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Abstract

Cardiovascular disease is a leading cause of morbidity and mortality. Oral health is associated with smoking and car-
diovascular outcomes, but there are gaps in knowledge of many mechanisms connecting smoking to cardiovascular
risk. Therefore, the aim of this review is to synthesize literature on smoking and the oral microbiome, and smoking
and cardiovascular risk/disease, respectively. A secondary aim is to identify common associations between the oral
microbiome and cardiovascular risk/disease to smoking, respectively, to identify potential shared oral microbiome-
associated mechanisms. We identified several oral bacteria across varying studies that were associated with smoking.
Atopobium, Gemella, Megasphaera, Mycoplasma, Porphyromonas, Prevotella, Rothia, Treponema, and Veillonella were
increased, while Bergeyella, Haemophilus, Lautropia, and Neisseria were decreased in the oral microbiome of smok-
ers versus non-smokers. Several bacteria that were increased in the oral microbiome of smokers were also positively
associated with cardiovascular outcomes including Porphyromonas, Prevotella, Treponema, and Veillonella. \We review
possible mechanisms that may link the oral microbiome to smoking and cardiovascular risk including inflammation,
modulation of amino acids and lipids, and nitric oxide modulation. Our hope is this review will inform future research
targeting the microbiome and smoking-related cardiovascular disease so possible microbial targets for cardiovascular
risk reduction can be identified.
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Cardiovascular disease (CVD) greatly increases morbid-
ity and mortality, and contributed to approximately 18.6
million global deaths in 2019 [1]. Data from epidemio-
logical studies show strong links between smoking and
CVD, and smoking is directly associated with nearly 20
percent of deaths from CVD [2]. It has been established
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that smoking is a main modifiable risk factor in develop-
ing early atherosclerosis, CVD, and death. Smoking leads
to increased systemic inflammation, platelet activation,
and dysregulation of vascular smooth muscle control,
thus affecting the cardiovascular system [3]. The paired
endothelial and vascular dysfunction and platelet/clot-
ting abnormalities create a pro-atherogenic environment
in which stable and unstable plaques can develop. The
development of atherosclerotic plaque leads to various
types of CVD-related morbidity, including myocardial
infarction, stroke, and congestive heart failure. Periodon-
titis, a condition associated with cardiovascular risk and
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CVD [4-6], occurs at significantly higher rates in sub-
jects who smoke cigarettes [7]. Periodontitis is associated
with characteristic bacterial alterations and local inflam-
matory responses [8], but the documented connection
of periodontitis to systemic inflammation suggests local
disruptions in oral bacteria may have implications that
reach beyond the oral environment [9, 10].

The human microbiome is defined as the collection
of bacteria (and their genes) that inhabit and coexist
within humans. These bacteria play an integral role in
vital physiologic processes such as metabolite produc-
tion through fermentation of complex carbohydrates,
modulation of host immune responses, and regulation
of lipid metabolism [11, 12]. Since the development of
the Human Microbiome Project, the role of the human
microbiome in the maintenance of health and several
physiological processes has been of great interest [13],
including those associated with cardiovascular health
[14]. Several internal and external factors, including
diet and smoking, influence the structure and function
of these microbial communities [15, 16]. Alteration in
bacterial composition of microbiome communities
across body sites have been associated with several
diseases, including hypertension, obesity, hyperlipi-
demia and alcohol use disorder [17-20]. There are
mechanisms linking the microbiome to CVD, although
most of this research focuses on the gut microbiome
and researchers understand less about the interaction
between bacterial communities of the oral environment
and host physiology [20, 21].

The oral cavity is a highly complex, open ecosystem
with several microenvironments [22]. Bacterial species
colonize the mouth in organized communities called
biofilms that are in continual interface with the external
environment and host immune system through the oral
mucosal epithelium [23]. These biofilms pose advantages
to bacteria of the oral microbiome by increasing bacte-
ria-specific nutrient availability and providing protection
from environmental or physiologic stressors [24]. Impor-
tantly, the structure and composition of oral microbiome
biofilms varies across oral sampling sites [25]. Mucosal
oral surfaces with high cellular turnover have largely dif-
ferent characteristics versus non-mucosal surfaces (e.g.
teeth), despite their close proximity within the oral cav-
ity. Furthermore, the mucosal and non-mucosal microen-
vironments of the mouth have significant differences in
oxygen exposure, pH, and temperature, creating favora-
ble growing conditions for different species of bacteria.
Each oral microenvironment, i.e., the subgingival sulcus,
tongue dorsum, buccal mucosa and saliva, has distinct
but temporally stable bacterial populations that may have
disparate responses to smoking exposure.
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Importantly, the oral cavity is exposed to different
chemicals and substances when e-cigarette vapor versus
tobacco smoke is inhaled. For example, cigarette smoking
exposes the oral environment to irritants, chemicals, and
carcinogens through incomplete combustion byproducts,
including polycyclic aromatic hydrocarbons and nitrosa-
mine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone,
along with carbon monoxide [26]. Electronic-cigarette
(e-cigarette) use, originally proposed as a safer alternative
to cigarette smoking, results in oral exposure to nicotine
dissolved in solvents including alcohols, glycerin, propyl-
ene glycol, and propylene oxide through the inhalation
of aerosols [27]. In e-cigarettes, levels of volatile organic
compounds, nitrosamines, aldehydes, and metals vary
considerably across different brands making understand-
ing the link between aerosol inhalation and oral chemi-
cal exposure difficult [28]. Both cigarette and e-cigarette
smoking have been shown to alter the oral environment
by decreasing saliva volumes, increasing saliva viscosity,
destroying protective salivary macromolecules and trig-
gering inflammatory responses and chronic inflamma-
tion [29-31].

Potential mechanisms between oral microbes, smok-
ing, and cardiovascular conditions are largely unexplored.
The physiologic implications of many of the chemicals
present in cigarette smoke are historically understudied,
and even less is known about how the oral microbiome
may modulate interactions between cigarette smoke ver-
sus e-cigarette vapor and human physiology. The circu-
latory system provides a route where the bacteria of the
oral microbiome may influence CVD risk. Each tooth has
a blood supply, and byproducts of oral bacterial metabo-
lism can produce metabolites or endotoxins that migrate
into the bloodstream, causing systemic inflammation that
affects other parts of the body [32]. This is a potential
mechanism, but the specific pathways linking smoking
to CVD through the oral microbiome are still unknown.
As the oral cavity and its associated microbial commu-
nities are the first contact with inhaled cigarette smoke,
responses of the oral microbial taxa to smoke products
and subsequent implications for health are important to
elucidate. Therefore, this manuscript reviews associa-
tions between the oral microbiome and smoking, and the
oral microbiome and CVD, focusing on shared associa-
tions and potential oral microbial-mediated mechanisms
linking smoking to CVD risk.

