal obesity-related waist 
circumference > 80  cm (International Diabetes Federa-
tion 2005); (5) body fat content, assessed by electrical 
bioimpedance at ≥ 33%; and (6) stable body weight in the 
month before the trial (permissible deviation ± 1 kg). The 
following criteria excluded participants from the study: 
(1) secondary form of obesity; (2) gastrointestinal dis-
eases; (3) diabetes; (4) pharmacotherapy for hyperten-
sion or dyslipidemia in the three months before the trial; 
(5) history of use of any dietary supplements in the three 
months before the study; (6) intake of antibiotics within 
one month before the study; (7) clinically significant 
acute inflammation; (8) nicotine, alcohol, or drug abuse; 
(9) participation in weight management studies or use of 
medications known to alter food intake or bodyweight; 
(10) vegetarian dietary habits; (11) use of prebiotics- and 
probiotics-enriched products (for at least three weeks 
before the screening) and products with a high content 
of dietary fibre or intake of high quantities of fermented 
food (> 400  g/day); (12) hormone replacement therapy. 
Based on the inclusion and exclusion criteria, 29 women 

did not qualify for the study, 81 women diagnosed with 
obesity were eligible, and 71 were available for analy-
sis (10 withdrew the informed consent or had cardiac 
events, diabetes mellitus or started supplement or anti-
biotic therapy). Microbiome analysis was carried out in 
56 women for whom the next-generation sequencing of 
stool samples yielded at least 10,000 reads. A flowchart of 
this study is shown in Additional file 1: Fig. S1.

Anthropometric and biochemical measurement
At enrollment, anthropometric parameters were evalu-
ated, and laboratory tests were performed. All meas-
urements were recorded after an overnight fast. The 
methods are described previously [35, 36] and included 
the following parameters: 1/anthropometric: weight 
(weight scale, metric stadiometer), waist circumference 
(tape measure), body composition (Bioscan 920–2); 2/
vascular: blood pressure (sphygmomanometer—Omron 
Healthcare), pulse wave velocity and analysis (sphyg-
momanometer—Sphygmocor Px), augmentation index, 
aortic pressure and pulse pressure (applanation tonom-
etry); 3/biochemical: glucose, uric acid, lipid profile 
(Lm Integrated Chemistry System Analyzer), Insulin 
(Immunoradiometry—Diasource Immunoassays S.A.), 
Lipopolysaccharide (LPS) (Kinetic Assay -Lonza, Walk-
ersville), Tumor Necrosis Factor (TNF) -Α (Enzyme 
Immunoassay—DRG Instruments Gmbh), Interleu-
kin (Il) -6 (Elisa—Drg Instruments Gmbh), vascular 
endothelial growth factor (vegf ) (Elisa—R&D Systems), 
Thrombomodulin (ELISA/American Diagnostica Inc., 
Stamford), Von Willebrand Factor (ELISA/R&D Systems, 
Minneapolis).

16S rRNA sequencing
All steps of the 16S rRNA sequencing and reads pro-
cessing were described in detail previously [38]. Briefly, 
the paired-end sequencing (2 × 300  bp) of the V1-V2 
region of the 16S rRNA gene was performed on an Illu-
mina MiSeq. Followed by an initial quality check, reads 
were processed using QIIME 2 [39] and Deblur denois-
ing algorithm [40] which resulted in a construction of 
4,716 sub operational taxonomic units, sOTU. The count 
per sample summary was the following: minimum 3,958, 
median 7,128, maximum 23,127 sub-operational taxo-
nomic units, sOTUs. Refined taxonomic classification 
using species-dependent prior probabilities rather than 
uniform species distribution was accomplished with the 
q2-clawback plugin [41]. Representative sequences were 
used to predict functional profiles of the gut community 
by the PICRUSt2.

For validation, sequence data and metadata of the 
existing studies were queried and obtained from Qiita 
(https://​www.​qiita​ucsd.​edu) using the Redbiom tool [42]. 

https://www.qiitaucsd.edu


Page 4 of 16Łoniewski et al. Journal of Translational Medicine          (2022) 20:585 

First, female samples (human gut) that contained a spe-
cific set of features were identified: age (> 55 years), race 
(Caucasian), and BMI (BMI 18.5–24.99, BMI-NORMAL, 
n = 1,293, BMI ≥ 25, BMI-HIGH, n = 875). Then, the 
sequence data (150 nucleotides V4 16S processed with 
Deblur) with abundance information and metadata were 
downloaded for the identified samples. Data from the 
following Qiita studies (ID) were used: 10,317, 11,710, 
and 10,988. Taxonomic assignment was performed as 
described above, except that the V4 region was extracted 
from Greengenes reference sequences before classifier 
training, and classification was performed using taxo-
nomic weights assembled for downloaded data.

SCFA
The following SCFA were analysed: acetic acid (C2), pro-
pionic acid (C3), butyric acid (C4), valeric acid (C5) and 
hexanoic acid (C6). Fecal samples (~ 40 mg) were mixed 
with 0.5  ml, a mixture of acetonitrile and water (50% 
ACN: 50% H2O) and vortexed by 30 min. Samples were 
kept for 5 min. on the ice to complete protein precipita-
tion. After centrifugation for 10 min at 4 °C at 5000 rpm 
and filtered through a syringe filter 0,22 µm samples were 
transferred to HPLC vials and analyzed by the present 
LC–MS technique.

