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Abstract 

Background: COVID-19 infections could be complicated by acute respiratory distress syndrome (ARDS), increasing 
mortality risk. We sought to assess the methylome of peripheral blood mononuclear cells in COVID-19 with ARDS.

Methods: We recruited 100 COVID-19 patients with ARDS under mechanical ventilation and 33 non-COVID-19 con-
trols between April and July 2020. COVID-19 patients were followed at four time points for 60 days. DNA methylation 
and immune cell populations were measured at each time point. A multivariate cox proportional risk regression analy-
sis was conducted to identify predictive signatures according to survival.

Results: The comparison of COVID-19 to controls at inclusion revealed the presence of a 14.4% difference in pro-
moter-associated CpGs in genes that control immune-related pathways such as interferon-gamma and interferon-
alpha responses. On day 60, 24% of patients died. The inter-comparison of baseline DNA methylation to the last 
recorded time point in both COVID-19 groups or the intra-comparison between inclusion and the end of follow-up in 
every group showed that most changes occurred as the disease progressed, mainly in the AIM gene, which is associ-
ated with an intensified immune response in those who recovered. The multivariate Cox proportional risk regression 
analysis showed that higher methylation of the “Apoptotic execution Pathway” genes (ROC1, ZNF789, and H1F0) at 
inclusion increases mortality risk by over twofold.

Conclusion: We observed an epigenetic signature of immune-related genes in COVID-19 patients with ARDS. Fur-
ther, Hypermethylation of the apoptotic execution pathway genes predicts the outcome.

Trial registration: IMRPOVIE study, NCT04473131.
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Background
COVID-19 is a novel coronavirus first discovered in 
Wuhan, China, in late 2019 and declared a pandemic by 
the World Health Organization (WHO) in March 2020 
[1]. Two years later, several variants were detected, and 
over 5 million deaths were recorded [2].

Epigenetics refers to the study of gene activity regula-
tion and expression changes that are not dependent on 
the DNA sequence [3]. DNA methylation, one of the hall-
marks of epigenetics, involves the covalent addition of a 
methyl group to the 5′-carbon of a cytosine ring. Meth-
ylation is inversely correlated with gene expression [4]. 
For instance, hypermethylation is often associated with 
the downregulation of genes, recently demonstrated in 
the ACE2 gene [5]. Basic embryological and early devel-
opmental processes are controlled by DNA methylation 
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in mammalians [6]. Further, DNA methylation is also 
involved in disease and upon exposure to environmental 
factors [7].

Patients with severe COVID-19 infection often suffer 
from respiratory failure and may require mechanical ven-
tilation, associated with a mortality rate of up to 50% [8, 
9]. Several predictors of outcomes in critically ill patients 
have already been identified. They include primarily clini-
cal variables, biochemical markers, and comorbidities 
[10]. DNA methylation of host cells can be altered dur-
ing infections, which modulates the immune response 
[11]. It has been recently shown that DNA methylation 
regulates the activity of the immune system in COVID-
19 infections and is associated with clinical outcomes, 
such as the severity of the disease, its association with 
respiratory failure, and ICU admission [12–14]. However, 
data regarding death or recovery in COVID-19 patients is 
lacking. In this study, we report the presence of immune-
related differentially methylated genes that predict sur-
vival in critically ill COVID-19 patients.

Methods
Participants
As part of the “Immune Profiling of COVID19-patients 
Admitted to ICU study (IMPROVISE) (clinicaltrial.gov 
identifier NCT04473131, start date 27th of April 2020), 
we recruited consecutively 100 critically ill COVID-
19 patients with ARDS under mechanical ventilation 
(WHO clinical progression scale 7–9 [15]) at the inten-
sive care unit (ICU) and 33 non-COVID participants 
from the blood donor unit at Hamad Medical Corpora-
tion (HMC), from April to July 2020. Detailed inclusion 
and exclusion criteria of participants are included in the 
Appendix. COVID-19 patients were included in the study 
upon their admission to the ICU (T1), then followed at 
four time points (T): day 7 (T2), day 14 (T3), day 21 (T4), 
and day 60 (post-T4), which is the recommended meas-
ure of patient survival according to the WHO Working 
Group on the common outcome measure set for COVID-
19 clinical research [15]. After inclusion at T1, patients 
would progressively move to the next time point unless 
they die or recover, in which case their follow-up ceases. 
Recovery was defined as meeting the WHO clinical crite-
ria of less or equal to 5, discontinuing mechanical ventila-
tion, and discharge from the ICU to the COVID-19 ward. 
Blood samples were collected for epigenetic analysis at 
each time point.