In collaboration with our institutional biomedical
librarian, PubMed was searched for primary literature
to yield sources focused on smoking and the oral micro-
biome, and smoking and cardiovascular risk or disease,
respectively. Please see Additional file 1 for search terms,
combinations and strategy used in the PubMed searches
for primary literature source data acquisition.
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Cigarette smoking and oral microbiome
compositional changes

As the oral microbial communities exist in an intricate
and coordinated ecosystem, changes in the oral environ-
ment result in adaptation and shifts in which bacteria
thrive based on their phenotypic and colony characteris-
tics. Several factors are known to modify the oral envi-
ronment and influence the composition of the oral
microbiome as a result. Factors (both internal and exter-
nal) such as diet, certain medications, smoking, moisture
of the environment, and periodontal disease status alter
the amount and composition of saliva, which impacts
the surrounding epithelial tissues and oral cavity [33].
As previously mentioned, cigarette smoking exposes
the oral environment to irritants, chemicals, and car-
cinogens [26], and alters the oral environment promot-
ing inflammatory responses [29—31]. Since niche-specific
colonization exists in the oral cavity, we will review the
associations between smoking and the oral microbiome
across different sites: whole mouth, saliva, tongue dor-
sum, supragingival plaque, and subgingival plaque (see
Table 1 for a list of studies that evaluated associations
between smoking and the oral microbiome). The rela-
tionship between smoking and alpha diversity was greatly
heterogenous across studies. Alpha diversity is defined
as microbial diversity within an individual sample, and is
often used as a global indicator of the bacterial charac-
teristics within a microbiome sampling site [22]. Smok-
ing was associated with an increased alpha diversity of
whole mouth [34], buccal mucosa [35], and saliva [36, 37]
samples in some research, while other studies reported
decreased alpha diversity in whole mouth [38], saliva
[39, 40] and tongue dorsum [41] samples in smokers ver-
sus non-smokers. Additionally, smoking was associated
with decreased alpha diversity of subgingival samples of
patients with and without chronic periodontal disease
[42]. Other groups reported no differences in alpha diver-
sity of whole mouth (via mouthwash) [43], buccal [44],
tongue dorsum [45] and saliva [45, 46] samples of smok-
ers, compared to non-smokers.

Whole mouth, saliva and buccal mucosa

Researchers collected whole mouth samples by swab-
bing multiple surfaces of the mouth [38] or collecting
an alcohol- [43, 47-50] or saline-based [34] mouthwash
to analyze microbial populations across multiple oral
microenvironments. Similar to whole mouth sam-
ples, saliva microbiome composition may be influenced
by other oral microbial niches, but sample collection
occurred through spontaneous passive [36, 37, 39, 40, 45,
51-54] or stimulated [46] salivary fluid collection in the
reviewed studies. In saliva or buccal mucosa samples of
cigarette smokers, the majority of studies demonstrated
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an increased relative abundance (RA) of Actinomyces
[36, 37, 48], Actinomyces species [46, 52], Aggregatibac-
ter [53], Bacteroides [52], and Lachnoanaerobaculum [39]
versus non-smokers. Cigarette smoking also increased
the RA of Alloprevotella species [39], Campylobacter [36,
43, 53], Dialister [34], Eubacterium [52] and Eubacterium
species [39, 52] in saliva and whole mouth samples versus
subjects who did not smoke. Conversely, several studies
reported a decreased RA of Acinetobacter species [39],
Bifidobacterium [47], Catonella [39], Capnocytophaga
[40, 45], Cardiobacterium [36, 45], Granulicatella [38,
48, 51], Lactococcus [40, 47], Leptotrichia [34, 48, 49, 51],
Pseudomonas orientalis [39], Selenomonas [39, 52], and
Selenomonas species [39] in saliva and whole mouth sam-
ples of cigarette smokers versus non-smokers. The RA of
Actinobacillus had different associations with cigarette
smoking, where the RA of Actinobacillus was increased
in saliva samples [51] but decreased in whole mouth sam-
ples [34, 47] in cigarette smokers (versus non-smokers).
There were also conflicting results on the influence of
cigarette smoking on the RA of Fusobacterium and Fuso-
bacterium species in the whole mouth, buccal mucosa
and saliva samples. For example, several studies reported
both an increased RA of genus-level Fusobacterium and
Fusobacterium species (specifically FE nucleatum; [35,
46, 48, 52, 54]) and decreased RA of Fusobacterium and
Fusobacterium species (specifically E periodonticums; [34,
37, 46, 49, 51]) in cigarette smokers versus non-smokers
(see Additional file 2: Table S1 for all smoking-associated
oral bacteria responses in the reviewed studies).

Tongue dorsum

Two studies by the same group [41, 55] explored the
impact of smoking on the oral microbiome using tongue
dorsum samples. These studies reported that cigarette
smoking was associated with a decrease in the RA of
Alloprevotella, Campylobacter, Cardiobacterium, Cap-
nocytophaga, Fusobacterium, Eubacterium, and Lachnoa-
naerobaculum versus non-smoking subjects [41]. Two
independent groups reported that smoking was associ-
ated with a decrease in Peptostreptococcus and Catonella
in tongue dorsum samples, compared to non-smokers
[41, 45]. Cigarette smoking was also associated with
an increased RA of species-level Eubacterium brachy,
Eubacterium nodatum, Eubacterium saphenum, Filifac-
tor alocis, Fusobacterium nucleatum, and Mogibacterium
timidum in tongue dorsum samples compared to non-
smokers [41, 55].

Supragingival and subgingival plaque

Supragingival and subgingival plaque samples were col-
lected by soft tissue removal [42] or by biofilm [56, 57]
and direct plaque [58, 59] collection using sterilized
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paper points in patients with and without periodontal
disease, depending on the study design (Table 1). Ciga-
rette smoking was associated with an increased RA of
Bifidobacterium [42, 58] and Campylobacter rectus [59],
Eikenella corrodens [59], Fusobacterium [42], Granulica-
tella [42], and Selenomonas sputigena [59] in subgingival
plaque samples and an increased RA of Haemophilus
parainfluenzae [57] in supragingival samples versus non-
smoking subjects. Conversely, the RA of Capnocytophaga
ochracea [59] and Pseudomonas [42] in subgingival
plaque samples were decreased in cigarette smokers ver-
sus non-smokers.

Similar bacterial associations across multiple sites

Specific bacterial taxa had similar associations with ciga-
rette smoking in multiple oral microbiome sampling sites
(i.e. a shared increase or decrease in RA in response to
cigarette smoking in more than one oral microbiome
site; Table 2 and Fig. 1A). For example, cigarette smok-
ing was associated with an increased RA of Atopobium
and Atopobium species [34, 36, 37, 41, 45, 55, 58], Rothia
and Rothia species [36, 38, 41, 44, 46, 52, 55], Lactobacil-
lus [50, 58], Mycoplasma and Mycoplasma hyosynoviae
(34, 41, 52], Megasphaera and Megasphaera micronu-
ciformis [34, 36, 37, 39, 41, 43, 46, 55], Tannerella and
Tannerella forsythia [39, 41, 52], Corynebacterium and
Corynebacterium species [41, 57], Prevotella and Prevo-
tella species [34, 36—40, 44, 46, 52, 55], Streptococcus and
Streptococcus species [41, 44, 55, 58], Porphyromonas
and Porphyromonas species [34, 46, 55], Treponema and
Treponema species [34, 42, 45, 48, 52, 55, 59], and Veil-
lonella or Veillonella species [36-38, 43, 44, 46, 48, 50,
55, 58], compared to non-smokers. Interestingly, the RA
of Lactobacillus and Rothia were also increased in sub-
jects exposed to secondhand smoke [47]. Cigarette smok-
ing was associated with a decreased RA of Gemella [37,
38, 40, 41, 43, 45, 47], Haemophilus and H. haemolyticus
(34, 37, 41, 43, 45, 47, 55], Neisseria and Neisseria spe-
cies [34, 36-38, 41, 43, 47, 50, 52, 53, 55, 58], Bergeyella
[37, 43, 47, 48], Oribacterium and Oribacterium species
(39, 41, 46, 52], Lautropia and L. mirabilis [34, 36, 37,
41-43, 47, 52, 55, 58] in most oral sites versus subjects
who did not smoke. An exception to the previous inverse
association between bacterial RA and cigarette or e-cig-
arette smoking was an increased RA of L. mirabilis in
supragingival [57] samples and increased Oribacterium
in the whole mouth [48] and subgingival plaque [42]
samples in smokers compared to non-smokers. Addition-
ally, in cigarette smokers (versus non-smokers), the RA
of Actinobacillus was increased in saliva samples [51] but
decreased in whole mouth samples [34, 47]. Not all taxa
had agreement across studies when reporting the asso-
ciation between RA and cigarette smoking. For example,
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in the whole mouth and saliva samples, there were almost
an equal number of studies reporting a decreased [40, 43,
49, 51] and increased [37-39, 46, 49] RA of Streptococ-
cus or Streptococcus species, and the association between
smoking and Prevotella RA was equivocal in subgingival
plaque samples, with one study reporting an increase
[58] and the other a decrease [59] in RA versus non-
smoking subjects. Current cigarette use was associated
with a decreased RA of Bergeyella, Haemophilus, Lautro-
pia, and Neisseria compared to former smokers in whole
mouth samples [47], indicating that abstinence from
smoking might reverse thesmoking-associated decrease
in RA of these taxa.