An Sciex Triple TOF 6600 + equipped with an ExionLC 
AD series was used for the analysis of SCFA. The LC flow 
rate was 0.3  mL/min. The column used for the analysis 
was a Kinetex Polar 2.6 µm (50 mm × 3 mm). The column 
temperature and auto sampler were maintained at 20 °C 
and 4  °C, respectively. 1 µL of sample was used for the 
injection volume. Samples were analyzed using 10  mM 
ammonium formate (from VWR, Leuven, Belgium) 
in 80% methanol (LC–MS grade from VWR, Gliwice, 
Poland) with 20% ultrafiltrated water (mobile phase A) 
and acetonitrile (LC–MS grade from VWR, Fontenay-
sous-Bois, France) (mobile phase B). The isocratic elu-
tion was 50% mobile phase A and 50% mobile phase B. 
The total run was 6 min. The Triple TOF 6600 + system 
was equipped with an electrospray ionization (ESI) and 
Atmospheric-pressure chemical ionization (APCI) source 
operated in positive and negative-ion detection mode. 
Nitrogen gas was used for nebulization, desolvation, and 
collision. The source parameters were: gas temperature of 
150  °C, a Source gas 1 and source gas 2 pressure of 50 
psi and capillary voltage of 3500 V for negative polarity. 
A standard curve was prepared by using serial dilutions 
of the standard mix of C2, C3, C4, C5 and C6 purchased 
from Sigma-Aldrich (Steinheim, Germany).

Calprotectin
Concentrations of faecal calprotectin were determined 
by immunoenzymatic methods using commercial 

Enzyme-Linked Immunosorbent Assay (ELISA) tests 
(Immunodiagnostik). If the absorbance was outside of 
the standard curve, the sample was not included in sub-
sequent analyses. As the dilution factor for calprotectin 
was equal to 2500 and the highest standard concentra-
tions was 840 ng/mL—the highest concentration we were 
able to measure was 2100.

Statistical analysis
Alpha diversity indices (number of observed sOTUs in 
the sample, Pielou’s evenness, Shannon’s diversity, Faith’s 
PD) and Bray–Curtis distance were calculated from the 
rarefied samples (to 3,777 sOTUs). Compositional abun-
dance count data were transformed as follows. First, for 
each sample, 128 Monte Carlo instances were drawn 
from the Dirichlet distribution. Then, each instance was 
converted using the centered log-ratio transformation 
(ALDEx2 package). Analyses were conducted for each 
instance, and the results (P values, coefficients) were 
averaged over the instances.

To search for community composition patterns and 
their correlation with anthropometric, physiological and 
biochemical variables, the distance-based redundancy 
analysis (db-RDA) was used. The function capscale from 
the vegan package was used to perform db-RDA with a 
Bray–Curtis dissimilarity matrix. Selection of explana-
tory variables for db-RDA was done using a function 
ordistep (vegan) and forward and backward stepwise 
search and 999 permutations. The db-RDA ordination 
triplots were created on scores obtained from the ordis-
tep selected models using scaling focused on correlations 
(scaling 2), thereby approximating the linear correlation 
between the bacterial features, between bacterial fea-
tures and women’s characteristics, and between women’s 
characteristics.

To assess the relationship between variables, Spear-
man correlation or regression analysis was used. To infer 
a causal relationship between gut microbiota and param-
eters a mediation analysis was performed. It has been 
assumed that the mediational models are correct, i.e. gut 
microbiome features represent the causal (independent 
variables, IV), women’s characteristics (parameters) are 
the outcomes (dependent variables, DV), and the media-
tors—short chain fatty acids—are presumed to affect 
the outcomes. Mediation was established if a mediator 
effect on the DV was significant after controlling for the 
IV. A significant total effect (TE, a total effect of the IV 
on the DV without mediator) was assumed to be a pre-
requisite for establishing the causal mediation effect. The 
total effect is a sum of the indirect effect (ACME, average 
causal mediation effect) and direct effect (ADE, average 
direct effect). The significance and 95% confidence inter-
vals were established using bootstrapping procedure. 
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Mediation analysis was conducted using the mediation 
package [43].

To test for a difference in the abundance in the two 
datasets (Polish women and Qiita data), the Xdc.sevs-
ample function in the HMP package [44] was used. The 
function performs a multivariate test for differences in 
the overall composition between groups assuming Dir-
ichlet-multinomial distribution by testing for a difference 
in the mean distribution of each taxon across groups 
while accounting for the overdispersion in the count data.

The Benjamini–Hochberg procedure was used to con-
trol the false discovery rate (FDR).

Power analysis
For the parameters and microbiota-related features (bac-
terial taxa or functional modules) correlation (N = 56), 
we used the pwr.r.test in the R package (considering 
r = 0.5 as a medium effect) and achieved a statistical 
power of 98% and 76% (considering multiple testing as 
per Bonferroni correction assuming the number of fea-
tures Nfeatures = 50).