PBMCs isolation and DNA extraction
Seventeen ml of EDTA-coated blood was withdrawn 
from each participant. Peripheral blood mononuclear 
cells (PBMCs) were isolated by density gradient centrif-
ugation using Ficoll-Paque Premium (GE Healthcare, 

Sweden) and SepMate tubes (STEMCELL technologies, 
USA). DNA from PBMCs was extracted (Allprep DNA/
RNA mini kit, Qiagen, Germany) and then sequenced 
at the genomics core at WCM-Q.

EPIC850 methylation quality control, data filtering, 
and normalization
To determine the DNA methylation status of study 
participants, we used Infinium MethylationEPIC 850 
Array (~ 850,000 CpG sites) and its associated mani-
fest file IlluminaHumanMethylationEPICanno.ilm10b4.
hg19 with CpG sites annotation [16, 17]. Two hundred 
eighty-eight samples were collected: 100 from COVID-
19 patients and 33 from controls at inclusion, and 155 
for COVID-19 patients at different time points. We 
obtained DNA methylation beta values from the raw 
Intensity Data (IDAT) files using the minfi package in 
R 3.6.3 [18]. We then performed quality control (QC) 
by first calculating mean detection p-values across 
all samples and probes to identify failed samples and 
probes. All 288 samples were kept in the analysis. 
Thirty-one thousand seven hundred seventy bad-qual-
ity probes were removed. We then applied multiple fil-
tering steps, including the removal of probes with SNPs 
using dropLociWithSnps function from minfi pack-
age [18] (26958 removed), cross-reactive probes were 
removed using xreactive_probes in package maxprobes 
(40148 removed) [19, 20], and finally probes on X and 
Y chromosomes (16109 removed). The final analysis set 
contained 288 samples and 750874 probes. After data 
filtering, we performed normalization using the pre-
processQuantile function in the minfi package [18]. We 
then used the prcomp function to perform the princi-
pal component analysis (PCA).

Estimation of the immune cells’ populations
FlowSorted Blood EPIC package in R [21] was used to 
estimate cell-type composition from normalized meth-
ylation data, including T lymphocytes (CD4 + and 
CD8 +), B cells (CD19 +), and monocytes (CD14 +), NK 
cells (CD56 +), and neutrophils. An accurate model to 
determine differences between immune cell proportions 
was determined based on the Akaike information crite-
rion (AIC) and p-value using lm and glance functions in 
broom package (https:// github. com/ tidym odels/ broom) 
in R. Differences between groups COVID-19/controls 
or recovery/death were then determined for each com-
parison using the most appropriate model among several 
tested ones that include immune cell proportions and 
clinical covariates that are statistically significant among 
studied groups.

https://github.com/tidymodels/broom
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Methylation analysis and group comparisons
The getM function in the minfi package was used to 
convert row beta values to log-transformed M values 
used in downstream analysis. To estimate unknown 
variation within methylation data, we used the singu-
lar value approximation method from the sva package 
in R. We did not detect any novel variation in our sam-
ple [22]. We then used known covariates from the data 
and constructed different linear models to identify dif-
ferentially methylated CpGs between studied groups. 
Models were then compared using the limma pack-
age function in R and AIC statistics. The model with 
the highest number of CpGs and the lowest AIC was 
selected as the best and used in the subsequent analy-
sis. Multiple testing corrections and false discovery 
rates were calculated using the Benjamini–Hochberg 
procedure [23]. We also performed differentially meth-
ylated regions (DMRs) analysis in which we considered 
regions with five or more CpGs using the appropriate 
model established for CpGs, and the DMRcate pack-
age (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ 
html/ DMRca te. html) in R. Pathway enrichment analy-
sis for all significant differentially methylated regions 
for all comparisons in this study was performed using 
50 Human Hallmark pathways from MSigDB database 
[24], and pathEnrich function from splineTimeR R [25].