Cigarette smoking and oral microbiome-associated
metabolite pathway and inflammatory biomarker
changes

Glycine, serine, and threonine metabolism pathways,
amino acid enzyme and phenylalanine, tyrosine, and
tryptophan biosynthesis pathways were upregulated in
smokers’ saliva, tongue dorsum and buccal mucosa sam-
ples [35, 36, 52]. In studies that documented the pres-
ence or absence of periodontal disease, smoking subjects
without periodontal disease had higher levels of protein/
amino acid biosynthesis and metabolism pathway genes
in saliva and buccal mucosa samples compared to non-
smokers without periodontal disease [35, 52]. Interest-
ingly, the same pathways (glycine, serine, and threonine
metabolism and phenylalanine, tyrosine, and tryptophan
biosynthesis pathways) were downregulated in subgingi-
val plaque samples of subjects who smoked and also car-
ried a diagnosis of periodontal disease, suggesting that
sampling site and/or associated periodontal disease may
influence metabolic responses to smoking [42]. The galac-
tose metabolism pathway was downregulated [55], while
lipopolysaccharide biosynthesis pathways were upregu-
lated in tongue dorsum samples of smokers compared to
non-smokers [52]. In saliva samples, smoking was associ-
ated with a decreased abundance of general lipid metab-
olism pathways, but increased polyketide metabolism
pathways compared to non-smokers [52]. The relationship
between smoking and salivary cytokine levels had con-
flicting results. In one study, saliva levels of pro-inflam-
matory cytokines tumor necrosis factor (TNF)-a, INF-y,
and interleukin (IL)-4 were significantly increased in non-
smokers compared to cigarette smokers [46]. In another
study, smoking was associated with increased levels of
pro-inflammatory IL-2 and IL-4 and decreased levels of
anti-inflammatory IL-10 versus non-smokers [51]. Finally,
after adjusting for multiple factors, both cigarette smok-
ing and detectible Porphyromonas gingivalis bacteria in
subgingival plaque samples were associated with plasma
high-sensitivity C-reactive protein (CRP) levels [60].
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Table 2 Bacteria of the oral microbiome with similar responses to smoking across multiple sites

Bacteria Whole mouth Saliva Tongue Subgingival Buccal References

dorsum plaque®
Atopobium and Atopobium species 4 4 0 0 [34, 36, 37,41, 45, 55, 58]
Bergeyella 2 | [37,43,47,48]
Corynebacterium and Corynebacterium species 0 0 [41,57]
Gemella 4 4 4 [37,38,40,41,43,45,47]
Haemophilus and H. haemolyticus I I U [34,37,41,43,45,47,55]
Lactobacillus 4 0 [50, 58]
Lautropia and Lautropia mirabilis I I U 11P [34,36,37,41-43,47,52, 55,57, 58]
Megasphaera and Megasphaera micronuciformis 4 4 0 [34,36,37,39,41,43, 46, 55]
Mycoplasma and Mycoplasma hyosynoviae 4 4 4 [34,41,52]
Neisseria and Neisseria species N N N N [34,36-38,41,43,47,50, 52, 53,55, 58]
Oribacterium and Oribacterium species 4 N N 0 [39,41,42, 46,48, 52]
Peptococcus N N [36,41]
Porphyromonas and Porphyromonas species 4 b 0 [34, 46, 55]
Prevotella and Prevotella species 4 4 4 P 4 [34,36-40, 44,46, 52, 55, 58, 59]
Rothia and Rothia species 4 4 0 0 [36, 38, 41,44, 46, 52, 55]
Streptococcus and Streptococcus species N,b ?Lb 4 0 4 [37-41,43,44,46,49, 51,55, 58]
Tannerella and Tannerella forsythia 4 4 [39,41,52]
Treponema and Treponema species 4 0 0 [34,42,45,48, 52,55, 59]
Veillonella and Veillonella species 1 A 0 0 1 [15,36-38, 43, 44, 46,48, 50, 55, 58]

2 Subgingival and/or supragingival plaque

b Equal number of studies reporting an increased or decreased relative abundance of bacterial taxa in association with smoking

Electronic-cigarette smoking and oral microbiome
compositional changes
The studies reporting associations between the oral
microbiome and e-cigarette smoking are limited, but the
two studies reported in this review present a compre-
hensive evaluation of e-cigarette exposure on the saliva
and subgingival microbiome communities in addition to
the metabolic pathway and cytokine alterations [15, 46].
E-cigarette smoking was associated with an increased
RA of Abiotrophia, Aggregatibacter, Cardiobacterium,
Eikenella, Granulicatella, Haemophilus, Johnsenella, Kin-
gella, Lachnoanaerobaculum, Leptotrichia, Mogibacte-
rium, Parvimonas, Peptostreptococcus, and Selenomonas
in subgingival plaque samples of e-cigarette smokers
versus non-smokers [15]. In saliva samples, there was an
increased RA of species-level Alloprevotella tannerae,
Corynebacterium durum, Dialister invisus, Leptotrichia
wadei, Parvimonas micra, Prevotella oris, and Veillonella
dispar in e-cigarette smokers versus non-smokers [46].
Conversely, the RA of Granulicatella adiacens, Orib-
acterium parvum, Prevotella sp. HMT 317, Streptococ-
cus oralis subsp. tigurinus clade 071, and Veillonella
rogosae were decreased in saliva samples of e-cigarette
smokers versus non-smokers [46]. The RA of genus-
level Fusobacterium and Neisseria were also increased in
saliva samples compared to both cigarette smokers and

non-smokers [46]. Fusobacterium species, specifically
E nucleatum and E periodonticum, were increased and
decreased, respectively, in saliva samples of e-cigarette
smokers versus non-smokers [46]. Additionally, Porphy-
romonas species, specifically P. gingivalis, P. endodonta-
lis and P, pasteri, were all increased in saliva samples of
e-cigarette smokers versus non-smokers [46].