Results
The summary of demographic, clinical characteristics, 
and metabolic parameters are presented in Table  1. A 
summary of the gut microbiome data is shown in Fig. 1 
and Additional file 1: Fig. S2. SCFA and calprotectin con-
centration were shown in Table 1 and in Fig. 2. The con-
centration of acetic acid (C2) in the group varied widely 
and ranged from 2.42  µM/ml to 15  µM/ ml. Almost 
in every case, the percentage of this acid was the high-
est among the tested acids and was most often in the 
range from 30 to 60% in comparison to the other tested 
short-chain fatty acids (SCFA). The concentration of 
propionic acid ranged from 0.661  µM/ml to 27  µM/ml, 
butyric acid from 0.7  µM/ml to 10  µM/mg, valeric acid 
(C5) from 0.0588 to 5.7  µM/ml and caproic acid (C6) 
from 0.00577  µM/ml to 1.28  µM/ml. The data distribu-
tion, IQR and median for C3, C4, C5 and C6 indicate 
that the data were accumulated at the lower end of the 
concentration ranges. The percentage of C3 acid was in 
the range of 12%—80%, C4 5%—33%, C5 0.1—19% and 
C6 0.01%—5%. The highest concentration of calprotectin 
in the group was 579  µg/ml however the data distribu-
tion shows that most of the results were below 100  µg/
ml. Determination limit of calprotectin was 2.267 ng/ml.

Gut microbiome in post‑menopausal women 
with and without obesity
In total, there were 1,293 samples from Caucasian 
women aged over 55 and BMI ≥ 25 (BMI-HIGH) and 875 
with BMI of 18.5–24.99 (BMI-NORMAL). The relative 
abundances of common phyla are summarized in Table 2. 

To test for differences between the groups, we conducted 
a multivariate test for differences in the overall compo-
sition. Overall, we found significant differences in the 
distribution of phyla between this study and BMI-HIGH 
(Xdc = 415.4, P < 0.0001), as well as in this study, BMI-
NORMAL (Xdc = 411.3, P < 0.0001) and BMI-HIGH vs. 
BMI-NORMAL (Xdc = 210.6, P < 0.0001). Tests of other 
taxonomic levels were also conducted, and the results are 
shown in Additional file 1: Table S2.

Gut microbiota (SCFA, Calprotectin) is correlated 
with host‑specific characteristics
All alpha-diversity indices were negatively correlated 
with LPS, however, the strongest relationship was found 
only for the observed number of unique features (sOTU, 
Spearman coefficient (Rho) = − 0.43, FDR P (Q) = 0.004, 
Fig.  3B). Two other parameters (triglycerides and vis-
ceral fat) showed a weak inverse correlation with the 
observed number of sOTU, yet have become insignifi-
cant after FDR correction. Calprotectin showed a weak 
positive correlation with PWA PP (Rho = 0.39, Q = 0.038, 
Fig.  3A). Short chain fatty acids were not correlated 
with any anthropometric, physiological and biochemical 
traits. Interestingly, SCAFs were correlated with alpha-
diversity, C2 and C3 inversely, whereas C5 and C6 posi-
tively (Additional file 1: Fig. S3).

To assess the effect of parameters upon the gut com-
munity composition and predicted metabolic potential, 
a Bray–Curtis distance based Redundancy Analysis (db-
RDA) was performed. The Bray–Curtis dissimilarities 
were calculated at all taxonomic levels (from species to 
phylum) as well as for predicted metabolic MetaCyc 
pathway abundances. Models were fitted separately 
for three groups of parameters, i.e. anthropometric (A 
model), physiological (P model) and biochemical (B 
model). Using the ordistep function from the vegan pack-
age, the simplified models were constructed in which the 
best (significant) explanatory variables were included. 
A summary of the full and simplified models with their 
best explanatory variables and the amount of explained 
variance is presented in Additional file 1: Table S1. Over-
all, based on the Monte Carlo permutation test, a null 
hypothesis of independence between the community data 
and constraints (explanatory variables) could be rejected 
for one model, i.e. MetaCyc pathways level db-RDA 
with anthropometric explanatory variables (visceral fat 
and waist circumference, Monte Carlo permutation test 
P = 0.003, Fig.  3H). As shown in the ordination triplot, 
several pathways showed a correlation with the visceral 
fat (VF). For example, an abundance of the PWYG-321, 
PWY-5989, PWY-7664, PWY0-862, PWY-6282, FASYN-
INITIAL-PWY, PWY-6519, BIOTIN-BIOSYNTHE-
SIS-PWY, PWY-6125, PWY-7196 correlated positively, 
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Table 1  Descriptive statistics of selected parameters

C2, acetic acid; C2r, The ratio of acetic acid to all analyzed SCFAs; C3, propionic acid, C3r, The ratio of propionic acid to all analyzed SCFAs ; C4, butyric acid; C4%, The 
ratio of butyric acid to all analyzed SCFAs, C5, valeric acid; C5r, The ratio of valeric acid to all analyzed SCFAs; C6, hexanoic acid; C6%, The ratio of hexanoic acid to all 
analyzed SCFAs ; ™, thrombomodulin; vWF, von Willebrand factor; VEGF: vascular endothelial growth factor; PWV, pulse wave velocity; PWA AP, pulse wave analysis 
augmentation pressure; PWA Alx, pulse wave analysis augmentation index; PWA SP, pulse wave analysis systolic pressure; PWA PP, pulse wave analysis pulse pressure; 
LPS, lipopolysaccharide ; Il-6, interleukin-6; TNF, tumor necrosis factor alpha; CRP, C-reactive protein; DBP, diastolic blood pressure; SBP, systolic blood pressure; HR, 
heart rate; TG, triglycerides; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TC, total cholesterol; FFMH, fat-free mass hydration; 
FFM, fat-free mass; FM, fat mass; TBW, total body water; WC, waist circumference; BMI, body mass index