We first assessed methylation changes between 
COVID-19 patients and controls at the study’s inclu-
sion, then looked at the differences between COVID-
19 patients who recovered and those who died. Three 
different methods were applied for the latter. First, we 
looked for differences between both COVID-19 groups 
by comparing the methylation profile at inclusion to 
the last recorded methylation profile before “death” or 
“recovery.” Further, we compared COVID-19 patients 
who died to those who recovered at their baseline 
level than at discharge. Finally, we assessed differential 
methylation over time by testing the time-course differ-
ences between death and recovery. Since all compari-
sons were among the same samples at different time 
points, we only used the biological replicate as a covari-
ate. To do this, we used the splineDiffExprs function in 
the splineTimeR package in R [25]. SplineDiffExprs fits 
the splines function for each phenotypic group across 
time points and replicates and compares their coef-
ficient values. This allows us to detect differences over 
four time points for patients who recovered and those 
who died for immune cell proportions and methylation 
changes. The splinePlot function from the splineTimeR 
package was used to visualize the time-dependent 
behavior of CpGs in two phenotypic groups.

Prediction of the outcome
The univariate Cox proportional hazard analysis of the 
CpGs was performed to identify methylation sites rele-
vant to patient survival. We considered only differentially 
methylated CpGs between patients who recovered and 
those who died using the abovementioned three com-
parisons. Analysis was performed using all samples at 
inclusion. We first transformed methylation data to the 
standard normal distribution using Z-score. Then Cox 
survival model was fitted independently for each gene 
using RegParallel R package [26] using hospital stay as 
a time variable. The significance was determined using 
a log-rank test, and CpGs with p < 0.001 were consid-
ered significant. The patients were divided into high- or 
low-methylation groups using the median methylation 
Z-score as the cutoff point. Subsequently, the Kaplan–
Meier (K-M) analysis was used to estimate the differences 
in survival between the two groups for the genes signifi-
cant by the cox proportional hazardous model using the 
survival package in R (https:// github. com/ thern eau/ survi 
val). Finally, we performed a Receiver Operating Char-
acteristic (ROC) analysis of a logistic regression model 
where methylation was used to predict survival using 
the pROC package [27]. The area under the ROC curve 
(AUC) was calculated to compare the sensitivity and 
specificity of survival prediction.

Results
Baseline characteristics of the participants at admission
One hundred thirty-three participants were included in 
the study, 100 COVID-19 participants and 33 volunteers 
at T1 (Fig. 1). COVID-19 patients were significantly older 
than controls and more likely to be South Asians (Table 1); 
hence, ethnicity and age were tested in the model used to 
compare both groups. Forty-one % of COVID-19 patients 
had diabetes, and 43% had hypertension. Nosocomial 
infections occurred in 55% of patients, and 30% received 
convalescent plasma therapy.

Methylation differences between COVID‑19 patients 
and controls at admission
We first performed PCA analysis to determine if popula-
tion stratification is present in our dataset. Our principal 
component 1 (PC1) explained 13.5% of the variation. In 
comparison, PCA 2 explained 9.3% of the variation, and 
no population structuring was observed in relation to 
COVID-19 or control participants or ethnicity (Additional 
file 11: Figure S1, only COVID-19/controls PCA is shown).