Electronic-cigarette smoking and oral
microbiome-associated metabolite pathway

and inflammatory biomarker changes

Several carbohydrate metabolism pathways were elevated
in subgingival plaque samples of e-cigarette users, includ-
ing the central carbohydrate metabolism, one carbon
metabolism, fructose kinase, and the monosaccharide,
disaccharide and oligosaccharide metabolism pathways
compared to non-smokers [15]. Additionally, in subgin-
gival plaque samples of e-cigarette users, lipid A biosyn-
thesis, glycerol kinase, glycerate kinase lipid metabolism
pathways, and general protein/amino acid metabolism
genes were all upregulated in e-cigarette users [15].
Lysine fermentation, alanine biosynthesis, and arginine
biosynthesis pathways were also upregulated in subgin-
gival plaque samples of e-cigarette users [15]. Lipopoly-
saccharide biosynthesis pathways were upregulated in
both subgingival plaque samples of e-cigarette users and
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Fig. 1 A sub-section of the genera that were cited in manuscripts that studied associations of oral bacteria with cigarette smoking, electronic
cigarette smoking, and cardiovascular risk/disease, respectively. Red circles indicate a significant increase of the corresponding oral microbiome
taxon to cigarette smoking, e-cigarette smoking or cardiovascular variables, while blue indicate a significantly decreased relative abundance. These
figures were generated in JMP"™ Version 14 Data Discovery Statistical Software. Data is shown across all oral sites and larger circles indicate more
references to an increase or decrease in the specified genus. Species-level features were collapsed to the genus level for illustrative purposes. Taxa at
the species and genus level used to make this figure, and the corresponding citations, can be found in Additional file 2: Table S1 (oral microbiome
and smoking) and Additional file 3: Table S2 (oral microbiome and cardiovascular risk/disease). E-cigarette electronic cigarette

tongue dorsum samples of e-cig smokers compared to
non-smokers [15, 52]. In e-cigarette users, general pro-
tein/amino acid metabolism genes were upregulated in
plaque samples compared to non-smokers [15].
E-cigarette smokers had significantly higher levels of
the pro-inflammatory cytokines IL-2, IL-6, TNF-a, and
INEF-y, and lower levels of the anti-inflammatory cytokine
IL-10 present in the gingival crevicular fluid compared
to non-smokers [15]. Additionally, gingival crevicular
fluid levels of the pro-inflammatory cytokine GM-CSF
was higher in e-cigarette users versus cigarette smokers
and non-smokers [15]. In another study, salivary levels
of the pro-inflammatory cytokine IL-2 were elevated in
e-cigarette smokers versus non-smokers [46]. Salivary
IL-6 and IL-1f3 were also elevated in e-cigarette users
versus cigarette smokers and non-smokers in this study,
although these differences were not significant [46]. Con-
versely, the pro-inflammatory cytokine TNF-a had the
highest saliva concentrations in non-smokers, followed
by cigarette smokers, and finally e-cigarette smokers [46].

Finally, FaDu and Leuk-1 cell lines exposed to e-cigarette
aerosol and individually co-infected with the bacterial
taxa P, gingivalis and E nucleatum, respectively, displayed
higher mRNA levels of the pro-inflammatory cytokines
IL-183, TNF-a, IFN-y, IL-6, and IL-8, when compared to
the same co-infected cells exposed to air [46].

Cardiovascular disease/risk and oral microbiome
compositional changes

Alterations in the oral microbiome and clinical periodon-
titis have been thought to mediate CVD and CVD risk
by promoting systemic low-grade inflammation through
pathogenic bacteria and their byproducts [61]. Impor-
tantly, many current reviews on the link between oral
bacteria and CVD have focused on specific bacteria asso-
ciated with periodontitis [6, 62], and not how changes in
other bacterial members of the oral microbiome com-
munity may contribute to CVD through cardiovascular
migration or endotoxemia. Across most studies analyzed
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in this review, the number of smokers reported ranged
from 11 to 80% in the CVD group (Table 3).

The RA of Aggregatibacter, Campylobacter, Fusobac-
terium, and Porphyromonas were associated with CVD
in several studies (Fig. 1B). For example, increased RA
of A. actinomycetemcomitans in saliva samples was seen
in patients with ischemic stroke [63], increased RA of A.
actinomycetemcomitans in periodontal pocket/subgin-
gival samples occurred in patients with coronary artery
disease [64], acute coronary symptom [64], and valvular
heart disease [65, 66], and A. actinomycetemcomitans was
present in both subgingival plaque and samples of coro-
nary artery atherosclerotic samples [67]. Increased RA of
Campylobacter rectus in periodontal pocket/subgingival
samples also occurred in patients with coronary artery
disease [64], acute coronary symptom [64], and valvular
heart disease [65-67], and C. rectus was present in both
subgingival plaque and samples of coronary artery ath-
erosclerotic samples [68]. Campylobacter concisus was an
additional species that was found in both subgingival bio-
film samples and coronary artery plaques of patients with
coronary artery disease [68]. Increased RA of Fusobac-
terium in subgingival samples occurred in patients with
increased blood pressure [69], valvular heart disease [65,
66], and several Fusobacterium species were present in
both subgingival plaque and samples of coronary artery
atherosclerotic plaques [68]. Increased RA of Porphy-
romonas in whole mouth samples of patients with coro-
nary artery disease [70], Porphyromonas gingivalis was
also elevated in subgingival samples of patients with cor-
onary heart disease [67, 68, 71, 72], valvular heart disease
[65], and in smokers with a history of CVD [73]. Porphy-
romonas gingivalis was found in both subgingival and
coronary artery atherosclerotic plaque samples alone and
in combination with several species, including Tannerella
forsythia, Tannerella denticola, Eikenella corrodens, and
Campylobacter rectus [68, 71].

The association between the RA of Prevotella in the
oral microbiome and cardiovascular risk/CVD had con-
flicting results in the literature. There was an inverse
association of the RA of Prevotella, P. scopos, and P
intermedia in subgingival plaque samples in patients
with increased blood pressure [69] and acute myocardial
infarction [72] in two studies. Other research reported a
positive association of Prevotella, P. shahii, and P. nigre-
scens in whole mouth samples in patients with coronary
artery disease [70], and subgingival samples in patients
with increased blood pressure [69], diagnosed with
hypertension [69], coronary artery disease [68, 71], val-
vular heart disease [65, 66], and both subgingival and
coronary artery plaque samples had P. nigrescens, P. inter-
media, and P. loescheii present. The RA of Treponema
and Veillonella were increased in whole mouth samples

Page 13 of 26

in patients with coronary artery disease [70], and sub-
gingival plaque samples in patients with coronary artery
disease [71] and diagnosed hypertension [69]. Veillonella
was additionally identified in both whole mouth samples
and in carotid artery atherosclerotic plaque samples [74].

Increased blood pressure was associated with a reduced
RA of Actinomyces and increased RA of Selenomonas in
subgingival plaque samples [69], respectively, and both
Actinomyces and Selenomonas were preset both in sub-
gingival, and coronary artery atherosclerotic plaque
samples [68]. Capnocytophaga leadbetteri and Eikenella
corrodens were found in both subgingival plaque and
coronary artery atherosclerotic plaque samples [68], and
an increased RA of these bacteria in subgingival biofilm
samples occurred in patients with valvular heart disease
[65, 66]. The RA of Streptococcus and several Streptococ-
cus species were decreased in saliva and oral samples
of patients with elevated blood pressure and ischemic
stroke compared to patients without CVD [69, 75, 76].
Finally, species-level Filifactor alocis and Treponema
denticola were seen in both subgingival and coronary
artery plaque samples in patients with coronary artery
disease [67, 68, 71]. See Additional file 3: Table S2 for all
cardiovascular-associated oral bacteria responses in the
reviewed studies.