Variable n Mean SD 1st Q Median 3rd Q

C6r 52 0.012 0.013 0.002 0.008 0.018

C6 [nM/mg] 52 0.202 0.261 0.027 0.102 0.293

C5r 52 0.085 0.041 0.057 0.089 0.113

C5 [nM/mg] 52 1.28 0.83 0.69 1.06 1.55

C4r 52 0.195 0.059 0.158 0.195 0.227

C4 [nM/mg] 52 3.18 1.69 1.82 3.02 4.46

C3r 52 0.234 0.084 0.183 0.221 0.255

C3 [nM/mg] 52 4.08 3.50 2.44 3.19 4.36

C2r 52 0.473 0.084 0.411 0.482 0.532

C2 [nM/mg] 52 7.40 2.89 4.82 7.25 9.07

Calprotectin [ug/ml] 55 64.3 107.0 13.2 28.1 56.1

TM [ng/ml] 56 4.17 0.683 3.70 4.25 4.70

vWF [IU/dL] 56 83.7 5.85 78.8 83.0 87.6

Uric Acid [mg/dL] 56 5.61 0.976 5.20 5.60 6.20

VEGF [pg/ml] 56 147 25 140 149 165

PWV [m/s] 56 7.16 1.01 6.38 7.30 7.78

PWA AP mmHg 55 13.9 7.6 9.0 12.0 18.5

PWA ALX mmHg 56 32.8 11.3 26.3 33.5 40.3

PWA SP mmHg 56 129 12 121 129 136

PWA PP mmHg 55 42.9 9.0 36.5 43.0 50.0

LPS [pg/ml] 56 1039 566 636 903 1267

IL6 [pg/ml] 56 454 56 423 446 501

TNF [ng/L] 56 1.07 0.35 0.88 0.99 1.22

CRP (log) 51 1.35 0.73 0.90 1.55 1.78

Insulin [mU/ml] 56 31.4 11.6 22.8 32.4 36.9

Glucose [mg/dL] 56 97.1 11.1 90.0 98.0 102.0

DBP mmHg 56 81.9 7.7 77.8 81.0 88.0

SBP mmHg 56 134 11 124 138 141

HR  [bpm] 56 75.0 8.3 69.0 76.0 79.3

TG (log) 56 4.9 0.43 4.6 4.9 5.1

HDL (log) 56 3.9 0.2 3.8 3.9 4.1

LDL [mg/dL] 56 125 40 98 128 144

TC [mg/dL] 56 214 39 192 211 234

FFMH% 56 76.5 2.9 74.7 75.8 77.6

FFM% 56 46.5 7.7 43.1 45.9 51.9

FFM 56 44.8 6.2 40.9 44.8 47.2

Fat% 56 51.5 6.3 47.0 53.2 54.9

FM 56 47.7 10.1 40.2 47.1 52.5

TBW% 56 36.8 4.9 34.4 35.9 38.8

TBW 56 34.1 5.1 31.7 33.9 36.5

Subcutaneous fat 56 287 62 255 282 305

Visceral fat 56 218 58 174 217 239

WC [cm] 56 110 9 105 110 116

Body Mass [kg] 56 93.2 11.8 85.1 92.6 99.8

BMI [kg/m2] 56 35.9 4.0 32.6 35.7 38.8
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whereas PWY-621 pathway was inversely correlated with 
the visceral fat. On the contrary, the DAPLYSINESYN-
PWY showed a negative correlation with the waist cir-
cumference. However, the constrained variance in the 
community data (explained by these two explanatory 
variables) was only 9.4% (adjusted 5.9%), thus contrib-
uting a low fraction of the observed total variance in 

metabolic potential. Three other explanatory variables 
were selected as significantly explaining community vari-
ation (PWA PP at the phylum level, glucose at the genus 
and family level, insulin at the metabolic level), however, 
the global permutation tests were not significant (Fig. 3F, 
the family level, Monte Carlo permutation test P = 0.112). 
Bacteria that showed the highest correlation with plasma 

Fig. 1  Alpha- and beta-diversity of the gut microbiota in postmenopausal women. A violin plots of alpha-diversity indices; B heatmap of the 
genus-level rarefied abundance, columns (samples) and rows (taxa) were subjected to average linkage method and genus-level Bray-Curtis 
distance hierarchical clustering, top annotation—color bars reflect identified clusters, C bar plot of relative abundance on phylum level, D heatmap 
of the metabolic pathway-level rarefied abundance, columns (samples) and rows (taxa) were subjected to average linkage method and genus-level 
Bray-Curtis distance hierarchical clustering, top annotation—color bars reflect identified clusters; Samples were grouped using hierarchical 
clustering based on the inter-sample genus-level (Fig. 1B) or metabolic pathway-level (Fig. 1D) Bray-Curtis dissimilarities calculated using the 
rarefied abundance table. B A high taxonomic diversity which was highlighted by the presence of 9 clusters of unequal size containing from just 1 
to 26 samples. D two larger clusters, containing 27 and 12 samples, were identified. Bray-Curtis distances calculated on higher taxonomic levels did 
not affect clustering implying a persistent high taxonomic diversity in this group (Additional file 1: Fig. S2)
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glucose concentration belonged to the family Coriobacte-
riaceae, Veillonellaceae and Lachnospiraceae.