The proportion of immune cells is frequently variable 
in COVID-19 [28]; thus, we performed the deconvolution 

https://bioconductor.org/packages/release/bioc/html/DMRcate.html
https://bioconductor.org/packages/release/bioc/html/DMRcate.html
https://github.com/therneau/survival
https://github.com/therneau/survival
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method and estimated the proportion of immune cells 
in every sample based on filtered and normalized data. 
Using a linear model, we then looked for cell propor-
tions that significantly differed between groups. The best 
model (model 4: cell proportions ~ COVID-19/controls 
without the covariates) based on AIC was used (Addi-
tional file 1: Table S1). CD8 T cells, CD4 T cells, and B 
cells significantly differed between COVID-19 patients 
and controls: CD8 and CD4 T cells were significantly 
lower (FDR p < 0.05), and B cells were significantly higher 
(FDR p < 0.05) in COVID-19 patients compared to con-
trols (Fig.  2A). These observations are consistent with 
previous observations [29].

To examine if changes in CpG methylation levels were 
associated with COVID-19 infection, we first established 
the best linear model for our analysis by testing the clini-
cal covariates and the immune cell proportions. A total 
of 11 different models were tested (Additional file  11: 
Figure S2A), and the three immune cell types (CD8 T 
cells, CD4 T cells, and B cells) proportions contributed 
to the most significant number of CpGs based on AIC 
criterium; thus, they were included in the final model for 
differential methylation analysis (model F: CpG meth-
ylation ~ COVID-19/controls + the proportion of CD8 
T cells/CD4 T cells/B cells). We detected 33.3% dif-
ferentially methylated CpGs in COVID-19 patients in 

comparison to controls (a total of 133335 out of 750874; 
71527 hypomethylated and 61808 hypermethylated, FDR, 
p < 0.05) (Fig. 3, Additional file 11: Figure S3, Additional 
file  2: Table  S2A and B). Gene-associated differentially 
methylated CpGs represent 0.7% (1054/133335) of the 
sites, while promoter-associated CpGs were more abun-
dant with 14.4% (19238/133335), indicating a potential 
role in gene regulation. Observed methylation changes 
were associated with 20822 unique genes.

To determine analysis reproducibility, we com-
pared our observations with previously published data 
(Fig. 4). First, we investigated if 44 CpG sites that previ-
ously showed great accuracy in predicting COVID-19 
severity [13] differed between COVID-19 and controls. 
Nine CpGs representing six genes including IFI44L 
(cg13452062), DDO (cg02872426), SGMS1 (cg10188795), 
CXCR2 (cg19225688), CCDC6 (cg04736673), 
CDC42BPB (cg02003183), cg06601098, cg11671940, and 
cg18523915 were also differentially methylated in our 
study. In addition, we have identified differentially meth-
ylated CpGs in the same genes, but not in the same sites 
as reported in the study from Castro de Moura et al. [13] 
and those included: two CpG in AIM2 and HLA-C genes, 
and one CpG site in each of the following genes: CELF4, 
CEP85L, KIFAP3, LCE1C, LHX6, MOBKL2A, PM20D1, 

Fig. 1 Flow chart of the study
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Table 1 Baseline characteristics of COVID-19 patients and controls

Data are represented as numbers (%) per each category for categorical variables and as median (IQR) for continuous variables

ECMO extracorporeal membrane oxygenation, LoS length of stay, MV mechanical ventilation
a Median (IQR); n (%)
b Wilcoxon rank-sum test; Fisher’s exact test; Pearson’s Chi-squared test

P-values were calculated with Fisher exact test or Wilcoxon rank-sum test

Variable COVID‑19 N =  100a Controls N =  33a p‑valub

Age 49 (42, 59) 40 (35, 45)  < 0.001

Gender (male) 95 (95%) 33 (100%) 0.3

BMI (kg/m2) 27.2 (24.6, 31.0) 29.3 (26.4, 31.2) 0.12

Ethnicity

 East Africa 0 (0%) 1 (3.0%)  < 0.001

 Middle East 5 (5.0%) 11 (33%)

 North Africa 1 (1.0%) 0 (0%)

 Northeast Africa 5 (5.0%) 4 (12%)

 South Asia 78 (78%) 15 (45%)

 Southeast Asia 9 (9.0%) 2 (6.1%)