Oral microbiome as an intersection
between smoking and CVD: potential/plausible
mechanisms
Smoking remains a significant risk factor for CVD devel-
opment, and differences in the bacterial community
of different oral niches have been associated with both
smoking and CVD in the studies outlined in this review.
The association between smoking and alpha diversity
differed across studies, with some studies reporting an
increase in alpha diversity, others reporting a decrease
and others reporting no association of alpha diversity
with smoking. Furthermore, many research studies did
not report alpha diversity associations and focused solely
on differential abundance differences in specific bacte-
ria of the oral microbiome. Nevertheless, differences in
alpha diversity associations with cigarette smoking may
be related to different oral microbiome sampling sites,
studies not powered to evaluate smokers versus non-
smokers or different confounders present that may influ-
ence the overall bacterial community. Future research
studies using consistent alpha diversity metrics will allow
continued cross-study comparison across oral micro-
biome sampling sites and will inform the relationships
between smoking and alpha diversity.

Through comparing the associations between oral
microbial taxa and smoking (Additional file 2: Table S1)
and cardiovascular disease/risk (Additional file 3:
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Table S2), respectively, we found oral bacteria that had
shared negative (Fig. 2A) and positive (Fig. 2B) associa-
tions with smoking (both cigarette and e-cigarette) and
CVD. Additionally, there were several oral microbiome-
associated bacteria that were present in both subgingival
samples and atherosclerotic plaques that also had positive
RA associations with cigarette and e-cigarette smoking
(versus non-smokers). The bacteria sequenced from ath-
erosclerotic plaques that were also associated with smok-
ing included Aggregatibacter actinomycetemcomitans,
Campylobacter rectus, Filifactor alocis, Fusobacterium,
Leptotrichia, Porphyromonas, Prevotella, Selenomonas,
Treponema/Treponema denticola, and Veillonella. As
these bacteria have shared associations between smok-
ing and CVD and/or cardiovascular risk, these may be
important for future studies directly examining the oral
microbiome as a mediator between smoking and elevated
risk of CVD. Although identifying the oral microbiome
compositional changes related to smoking and CVD is
important in exploratory and preliminary studies, under-
standing the functional roles of oral microbiome shifts
will provide deeper insight into the role oral bacteria has
on human pathophysiology. From our extensive review of
the literature, we have identified several mechanisms in
which smoking can increase CVD risk through the oral
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microbiome, those include (1) inflammatory mecha-
nisms, (2) lipid and amino acid modulation, and (3) pro-
duction of vasoactive metabolites (Fig. 3).

Inflammatory mechanisms

Evidence has demonstrated that periodontal disease cre-
ates an inflammatory oral environment in which media-
tors may transmit to the systemic circulation. Systemic
diseases such as diabetes mellitus [77, 78] and CVD
[79] have also been associated with increases in oral
inflammation and periodontal pathology through dis-
ease mechanisms and treatment modalities [79], sug-
gesting a bidirectional relationship between local (oral)
and systemic inflammatory processes and health. The
RA of bacterial taxa associated with periodontal dis-
ease, including Porphyromonas, Treponema, Tannerella,
Campylobacter, and Prevotella spp. were positively asso-
ciated with cigarette and e-cigarette smoking in many
studies (Table 3). Additionally, in studies evaluating
shared oral and coronary artery plaques, atheroscle-
rotic plaques were found to contain DNA from peri-
odontal pathogens, indicating transmission of bacteria
from the oral cavity to the heart [68, 71]. The potential
link between the periodontal disease pathogens and
increased cardiovascular risk or CVD has been studied

TS Decreased Cited in Cigarette Increased
Smoking and CV Smoking and CV
. . . Actinomyces . :
/C\ct/nozyc?s , Cigarette E-Cigarette Campylobacter Cigarette E-Cigarette
ShEcos i Smokers Smokers Capnocytophaga | Smokers Smokers
Haemophilus 7 .
Pseudomonas E‘.J. aeteum
Filifactor /
Selenomongs / Streptococcus (6
Tannerelia 34 2 0 Tannerella 28 7
Treponema
/' Cited in Cigarette, 8
Cited in Cigarette, 6 -0 E-Cigarette and CV [
E-Cigarette and CV RS - Aggregatibacter ——
Alloprevotella
Fusobacterium Eikenella 11 —
Prevotella 8 Fusobacterium ((:;ted in
Lachnoanaerobaculum E-Cigarette
\‘S}Zﬁliz’ l;?:lzccus Leptotrichia Smoking and CV
: Benvimanas CV- Associated | Neisseria
- Porph
CV-Associated Farpiyromonas Peptostreptococcus
Rothia
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Veillonella
Fig. 2 A Shared and unique oral bacterial taxa that are decreased in association with cigarette smoking, e-cigarette smoking and CV-associated risk
or disease. B Shared and unique oral bacterial taxa that are increased in association with cigarette smoking, e-cigarette smoking and CV-associated
risk or disease. Bacteria summary tables from Additional file 2: Table S1 (oral microbiome and smoking) and Additional file 3: Table S2 (oral
microbiome and cardiovascular risk/disease) were imported into JMP™ Version 14 Data Discovery Statistical Software, and species-level bacteria
was collapsed to the genus level. If a genus-level bacterium was mentioned as increased or decreased in association with cigarette smoking,
e-cigarette smoking or CVD, it was binned in the respective category. See Additional file 4: Table S3 for a summary of shared and unique bacteria. CV
cardiovascular, e-cigarette electronic cigarette. Figure created with BioRender.com
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Fig. 3 Schematic summarizing hypothesized pathways where the oral microbiome medlates cardiovascular risk and disease in response to
smoking. A An increased RA of multiple bacteria associated with smoking including Fusobacterium, Porphyromonas, Lachnoanaerobaculum
Parvimonas, Mogibacterium Streptococcus, Selenomonas, and Rothia in the oral microbiome have been positively associated with increased
proinflammatory cytokine levels. A smoking-associated increase in the RA of Alloprevotella, Filifactor, Fusobacterium, Porphyromonas, Veillonella,
Treponema, and Parvimonas was associated with LPS levels or biosynthesis genes, while Parvimonas was associated with CRP. Increases in local and
systemic cytokines, along with elevated CRP and LPS are associated with an increased risk of CVD. B Increased RA of Rothia and Porphyromonas,
both elevated in the oral cavities of smokers versus non-smokers, are potentially associated with decreased tyrosine and tryptophan levels through
different hypothesized mechanisms. Prevotella RA was increased in smokers, which is positively associated with increased Apolipoprotein B levels.
Both decreases in tyrosine/tryptophan and increased Apolipoprotein B is associated with increased cardiovascular risk. C An increase in the oral RA
of Prevotella and Veillonella, and a decrease in the RA of Neisseria that was documented in smokers versus non-smokers is associated with decrease
nitrate levels that ultimately lead to decreased nitric oxide levels. Decreased nitic oxide levels are associated with alterations in blood pressure and
CVD, and may lead to a compensatory increase in oral Rothia abundance in association with smoking. Figure created with BioRender.com
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extensively [32, 60, 62, 80]. Evidence has demonstrated
that periodontal disease creates an inflammatory oral
environment in which mediators may transmit to the
systemic circulation [60].