In addition to multivariate analysis, we also performed 
an univariate correlation in which pairwise relationships 
between bacterial taxa/pathways and parameters were 
examined (Fig. 3C). In line with the results of multivariate 
methods, plasma glucose showed a positive correlation 
with the family Coriobacteriaceae (Rho = 0.48, Q = 0.004, 
Fig.  3D) and taxonomic rank to which it belongs: phy-
lum Actinobacteria (Rho = 0.46, Q = 0.004), class Corio-
bacteria (Rho = 0.46, Q = 0.005), order Coriobacteriales 
(Rho = 0.43, Q = 0.011). Abundances of Lachnospiraceae 
and Veillonellaceae were also positively correlated with 

Fig. 2  Violin plots of SCFA [nM/mg] and calprotectin concentration [ug/ml] in stool. C2—acetic acid; C2r—The ratio of acetic acid to all analyzed 
SCFA; C3—propionic acid, C3r—The ratio of propionic acid to all analyzed SCFA; C4—butyric acid; C4r -The ratio of butyric acid to all analyzed SCFA, 
C5—valeric acid; C5r—The ratio of valeric acid to all analyzed SCFA; C6—hexanoic acid; C6r—The ratio of hexanoic acid to all analyzed SCFA

Table 2.  Phylum-level abundance in the validation data and this 
study

BMI-NORMAL: BMI 18.5-24.99 kg/m2, BMI-HIGH: BMI ≥ 25 kg/m2

This study (n = 56) BMI-NORMAL 
(n = 1293)

BMI-HIGH 
(n = 875)

Actinobacteria 3.06% 1.09% 0.91%

Bacteroidetes 36.1% 27.8% 30.1%

Cyanobacteria 0.13% 0.14% 0.14%

Firmicutes 52.7% 34.2% 33.2%

Fusobacteria 0.016% 0.51% 0.23%

Proteobacteria 5.82% 32.8% 32.9%

Tenericutes 2.08%  0.80% 0.50%
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glucose (Q < 0.1). A similar pattern with an opposite rela-
tionship (a negative correlation), although less consist-
ent within the taxonomic hierarchy, was observed for the 
PWA PP and pulse pressure (Fig. 3E). At the species level, 
Bacteroides caccae exhibited a negative relationship with 
waist circumference (Rho =   − 0.43, Q = 0.038). Regard-
ing metabolic pathways, the strongest correlation was 

observed with the visceral fat (Q < 0.15) which is generally 
in accordance with the findings from the db-RDA analy-
sis. Three pathways (DENOVOPURINE2-PWY, PWY-
841, PWY0-162) already indicated in the dbRDA triplot 
in the weaker correlation cluster (Fig.  3H, green color) 
showed the strongest relationship with VF (Rho = 0.39, 
Rho = 0.39, Rho = 0.36, Q < 0.15, respectively). Full results 

Fig. 3  Relationship between microbiota, short chain fatty acids, calprotectin and anthropometric, physiological and biochemical parameters. A 
Spearman correlation of the alpha-diversity indices, short chain fatty acids and calprotectin (separated by vertical brown lines) with anthropometric, 
physiological and biochemical parameters (the three groups of parameters are separated by horizontal green lines); C Spearman correlation of 
the bacterial abundance at the family, order, class and phylum levels (separated by horizontal green lines) with anthropometric, physiological and 
biochemical parameters (separated by vertical brown lines); B, D, E, F pairwise scatterplots illustrating the relationship between two variables, 
observed number of unique features and LPS (B), abundance of the family Coriobacteriaceae and plasma glucose (D) or PWA PP (E), abundance of 
order Lactobacillales and systolic blood pressure (SBP); G, H Bray-Curtis distance-based redundancy analysis (db-RDA) ordination plots with scaling 
focused on correlative relationships between explanatory variables and bacterial taxa (G) or metabolic pathway abundance (H). Green points 
represent samples (women), red arrows represent bacteria or metabolic pathways, blue arrows represent explanatory variables. In H, colored areas 
represent the clusters of pathways that correlate with VF or WC according to the strength and direction of the relationship: Blue: stronger positive 
correlation with VF, green: weaker positive correlation with VF (marked red are pathways that re-appear in an univariate analysis), yellow: negative 
correlation with VF, pink: negative correlation with WC, VF—visceral fat, WC—waist circumference. Mapping from FDR adjusted P values ranges to 
symbols: 0–0.001 ’***’, 0.001–0.01 ’**’, 0.01–0.05 ’*’, 0.05–0.1 ’.’, 0.1—1.0 no symbol, Q—FDR adjusted P, Rho—Spearman correlation coefficient; C2r—
ratio of acetic acid, C3r—ratio of propionic acid; C4r—ratio of butyric acid, C5r—ratio of valeric acid, C6r—ratio of hexanoic acid (to all analyzed 
SCFA)
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of the univariate analysis are shown in Additional file 1: 
Figs. S4 and S5.