 Western Asia 2 (2.0%) 0 (0%)

 Duration of MV (days) 8 (4, 19) –

 ICU LoS (days) 15 (10, 27) –

 Hospital LoS (days) 27 (20, 44) –

 ECMO 12 (12%) –

 Nosocomial infections 55 (55%) –

 Convalescent plasma therapy 30 (30%) –

Diabetes status

 Non diabetes 55 (55%) – –

 Pre-diabetes 4 (4.0%) –

 Diabetes 41 (41%) –

 Hypertension 43 (43%) – –

 Coronary artery disease 6 (6.0%) – –

 Chronic kidney failure 11 (11%) – –

 Chronic heart failure 2 (2.0%) – –

Fig. 2 A The proportion of immune cells detected in controls and COVID-19 participants. The X-axis represents different cell types. The Y-axis 
represents the proportion of cell types derived from the deconvolution methods. The orange color represents COVID-19-patients, while the blue 
color represents controls. B. The proportion of immune cells detected at baseline and the final time point. Baseline-recovered, Baseline-died, 
recovered, and died are four different categories by which samples were grouped and compared for immune cell proportion



Page 6 of 18Bradic et al. Journal of Translational Medicine          (2022) 20:526 

PM20D1, SORCS1, UBAP2L, UBE2W, VIM, ZNF385D 
(Additional file 2: Table S2A and B).

Further, we examined if any previously reported 
COVID-19-associated genes had significant CpG meth-
ylation changes. Among 40 genes reported by Castro de 
Moura et al. [13] and replicated in other studies [30–35], 
we detected 220 CpGs from 39 genes in COVID-19 
patients, 107 hyper-methylated and 113 hypomethylated 
(Figs. 3, 4). These included immune response, virus entry, 
viral replication, blood clotting, protein binding in lung 
cells, ubiquitin ligase, and ACE2-related genes (Addi-
tional file  2: Table  S2C and D). We further performed 
pathway enrichment analysis to test the relationship 
between significantly methylated CpGs. We found sig-
nificant enrichment of immune-related pathways, includ-
ing interferon-gamma and interferon-alpha response, 
early estrogen response, apical surface, and UV response 
dn. These pathways were hypomethylated in COVID-19 

patients, suggesting potentially induced expression of 
many immune-related genes. The mitotic spindle path-
way was the only hypermethylated in COVID-19 patients 
(Table 2).

We also performed a differentially methylated region 
(DMR) analysis using the same model as for CpGs, in 
which we identified 4788 hypermethylated in COVID-19 
patients containing clusters of  ≥ 5 CpGs spanning 5723 
genes (FDR p < 0.05; Additional file 3: Table S3). A total of 
4347 hypo-methylated regions covering 5072 genes were 
also detected, indicating that DMRs spanned more than 
one gene. Pathway enrichment analysis was performed to 
determine relationships between genes detected by DMR 
analysis. We found significant enrichment of interferon-
alpha response and Kras signaling pathways hypometh-
ylated in COVID-19. In contrast, the mitotic spindle 
pathway was hyper-methylated, demonstrating similarity 
with individual CpG analysis (Table 3).
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Fig. 3 Differentially methylated CpGs between COVID-19 patients and controls. Heatmap represents significant changes in CpGs from 36 out of 40 
genes previously associated with COVID-19(13, 30–35). Heatmap represents methylation beta values (b-values) which were Z-score transformed (CD8 
T, CD4 T, and B cell covariates were removed for visualization purposes.). Euclidean clustering distance and Ward.D2 clustering methods were used. 
Details on those genes and CpGs are shown in Additional file 2: Table S2C and D
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Methylation changes between the dead and recovered 
COVID‑19 patients
Three COVID-19 patients died at T2, five at T3, four at 
T4, and twelve at post-T4, representing 24 dead patients 
among the 100 initially included (24%) in 60  days. 
Patients who died were, on average, 11 years older than 
the ones who recovered (Table  4). As expected, they 
had more nosocomial infections and were more likely to 
receive extracorporeal membrane oxygenation (ECMO) 
(p < 0.05 for all). Interestingly, they did not suffer from 
more cardiovascular disease.