Lipopolysaccharide (LPS): LPS, an endotoxin that is
commonly found in the cell wall of gram-negative bac-
teria, has been demonstrated to trigger the inflamma-
tory cascade resulting in the systemic inflammation that
increases cardiovascular risk and CVD [81, 82]. There is
a strong connection of periodontitis to cardiometabolic
disorders, mediated by LPS, that has been reviewed in
detail [83]. In the reviewed studies, LPS biosynthesis
pathway genes were upregulated in subgingival plaque
sample of e-cigarette smokers and tongue dorsum sam-
ples of cigarette smokers [15, 55]. Additionally, many bac-
teria that had positive associations with LPS biosynthesis
genes had increased RA levels in the oral microbiome of
cigarette and e-cigarette smokers [81, 84]. For example,
Alloprevotella tannerae was increased in saliva samples
of e-cigarette smokers [46], Filifactor was increased in
tongue dorsum samples of cigarette smokers [41, 55],
Fusobacterium nucleatum was increased in saliva sam-
ples of e-cigarette and cigarette smokers [46, 52, 54]; and
Prevotella was increased in saliva, whole mouth, buc-
cal, and tongue dorsum samples of cigarette and e-ciga-
rette smokers [34, 38—40, 44, 46, 55, 58]. Other bacteria
associated with LPS biosynthesis that were increased in
smokers included Porphyromonas endodontalis in tongue
dorsum and saliva samples of cigarette and e-cigarette
smokers [46, 55], Veillonella in saliva, whole mouth, buc-
cal, tongue dorsum, and subgingival plaque samples of
cigarette and e-cigarette smokers [15, 38, 43, 44, 46, 48,
50, 55, 58], Treponema in saliva, whole mouth and sub-
gingival plaque samples of cigarette smokers [34, 48, 52,
55, 59], and Parvimonas in saliva and subgingival plaque
samples of cigarette and e-cigarette smokers [15, 46]. The
RA of genus-level Parvimonas was also positively corre-
lated with LPS biosynthesis genes in the oral microbiome
[70]. Additionally, in one study, the LPS gene in com-
mensal biofilm samples was upregulated 22.8-fold with
nicotine-free vapor and 10.1-fold in nicotine-containing
vapor in e-cigarette users versus non-smokers [15].

C-Reactive Protein, CRP: CRP is another biomarker
associated with inflammation and cardiovascular risk
[85]. Plasma CRP levels can reliably predict the prog-
nosis of atherosclerosis, heart failure, and other CVD,
even in otherwise asymptomatic individuals [86]. Plasma
CRP levels have shown to be higher in cigarette smok-
ers versus non-smokers in studies with [60] and with-
out [87] inclusion of oral bacteria measures. Increased
CRP transcription in the liver have been associated with
increased levels of pro-inflammatory cytokines IL-6,
IL-1, and TNF-a, suggesting another cardiovascular risk
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mechanism linked to inflammation and mediated by
smoking-associated changes in the oral microbiome and
elevated cytokine levels [86]. As there has been a long-
standing connection between oral infection and sep-
ticemia, especially in immunocompromised patients
[88, 89], oral bacterial translocation to the liver and
systemic circulation through the gut is another poten-
tial mechanism that deserves future research. CRP can
also indirectly activate TNF-«, reactive oxygen species,
and IL-1f3 in apoptotic pathways leading to a persistent
systemic inflammatory state [86, 90]. Parvimonas was
positively correlated with plasma CRP in subjects with
asymptomatic and symptomatic atherosclerosis in pre-
vious research [70]. In the reviewed studies of smoking
and the oral microbiome, both cigarette and e-cigarette
smoking were associated with an increased RA of Parvi-
monas in subgingival plaque and saliva samples [15, 46].
Collectively, these associations provide evidence that car-
diovascular risk may be mediated through cigarette and
e-cigarette smoking-associated oral microbiome changes
that promote a systemic inflammation driven by LPS and
CRP. Future mechanistic research will elucidate the path-
ways underlying oral microbiome-associated LPS and
CRP responses to cigarette smoking so interventional
research studies can be designed to lower cardiovascular
risk and CVD in these patients.

Cytokines: Oral bacteria that had significant posi-
tive associations with cigarette and e-cigarette smoking
were also associated with several salivary pro-inflam-
matory cytokines. For example Porphyromonas corre-
lated positively with proinflammatory cytokines such
as IL-2, IL-13, IL-8, and IL-18; Lachnoanaerobaculum
with IL-2, IL-4, IL-8, IL-13, IL-10, IL-12p70, and IFN-
y; Parvimonas and Mogibacterium with IL-8 and IL-1£3;
and Fusobacterium with IL-1{3 [46]. Streptococcus and
Rothia (increased in several oral sites of cigarette smok-
ers) and Selenomonas (increased in subgingival plaque
samples of cigarette smokers) also had positive asso-
ciations with pro-inflammatory cytokines IL-1f3, IL-2,
IL-4, IL-6, IL-7, IL-9, IL-12 and IL-17 [91]. The RA of
Johnsonella (increased RA in e-cigarette smokers) was
positively associated with IL-1f levels [46]. Conversely,
Peptostreptococcus (decreased in the whole mouth and
tongue dorsum samples of cigarette smokers versus non-
smokers [38, 41]) was negatively associated with salivary
IL-8 and IL-113 [46]. Finally, two bacteria (Porphyromonas
gingivalis and Fusobacterium nucleatum) that play piv-
otal roles in periodontal disease and act on macrophages,
neutrophils, and monocytes to induce TNF-a, IL-6, and
IL-8 production [92] were increased in smokers’ tongue
dorsum [55] and saliva samples [46, 52, 54], suggest-
ing another link between smoking, periodontal disease
and inflammation-mediated cardiovascular risk. It is
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important to note that some of the bacteria that were
positively associated with smoking and LPS biosynthesis
were not periodontal pathogens but genera that are com-
mon to the healthy oral microbiome habitat (i.e. Strepto-
coccus and Veillonella). This suggests that an imbalance
of “healthy” oral-associated bacteria as a result of smok-
ing may also contribute to increased inflammation in
addition to an increased RA of periodontal pathogens.
Overall, upregulation of common and unique inflamma-
tory cytokines in salivary and gingival crevicular fluids in
both e-cigarette cigarette smokers suggests that smoking
alters the oral microbiome in a manner associated with
increased inflammation that plausibly contributes to the
increased CVD risk in this population.

Amino acids

Increases or decreases in local (i.e. oral) and systemic
amino acid levels through modulation of amino acid
metabolism and biosynthesis pathways is another pos-
sible mechanism in which smoking may influence car-
diovascular risk through oral microbiome-associated
bacteria. Amino acids are the foundational molecules
for protein catabolism and are involved in the biosynthe-
sis of important molecules including hormones, neuro-
transmitters, and coenzymes. Gut microbial metabolites
have been strongly associated with amino acid and lipid
metabolism [93], but relationships between similar oral
bacteria and associated amino acid or lipid metabolic
functions is not as well known.

Tyrosine is derived from phenylalanine and is a nones-
sential amino acid involved in protein synthesis and sig-
nal transduction, while tryptophan is an essential amino
acid also involved in the production and maintenance of
enzymes and neurotransmitters [94]. In many of the eval-
uated studies, smoking was associated with an increase in
the RA of Rothia in saliva, whole mouth, tongue dorsum,
and buccal samples [38, 41, 44, 46, 52, 55]. Associational
analyses demonstrated that oral microbiome communi-
ties with higher levels of Rothia were more likely to dis-
play greater utilization of tyrosine and tryptophan [55],
which could lead to lower levels of these amino acids.
Salivary composition changes and increased incidence
of periodontitis, both associated with smoking, contrib-
ute to an oral environment where gram-positive faculta-
tive anaerobes and amino-acid degrading bacteria like
Prevotella proliferate [95]. Similarly, smoking was associ-
ated with an increased RA of Prevotella across all of the
oral sampling sites (Table 2). Therefore, reductions in
oral amino acid levels via smoking-associated bacterial
changes may occur through known mechanisms such as
changes in oral environment or from other mechanisms
that will be identified as more work is performed on the
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functional implications of oral bacteria alterations in
response to e-cigarette and cigarette smoking.