Pairwise correlation analysis has indicated a relation-
ship between the gut related features (taxa and path-
ways) and SCFA, especially C3 and C6 (Additional file 1: 
Figs. S4 and S5). As three parameters (glucose, PWA PP, 
SBP) were also associated with taxa (Fig. 3C), a mediation 
analysis was carried out to establish a statistical support 
for the causal effect of the gut microbes on parameters, 
in particular, whether the effect goes through the SCFA. 
Based on the results of pairwise correlation between bac-
terial features and parameters, as well as bacterial fea-
tures and SCFA (Fig.  3C, Additional file  1: Figs.  S4 and 
S5), three parameters (glucose, PWA PP and SBP) were 
selected as targets for the mediation analysis. The C3 and 
C6 were treated as potential mediators, whereas the gut 
microbes, exhibiting a correlation with these parameters, 
as independent variables. The main criterion for a selec-
tion of the taxa and parameters was maximizing a prob-
ability of the significant total effect (TE). As evidenced by 
the significant indirect (mediation) effects, the effect of 
family Lachnospiraceae (ACME 1.25, 95%CI (0.10, 2.97), 
phylum Firmicutes (ACME 1.28, 95%CI (0.23, 3.83)) and 
Tenericutes (ACME − 0.39, 95%CI (− 0.87, − 0.03)) on 
glucose was mediated by C3 (Fig. 4). The effect of Lach-
nospiraceae was incomplete (a significant direct effect as 
well, ADE 1.82, 95%CI (0.23, 3.83)), whereas the effects 
of Firmicutes and Tenericutes were fully mediated by C3 
(an insignificant ADE). Statistically, there was no support 
for C6 transmitting the effect on glucose. Likewise, we 
could not establish a mediation role of the C3 or C6 on 
PWA PP and SBP.

Discussion
This cross-sectional study revealed numerous correla-
tions between the gut microbiota and risk factors for car-
dio-metabolic diseases. The microbiota of the surveyed 
women is characterized by high taxonomic diversity. We 
observed that alpha diversity was strongly and negatively 
correlated with LPS concentration and weakly correlated 
with other metabolic risk factors such as TG and visceral 
fat. Low bacterial richness was observed in metabolic 
disorders [4], inflammation [45] and obesity [28]. The gut 
microbiota plays an essential role in regulating the intes-
tinal permeability of the intestinal mucosa, and a change 
in the microbiota community affects the mucosal barrier 
function of the gut [46, 47]. The elevated level of circu-
lating insulin, typical for obesity phenotype, was found 
to increase the intestinal permeability, allowing bacterial 
toxins, such as LPS, to leak into the circulation, which, in 
turn, initiated a cascade of inflammatory reactions, thus, 
explaining the subclinical inflammation present in obese 
and insulin-resistant patients [48]. In our study, stool 

calprotectin was positively correlated with vascular stiff-
ness, which may also indicate the role of increased intes-
tinal permeability in the pathogenesis of cardiovascular 
diseases.

We observed a positive correlation between the phylum 
Actinobacteria and the lower taxonomic groups belong-
ing to the class Coriobacteria with blood glucose levels. 
These observations confirm the previously described 
association of this group of bacteria with obesity and 
metabolic disorders [28, 49]. In contrast, the Tenericutes 
phylum was negatively correlated with blood glucose 
concentration in our study. On the contrary, in the study 
by Yan et  al., this phylum occurred more frequently in 
obese rats but decreased after inducing diabetes and then 
increased largely after sitagliptin treatment as compared 
to the diabetic [50]. Bacteroides caccae, which is nega-
tively correlated with waist circumference, is involved in 
the degradation of mucus, which helps reduce intestinal 
inflammation by decreasing bacterial epithelial adhesion 
[51]. Class Bacilli and order Lactobacillales were posi-
tively correlated with SBP. Adnan et al. observed a strong 
positive correlation between SBP and the lactate-pro-
ducing genus Lactobacillus [52]. Lactobacillus can also 
synthesize neurotransmitters in the autonomic nervous 
system [53]. Furthermore, plasma lactate levels have been 
associated with increased blood pressure [54].

On the other hand, administration of Lactobacillus 
plantarum 299v [55] and Lactobacillus casei [56] can 
lower systolic blood pressure. However, strain-specific 
effects can differ from the effects of bacterial order. Pro-
teobacteria abundance correlated with free fatty mass 
is associated with a reduction in mucus production and 
impairment of the gut barrier, and low-grade inflamma-
tion and is also associated with metabolic diseases such 
as obesity [57].

Brahe et  al., in a study conducted on a similar group 
of women, have also observed a relationship between 
other groups of bacteria and cardiometabolic risk fac-
tors. However, the observed compounds are related to 
other taxonomic groups of bacteria [2]. It should be 
emphasized that the microbiota analysis carried out by 
Brahe et al. differed in the methodology of bacterial DNA 
sequencing, analytical pipeline and statistical methods 
used. Inconsistent microbiome research results make it 
difficult to understand the exact relationship between the 
human gut microbiome and the resulting disease [58]. 
This may be due to selection bias, geographic differences, 
unknown confounding factors, taxonomic differences, 
or the lack of standard sample collection, processing and 
analysis methods [59]. For this reason, it is necessary to 
both standardize the research protocol [60] as well as 
use open databases containing the results of microbiome 
studies in various populations [61].
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To assess the universality of our observations, which 
is essential in microbiome research [62], we compared 
our data with those contained in the free and open 
Qiita database (https://​qiita.​ucsd.​edu). We related the 
microbiota composition observed in our study to results 
obtained in a similar cohort of women in the American 