Fig. 4 UpSet plot to summarize replication of our results from previous studies. UpSet panels summarize the differentially methylated CpGs 
that overlap our analysis and published COVID-19 studies. The bottom left horizontal bar graph labeled CpGs per group shows each panel’s total 
number of differentially methylated CpGs per group. The dots in each panel’s matrix represent unique and overlapping differentially methylated 
CpGs. Connected dots designate a particular intersection between different groups of CpGs, either by intersecting with published studies or 
within our research. The top bar graph in each panel recapitulates the number of differentially methylated CpGs for each unique or overlapping 
combination. A. Hypermethylated CpGs, B. Hypomethylated CpGs

Table 2 Summary of differentially methylated pathways detected between COVID-19 patients and controls based on CpG sites

Columns represent the following variables: N number of genes in the gene set, DE number of differentially methylated genes, P.DE p-value for over-representation of 
the gene set, FDR false discovery rate (p < 0.05)

Hallmark pathway N DE P.DE FDR Changes in CpGs 
(COVID‑19 vs. 
controls)

Interferon gamma response 189 175 0.00 0.00 hypomethylation

Estrogen response early 189 174 0.00 0.02 hypomethylation

Apical surface 39 39 0.00 0.02 hypomethylation

Interferon alpha response 93 87 0.00 0.02 hypomethylation

Uv response dn 140 131.33 0.00 0.02 hypomethylation

Mitotic spindle 188 175 0.000 0.001 hypomethylation

Table 3 Summary of pathways detected between COVID-19 
patients and controls based on the differentially methylated 
region (DMR) analysis

Columns represent the following variables: N number of genes in the gene 
set. DE number of differentially methylated genes, P.DE p-value for over-
representation of the gene set, FDR false discovery rate (p < 0.05). Analyzed 
regions are based on five or more CpGs

Hallmark pathway N DE P.DE FDR Changes in DMRs 
(COVID‑19 vs 
controls)

Interferon alpha response 97 34 0.00 0.00 Hypomethylation

Kras signaling up 200 55 0.00 0.03 Hypomethylation

Mitotic spindle 199 68 0.00 0.00 Hypermethylation
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Inter‑comparison of DNA methylation changes 
between baseline and the last recorded time point 
in COVID‑19 groups
We compared the immune cell content and methylation 
profile at inclusion to the last recorded methylation pro-
file before death or recovery. In recovery, we detected a 
higher proportion of CD4 T cells and a lower proportion 
of neutrophils in comparison to their baseline immune 
cell content (adjusted p < 0.05 for both) (Additional file 4: 
Table  S4A, Fig.  2B). Further, we identified 11989 hypo-
methylated and 22082 hypermethylated CpGs (Fig.  5A, 
Additional file 4: Table S4B) entailing multiple pathways. 
Hypermethylated CpGs were enriched in the inflamma-
tory response, interferon-alpha response, heme metabo-
lism, TNF-alfa signaling via NF-kB, estrogen response 
early, Kras signaling up, uv response dn, il2 stat5 signal-
ing, mitotic spindle, interferon-gamma response, il6 jak 
stat3 signaling, apical junction, and myogenesis path-
way (Additional file  4: Table  S4C). Hypomethylated 
CpGs were enriched in allograft rejection, mitotic spin-
dle, and myc targets v1 pathways. In patients who died, 

the proportion of immune cells between baseline and 
the last recorded time point before death did not differ 
(Additional file 4: Table S4D, Fig. 3). Surprisingly, those 
patients expressed a smaller number of differential meth-
ylation changes than their baseline value compared to 
changes observed in those who recovered. We detected 
3150 hypomethylated and 3652 hypermethylated CpGs 
(Fig. 5B, Additional file 4: Table S4E). There were no sig-
nificant changes in pathways related to these methylation 
changes after the false discovery rate (FDR) correction. 
(Additional file 4: Table S4F).