It is not known if smoking-associated changes in oral
amino acid levels are directly associated with plasma
levels, but connections between oral disorders and
decreased plasma amino acid levels have been reported
[96, 97]. This topic will be of great interest to establishing
connections between the oral microbiome and systemic
disease as many plasma amino acids are associated with
cardiovascular risk and CVD. For example, tryptophan
has been thought to be inversely associated with cardio-
vascular risk, as serum tryptophan levels have predicted
lower risk of CVD events and death related to CVD in
observational studies [98, 99]. Decreased serum tyrosine
levels were also reported in patients with stroke [100]
and hypertension [101], and increased tyrosine intake
was associated with lower peripheral and central blood
pressure [102]. Low plasma serum tryptophan concen-
trations are associated with increased CRP and other
pro-inflammatory cytokines previously discussed, subse-
quently increasing risk for CVD [99, 103]. Therefore, an
increased understanding of pathways linking smoking to
the modulation of amino acid-associated oral microbiota
and the influence these bacteria have on host-microbial
protein—protein interactions and systemic cardiopro-
tective amino acids such as tyrosine or tryptophan is an
exciting avenue for future research.

Lipids

Bacteria of the oral microbiome that are impacted by
smoking may also modulate cardiovascular risk through
associations with lipids implicated in CVD. For exam-
ple, the RA of Streptococcus salivarius was increased in
saliva and tongue dorsum samples of cigarette smok-
ers versus non-smokers [39, 46, 55], and was also posi-
tively associated with oleic acid biosynthesis pathways
in a separate in-vitro study of cultured S. salivarius and
metabolites [104]. Circulating levels of oleic acid, a fatty
acid, are not indicative of dietary intake, and may involve
hepatic synthesis by the enzyme Stearoyl-CoA desatu-
rase-1. Interestingly, circulating levels of oleic acid were
independently associated with increased rates of CVD
and all-cause mortality in a large Multi-Ethnic Study of
Atherosclerosis [105], and oleic acid was also positively
associated with diastolic blood pressure in other research
[106]. The RA of Lactobacillus, which was increased in
whole mouth and subgingival plaque samples of cigarette
smokers [50, 58], was positively associated with plasma
Apolipoprotein B levels in a separate study using lin-
ear regression analysis [70]. Apolipoprotein B is being
increasingly acknowledged as a main contributor to
atherosclerotic CVD [107], and large cohorts studies of
have found oxidized lipids like Apolipoprotein B to be
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associated with coronary artery disease [108]. Finally,
platelet activating factor, a potent phospholipid activator,
has been reported to increase in both tobacco and e-cig-
arette smokers through the release of free radicals, creat-
ing oxidative stress to the intercellular environment [109,
110]. The RA of Prevotella was found to be positively
associated with platelet activating factor in an in vitro
experiment in mice [111], and the RA of Prevotella was
also increased in saliva, whole mouth, and subgingival
plaque samples of cigarette smokers versus non-smok-
ers [34, 37, 38, 40, 46, 58], suggesting a potential link
between smoking, Prevotella and platelet activating fac-
tor. Platelet activating factor has been associated with
worse stroke outcomes through its thrombotic and plate-
let aggregation properties in addition to promoting oxi-
dative stress and systemic inflammation [112]. While all
of these relationships point to a possibility that smoking
may contribute to CVD through modulation of specific
oral microbiome-associated bacteria that have relation-
ships with amino acid and lipid levels, these studies are
associational in nature. Future research confirming the
above relationships and testing associations with plasma
amino acid and lipid levels will inform mechanisms and
pathways potentially underlying the relationship between
smoking and the oral microbiome and their combined
impact on cardiovascular risk.

Nitric oxide production

Nitric oxide is a known vasodilator that decreases car-
diovascular risk through reduction of blood pressure
and inhibition of oxidative stress, platelet aggregation
and leukocyte adhesion [113, 114]. Nitric oxide is pro-
duced endogenously by nitric oxide synthases from
the amino acid L-arginine and molecular oxygen. Since
human cells lack nitrate (NO;) reducing capability, com-
mensal oral bacteria have been identified for their role
in converting dietary NO; to nitrite (NO,), which can
be further reduced to nitric oxide [113, 115]. This alter-
nate nitric oxide production mechanism is important
for maintenance of cardiovascular integrity during peri-
ods of hypoxia. This NO;—NO,-nitric oxide entero-
salivary pathway is an important pathway in which the
oral cavity influences systemic physiological processes
and could prove to be a potential therapeutic target.
Alterations in oral bacterial communities induced by
antibacterial mouthwash use, had been documented
to decrease nitric oxide levels and was associated with
alterations in blood pressure [116, 117]. Furthermore,
studies have shown that dietary nitrate supplementation
using nitrate rich foods (such as green leafy vegetables)
could enhance nitric oxide production. Similar to nitric
oxide, carbon monoxide is a gas that possesses vasodila-
tory properties, has documented interactions with the

Page 21 of 26

microbiome (particularly the gut microbiome), and its
levels are potentially influenced by dietary consumption
including fiber, leafy greens, carbohydrates and proteins
[118-120]. Periodontal disease-associated alterations in
oral bacteria and consequential impacts of nitric oxide
and cardiovascular risk through blood pressure modula-
tion have also been previously reviewed in the literature
[17]. Nevertheless, these relationships have not been as
thoroughly explored for smoking-associated modulation
of oral bacteria or if other small gas production (like car-
bon monoxide) is modulated by smoking and/or the oral
microbiome and how these associations might impact
subsequent cardiovascular risk. Multidirectional interac-
tions between vasodilatory gas and associated signaling
pathways with the microbiome and host are exciting ave-
nues for future research that potentially holds promising
therapeutic benefits for cardiovascular risk and disease.
In the reviewed studies, there were significant asso-
ciations between smoking and nitrate-reducing bacteria
(i.e., Rothia and Neisseria [24, 121]) and bacteria that are
inversely associated with nitrate and nitric oxide (Prevo-
tella and Veillonella [24, 121]). Interestingly, the two
major nitrate-reducing bacteria in the oral microbiome
had disparate RA associations with smoking. For exam-
ple, there was agreement across several studies that the
RA of Neisseria was decreased in saliva, whole mouth,
tongue dorsum, and subgingival plaque samples [34, 36—
38, 41, 43, 47, 50, 52, 53, 55, 58], while the RA of Rothia
increased in whole mouth, saliva, tongue dorsum and
subgingival plaque samples of cigarette and e-cigarette
smokers versus non-smokers [36, 38, 41, 44, 46, 52, 55,
58]. Whether the smoking-associated increase in Rothia
RA is a compensatory mechanism in response to smok-
ing-induced decreased nitric oxide levels resulting from
oral environment changes (acidity, salivary production
etc.) and reduced Neisseria levels or is a completely sepa-
rate mechanism is unknown. Future research with direct
nitric oxide measures in response to smoking-associated
changes in oral microbiome RA of nitrate-reducing bac-
teria will continue to inform these mechanisms and
pathways. Unlike associations between nitrate-reducing
bacteria and smoking, there was equally as strong but
consistent evidence that smoking was associated with an
increased RA of bacteria that possess negative relation-
ships with nitric oxide production and availability. For
example, the RA of Prevotella was increased in saliva,
whole mouth, tongue dorsum and buccal samples [34,
36-40, 44, 46, 52, 58], and Veillonella increased in saliva,
whole mouth, tongue dorsum, buccal, and subgingival
plaque samples of e-cigarette and cigarette smokers ver-
sus non-smokers [15, 36-38, 41, 43, 44, 46, 48, 50, 55,
58]. A previous study evaluating the RA of Prevotella
and Veillonella after nitrate administration reported a
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decrease in both Prevotella and Veillonella after 10 days
of dietary supplementation with nitrate-rich beetroot
juice [122]. Nitrate supplementation also lowered blood
pressure in two studies using dietary nitrate interventions
[113, 123], and the one study that measured oral micro-
biome responses to nitrate supplementation reported
greater plasma NO, levels were associated with higher
RA of Rothia and Neisseria and lower RA of Prevotella
and Veillonella [113]. Taken together, this evidence indi-
cates smoking-mediated responses of nitric oxide-asso-
ciated oral bacteria plausibly impact cardiovascular risk,
and dietary nitrate supplementation may be a way to
mitigate progression of CVD through modulation of oral
bacteria.