Gut Project (The Microsetta Initiative—Researching 
Global Microbiomes, https://​micro​ssetta.​ucsd.​edu), with 
both high and normal BMI. However, our results dif-
fered significantly at various taxonomic levels in both 
the high and normal BMI groups. Of particular note is 
the much lower percentage of Proteobacteria and the 

Fig. 4  Mediation analysis for glucose, PWA PP and SBP—the effects and confidence intervals. A Glucose, B PWA PP, C SBP. Taxa correlating with 
glucose or PWA PP or SBP (FDR P < 0.1, Fig. 3C) are shown. Marked red taxa with FDR P < 0.05 (Fig. 3C). ACME average causal mediation effect, ADE 
average direct effect, TE total effect. Significance of each effect can be deduced from 95% confidence intervals not containing 0

https://qiita.ucsd.edu
https://microssetta.ucsd.edu
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higher percentage of Actinobacteria observed in our 
study. Obesity is associated with various gut microbiota 
composition profiles [63]. These differences may have 
originated from the distinctness of the geographical loca-
tions of the investigated populations. The microbiome is 
not only distinct in Western and Eastern populations [64] 
but also differs between countries with similar lifestyles 
(e.g. USA and UK) and regions of the same country [42]. 
It should also be emphasized that we compared different 
variable regions of the 16S gene (V1- V2 vs V4), which 
may be a source of differences in the taxonomic composi-
tion of the bacteria [65]. This can introduce inaccuracies 
while assessing taxonomy [66] and further create prob-
lems when comparing the results of different studies, 
performing meta-analyses, and drawing generalized con-
clusions about the importance of microbiota in different 
diseases. Functional profile analysis seems more valuable 
than taxonomic analysis for this purpose [67]. The results 
are consistent with our previous observations in a Polish 
population [68] and in postmenopausal women [69].

However, in order to fully relate the information we 
obtained to a healthy population, a control group consist-
ing of healthy and otherwise matched postmenopausal 
women of normal weight would be necessary.

An essential element of microbiota research is metabo-
lomic analysis. In our study, we used both bioinformatics 
tools that can be utilized to assess the metabolic poten-
tial of the tested bacteria, as well as the SCFA analysis in 
the stool. We have shown that different metabolic path-
ways involved in gut microbiota can be correlated with 
cardiometabolic risk factors. These include pathways 
mainly related to lipid, bicarbonate, biotin and nucleotide 
metabolism. The strong positive correlation between bio-
tin biosynthetic pathways and visceral fat may be of par-
ticular interest. This is in line with observations made by 
Wu et al. [70], who observed an association between the 
abundance of bacterial biotin biosynthesis pathways in 
individuals with different failures of glucose metabolism. 
Of note, intestinal bacteria produce biotin during insuf-
ficient supply [71]. However, this problem is not resolved, 
as Belda et al. [72] observed a reduced abundance of bio-
tin-producing bacteria in severely obese individuals. In 
addition, they found reduced blood concentrations of this 
vitamin. Of note, Belda et  al. used metagenomic analy-
sis and employed counts of faecal microbial cell density. 
Our analysis was based on amplicons and determining 
the relative abundance of bacteria; moreover, women not 
only with severe obesity were enrolled in our study. These 
might stand for the discrepancies in these results. Despite 
the confirmation of biotin deficiency in T2D [73] and the 
beneficial effects of biotin supplementation on glucose 
metabolism [74–76], further research concerning the role 
of gut bacteria in biotin metabolism and its association 

with metabolic disorders and obesity is necessary to 
search for markers of these disorders and therapeutic 
possibilities. Also, purine metabolism was found to be 
positively associated with visceral fat. Altered purine 
metabolism was observed by Concepcion et al. [77] in a 
cohort of youths with T2D. Of note, hyperuricemia has 
been linked to visceral fat accumulation, and uric acid 
serves as the primary metabolite of balanced purine die-
tary uptake, synthesis, and excretion [78]. We also found 
that alpha diversity and abundance of numerous bacteria 
are correlated with faecal SCFA. Alpha diversity is nega-
tively correlated with faecal propionic acid and positively 
with valeric and hexanoic acid. The correlations of other 
bacterial groups apply to those considered SCFA produc-
ers as well as to others. Interestingly, the abundance of 
some bacteria considered to be SCFA producers nega-
tively correlates with the faecal SCFA. Similar situations 
occur in other populations, for example, in people with 
Parkinson’s disease [79], which can be explained by the 
disturbed composition of bacteria in pathological states. 
Another factor that may influence the nature of the cor-
relation between bacterial abundance and SCFA is a sig-
nificant limitation of faecal SCFA analysis. The content 
of SCFA in the stool results from the production of these 
compounds by the intestinal bacteria, their absorption 
and their expenditure in situ in the gastrointestinal tract 
[80]. Faecal SCFA excretion results may not correspond 
to those measured in blood, which may better reflect 
SCFA production and absorption. Vogt and Wolever [81] 
showed that the rates of acetate absorption and excre-
tion are inversely correlated. In studies that measured 
SCFA in the circulation compared to the faeces, slightly 
different conclusions were drawn about the relationship 
of SCFA with obesity and cardiometabolic health. Boets 
et al. found that obese people have lower plasma concen-
trations of propionate and butyrate than lean people [82]. 
Moreover, Layden et  al. found that serum acetate con-
centration was inversely related to fasting and 2-h insulin 
levels and visceral adipose tissue [83]. It follows that the 
most reliable information can be obtained by analyzing 
the concentration of SCFA to provide an insight into all 
the processes of their transformation in the body. It can 
be assumed that pathological processes can lead to dis-
orders of SCFA metabolism or absorption, which makes 
these compounds a potential marker of various disease 
states.