We also performed a DMR analysis in which we con-
sidered regions with five or more CpGs. There were 310 
hypermethylated regions relative to 363 genes and 82 
hypomethylated regions relative to 102 genes in recov-
ered patients (Additional file  4: Table  S4G). There were 
no significant pathways after FDR correction. However, 
some of the same pathways related to immunity that were 
significant in individual CpGs analysis also showed nomi-
nal significance for DMR (Additional file  4: Table  S4H). 
We also tested if any DMRs were significantly associated 

Table 4 Comparison between COVID-19 patients who survived vs. those who died

Data are represented as numbers (%) per each category for categorical variables and as median (Interquartile range, IQR) for continuous variables

ECMO extracorporeal membrane oxygenation, LoS length of stay, MV mechanical ventilation
a Median (IQR); n (%)
b Wilcoxon rank-sum test; Fisher’s exact test; Pearson’s Chi-squared test

P-values were calculated with Fisher exact test or Wilcoxon rank-sum test

Variable COVID‑19, died N =  24a COVID‑19, survived N =  76a p‑valub

Age 58 (52, 63) 47 (41, 56)  < 0.001

Gender (male) 24 (100%) 70 (92%) 0.023

BMI (kg/m2) 25.7 (24.5, 29.7) 27.5 (25.4, 32.1) 0.072

Ethnicity

 Middle East 1 (4.1%) 2 (2.6%) 0.14

 North Africa 0 (0%) 1 (1.3%)

 Northeast Africa 2 (8.2%) 4 (5.2%)

 South Asia 18 (75%) 63 (82.8%)

 Southeast Asia 2 (8.2%) 5 (6.5%)

 Western Asia 1 (4.1%) 1 (1.3%)

 Duration of MV (days) 25 (19, 41) 8 (5, 18)  < 0.001

 ICU LoS (days) 26 (20, 48) 15 (11, 29)  < 0.001

 ECMO 7 (29%) 10 (13%) 0.001

 Nosocomial infections 22 (92%) 42 (55.2%)  < 0.001

 Convalescent plasma therapy 9 (37.5%) 25 (32.8%) 0.4

Diabetes status

 No diabetes 15 (62.5%) 41 (53.9%) 0.14

 Pre-diabetes 1 (4.1%) 4 (5.2%)

 Diabetes 8 (33.4%) 31 (40.7%)

 Hypertension 11 (46%) 31 (40.7%) 0.5

 Coronary artery disease 1 (4.1%) 4 (6.2%) 0.8

 Chronic kidney failure 3 (12.5%) 8 (10.5%) 0.3

 Chronic heart failure 1 (4.1%) 3 (3.9%) 0.9
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with death. We identified 35 regions encompassing 45 
genes that were hypermethylated in patients who died. 
Only three regions were hypomethylated in the same 
comparison, and they spanned four genes (i.e., GNAS, 
MEST, RP1-309F20.3) (Additional file 4: Table S4I). Nev-
ertheless, we did not detect significant pathways related 
to those DMR changes (Additional file 4: Table S4J).

Intra‑comparison of DNA methylation differences 
between both groups at inclusion and the end of follow‑up
We compared COVID-19 patients who died to those 
who recovered at their baseline level. We first tested the 

models, including different combinations of the clini-
cal covariates, to determine the optimal model to com-
pare immune cell proportion differences. The model 
without covariates (mod7; cell proportions ~ Dead/
Recovered) was selected as the best model based on 
this criterium and was used in data analysis (Additional 
file 5: Table S5A). We did not identify significant differ-
ences between “dead” and “recovered” patients at base-
line or last time point for immune cells (Additional file 5: 
Table  S5B, C). We next established the best model for 
differential methylation comparisons of these groups by 
testing different covariates. The model “none” (without 