Conclusions and future directions

This review synthesized the literature on bacteria associ-
ated with smoking and the oral microbiome, and the oral
microbiome and cardiovascular risk and disease. The goal
of this review was to find shared bacterial taxa between
smoking and CVD, respectively, to inform future
research on the role of the oral microbiome in smoking-
associated cardiovascular risk and disease. We identified
several shared bacteria in the oral microbiome that are
associated with both smoking and cardiovascular risk,
and discussed potential mechanisms that may underlie
these correlations including inflammation, amino acid
and lipid metabolism modulation and influence on nitric
oxide production and availability. Nevertheless, some
limitations of this review must be discussed. The metab-
olites and metabolic genes identified in the reviewed
manuscripts were only measured directly or indirectly
in the oral cavity. Future research studying associations
between oral and plasma metabolite or cytokine levels in
response to cigarette and e-cigarette smoking will con-
tinue to inform how smoking-mediated alterations in the
compositional and functional profiles of the microbial
environment can impact systemic physiologic processes
and cardiovascular risk. Studies in our review did not
provide dietary data for us to determine if diet-related
byproducts or metabolites directly or indirectly impacted
by smoking affect the structure and function of the oral
microbiome.

Many of the studies reviewed in this manuscript used
different methods for DNA extraction and sequencing,
which have been known to impact microbiome results
[124], and may account for some of the variability in oral
microbiome bacteria association with cigarette or e-ciga-
rette smoking in the synthesized literature. Additionally,
many of the studies listed in Tables 1 and 3 used differ-
ent V regions for amplicon sequencing, which may also
impact annotation accuracy and the RA of oral micro-
biome-associated taxa [125]. Therefore, consideration of
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the extraction and sequencing methodology is important
in the interpretation of the studies reviewed in this man-
uscript. Smoking was not the main outcome measure in
all of the reviewed studies, and therefore not all studies
may have been powered to evaluate smoking-associated
oral microbiome changes. Furthermore, the percentage
of current and past smokers were not reported in all of
the studies that evaluated relationships between the oral
microbiome and cardiovascular-associated diseases.
Adequately powered studies evaluating oral microbiome
and smoking associations, while controlling for previ-
ous or current smoking status in studies exploring the
relationship of the oral microbiome to CVD will further
identify mechanisms in which the oral microbiome medi-
ates associations between smoking and CVD. Only two
published papers included e-cigarettes in studies evalu-
ating the impact of smoking on the oral microbiome.
Although both presented a clear synopsis of multiple
pathways in associations between e-cigarette smoking
and both bacterial and functional responses of the oral
microbiome community, they surveyed different oral
microbiome habitats and therefore results could not be
accurately synthesized. Future work to confirm these
findings and test mechanisms and pathways will be of
benefit to future advancement in the field.

Multi-modal studies linking metagenomics, metatran-
scriptomics and metabolomics will allow a comprehen-
sive survey of the metabolic and functional cardiovascular
implications of smoking on the oral microbiome, and
will be of great interest in future research. Additionally,
research integrating the multi-modal oral metagenomics
data with salivary and plasma biomarkers (e.g. cytokines
or cortisol) will inform some of the hypothesized inflam-
matory mechanisms connecting smoking-associated oral
microbiome changes to CVD. Specific pathways under-
lying metabolite production, inflammation and com-
munication with the host have been reported in the gut
microbiome. Nevertheless, the oral environment is very
different from the gut microbiome and therefore puta-
tive mechanisms surrounding gut microbiome bacteria
may not necessarily replicate in the oral cavity. There-
fore, future work sampling both oral and gut microbiome
bacterial communities can identify shared and unique
mechanistic responses to smoking and CVD, and poten-
tial implications for human health. As multiple species
belong to the same taxonomic level of genus can have
disparate functions in the oral microbiome, sequencing
methodologies that have the ability to annotate bacteria
to the species level will provide more granular taxonomic
annotation and precise functional assignment.

Another important consideration in future research
investigating relationships between smoking, the oral
microbiome and CVD is to incorporate biobehavioral
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methodologies that consider environmental, health
behavior and physiologic/biologic markers of health in
addition to smoking such as nutritional intake, exercise,
or heart rate variability. Incorporating factors that quan-
tify health disparities and socioeconomic indicators are
also needed in addition to recruiting individuals from
diverse ethnicities and backgrounds in oral microbiome
research, as this data is limited. An exciting potential
biomarker that is emerging in the quantification of envi-
ronmental and smoking-associated exposure is using
epigenetic markers, such as methylation levels. For exam-
ple, low methylation in the aryl-hydrocarbon receptor
repressor gene at cg05575921 is strongly associated with
smoking [126, 127], and may be a novel way to quantify
smoking exposure and smoking-associated risk in addi-
tion to traditional measures such as subjective pack-years
or cotinine levels. As the environment is a known con-
tributor to oral microbiome composition, omitting these
biobehavioral measures will prevent the field from truly
advancing in the understanding of how the oral micro-
biome influences human disease in response to insults
such as smoking across populations. Therefore, interdis-
ciplinary teams with expertise in clinical/periodontology,
microbial, nutritional and biobehavioral factors will cata-
lyze studies powered to evaluate these relevant moderat-
ing factors, which will accelerate the field’s mechanistic
understanding of relationships between smoking, the oral
microbiome and CVD. Our hope is that by presenting a
synthesis of shared associations between smoking and
the oral microbiome, and the oral microbiome and CVD,
we will stimulate future high-quality research evaluating
these relationships. In the future, the potential for disease
risk characterization using personalized oral microbiome
strategies is feasible with increased understanding of how
differences in oral microbiome communities can impact
both local and systemic body systems. Interdisciplinary
research incorporating cutting edge technology, paired
with consideration of patient-centric factors will not only
advance the current understanding of pathways linking
the oral microbiome to human physiology, but also stim-
ulate the development of non-pharmacological inter-
ventions that will mitigate or prevent the progression of
cardiovascular risk to CVD and benefit human health.
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