We have not confirmed a correlation between SCFA 
and cardiometabolic risk factors. SCFA are considered an 
important metabolite of gut microbiota with a beneficial 
effect on health. On the other hand, as a source of energy, 
they may be associated with the occurrence of overweight 
or obesity. The association of SCFA with metabolic dis-
orders and obesity is, therefore, ambiguous. SCFA play 
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regulatory functions in the lipids, cholesterol and glucose 
metabolism, immune response and gut barrier integrity. 
Other studies showed that SCFA in faeces were nega-
tively correlated with adiposity parameters such as BMI, 
VAT and waist circumference [84, 85]. SCFA have been 
suggested to mediate the activation of G protein-coupled 
receptors, such as GPR41 and GPR43, inhibit fat accu-
mulation in adipose tissue and accelerate the metabo-
lism of unincorporated lipids as well as glucose in other 
tissues, leading to a subsequent improvement in insu-
lin sensitivity [86, 87]. The release of gut-derived satiety 
hormones like glucagon-like peptide-1 and peptide YY 
have also been implicated in this action [88, 89]. SCFA 
also play a role in the balance of fatty acid synthesis, fatty 
acid oxidation, and lipolysis in the body’s tissues through 
peroxisome proliferator-activated receptors [90]. Dietary 
supplementation with acetate, propionate, butyrate or 
their mixture can significantly inhibit the body weight 
gain induced by high-fat diet feeding [91].

On the other hand, the study performed in monozy-
gotic twin pairs confirmed the positive effects of SCFA 
on obesity [92]. In other studies, higher levels of SCFA 
in the stool were found in overweight or obese subjects 
compared to lean subjects [26, 27, 93–95]. In addition, 
Turnbaugh et  al., in an experimental study, showed a 
relationship between obesity, the gut microbiome and 
overproduction of SCFA [6]. However, the relationship 
between SCFA and metabolic disorders in postmeno-
pausal women can be affected by decreased estrogen 
production, which causes intestinal dysbiosis [96]. The 
postmenopausal gut microbiota contains fewer SCFA-
producing bacteria [69, 97–99]. It is therefore difficult 
to establish a clear relationship between faecal SCFA 
and cardiometabolic risk factors. To shed light on causal 
mechanisms, we performed a mediation analysis, which 
shown that the effect of Lachnospiraceae, Firmicutes 
and Tenericutes on plasma glucose may be translated 
(partially or fully) by propionate. However, these results 
should be interpreted with caution, given certain limi-
tations. First, mediation analysis provides only statisti-
cal support for a possible underlying causal mechanism. 
Thus, carefully designed experimental studies need to be 
conducted to establish such relationships.

The main limitation of this study is the lack of a con-
trol group consisting of normal weight healthy and other-
wise matched postmenopausal women; however, taking 
into account the multifactorial nature of the analysis, this 
task was not easy. Moreover, the study aimed to analyze 
the correlation in a given cohort and not the differences 
between the cohorts, especially since the problem of 

appropriate matching of healthy control was difficult to 
solve in such studies. The main reasons for the reduced 
sample size were the strict inclusion and exclusion cri-
teria and limited resources. Furthermore, mechanistic 
studies using a germ-free mouse model are required to 
confirm the results. Finally, it would be beneficial to com-
pare our results with a similar cohort [100]; however, 
such head-to-head studies have not been conducted. 
Other limitations include 16S rRNA sequencing of V1–
V2 regions (in the Polish population, the most suitable 
region is not defined), which provides limited insight into 
microbiota function [101], and further metabolome and 
immunome analysis are required.

Conclusions
We can conclude that microbiota composition and meta-
bolic potential are associated with cardiometabolic risk 
factors and faecal SCFA concentration in obese post-
menopausal women. However, there is no unequivo-
cal relationship between faecal SCFA and the marker of 
intestinal barrier integrity and cardiometabolic risk fac-
tors. We also found that comparing results obtained in 
a study cohort with raw data contained in an extensive 
reference database was not informative regarding com-
paring stool microbiota between obese and non-obese 
patients, so appropriately matched control groups should 
be used in microbiota studies. Our study provides the 
translational significance. Future works might explain 
further whether the microbiota and its metabolic poten-
tial may be treated as markers of metabolic disorders in 
obese postmenopausal women. If these observations are 
confirmed, the creation of dysbiosis indices associated 
with the occurrence of these disorders could be used to 
develop appropriate dietary strategies and to monitor the 
health of women during this period of life. They may also 
serve as a basis for developing pre-, pro- and postbiotics 
that could reduce the risk of cardiovascular diseases.
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