Fig. 5 Differential methylation between dead and recovered COVID-19 patients. A. Volcano plot showing differences between COVID-19 recovered 
patients and their baseline. B. Volcano plot showing differences between COVID-19 dead patients and their baseline, C. Volcano plot showing 
differences between dead and recovered patients at their latest time point. Volcano plots in A, B, and C show differential CpGs methylation 
over 750874 CpG positions. The red line designates the genome-wide significance threshold of a Benjamini–Hochberg corrected p < 0.05. 
Green dots represent significantly different CpGs from the previously reported genes associated with COVID-19 [13, 30–35]. Red dots represent 
hypermethylated CpGs; blue plots represent hypomethylated CpGs. Grey dots represent non-significant CpGs

Fig. 6 Heatmap representing significant changes in CpGs from genes previously associated with COVID-19 [13]. Heatmap represents methylation 
beta values which were Z-score transformed (the euclidean clustering distance and Ward.D2 clustering methods were used). Details on these genes 
and CpGs are shown in Additional file 4: Table S4
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any covariates) fitted most of the CpGs based on both 
criteria; thus, this model was selected for subsequent 
analysis. (Additional file 11: Figure S2B).

CpG sites or regions suggest that the methylation 
changes at baseline (baseline died vs. baseline recovered) 
did not significantly affect the outcome. However, com-
paring the same patients at their last time point resulted 
in 1478 hypomethylated and 1557 hypermethylated 
CpGs in patients who died compared to those who recov-
ered (Fig. 5C, Additional file 6: Table S6A). No significant 
pathways were detected for this comparison. Further-
more, we identified hypermethylated DMRs in 156 
regions near 190 genes and 102 hypomethylated regions 
in 133 genes. (Additional file 6: Table S6B). There were no 
significant pathways based on genes in DMR pathways. 
We also did not find any immune cell proportion differ-
ences in this comparison.

Compared to the published study of Castro de Moura 
et  al. [13], which predicts 44 CpGs for severe COVID-
19 cases, we have identified five CpGs that differ only 
between baseline and the final time points in patients 
who recovered. None differed between patients who 
died and their baseline (Fig. 4). Four CpGs (cg11671940; 
RP11-351M16.3, cg10188795; SGMS1, cg17515347, 
and cg24145401; AIM2) were hypermethylated in 
comparison to baseline, and one was hypomethylated 
(cg06601098), which did not belong to any gene region 
and was an open sea CpG. All but one of those CpGs 
was hypomethylated in severe COVID-19 cases in Cas-
tro de Moura et  al. [13]. They were significantly hyper-
methylated in recovered patients, suggesting their 
potential to improve outcomes. The exception of that 
was cg06601098 which was hypomethylated in severe 
COVID-19 patients who recovered in Castro de Moura 
et al.’s study. [13]. However, none of these changes were 

significant when comparing the last time point in recov-
ered vs. dead patients. Furthermore, we also identified 
changes in CpGs from 40 candidate genes from previ-
ous studies. Here we observed 29 hypermethylated and 
31 hypomethylated CpGs in recovered at the last time 
point with respect to baseline (Figs.  6, 4). Patients who 
died had seven hypermethylated and eight hypomethyl-
ated CpGs. One of these CpGs (cg16371860 in TMPRSS2 
gene) was significantly hypomethylated in both recovered 
and those who died; thus, it is probably not of great inter-
est as a potential marker for recovery. Comparing recov-
ered and died at the last time point with published data 
did not yield any significant CpGs from Castro de Moura 
et  al. [13]. However, we found nine CpGs from 40 can-
didate genes, including two hypo-methylated CpGs in 
dead patients (promoter-associated OAS1; cg18217049, 
and TMPRSS2; cg19020860). We also saw three hyper-
methylated CpGs in deceased patients from STAT3 
(cg17833746, cg24312520, cg24718015), one from OAS2 
(cg19371652), one from LZTFL1 (cg09709426), and one 
that was from the TBK1 gene (cg13540592) (Figs.  6, 4). 
These CpGs were not enriched in any pathways.

Time course of differential methylation induced by critical 
COVID‑19 illness
To determine methylation changes over time, we ana-
lyzed patients who either died or recovered at day 60 
(post T4) for all the four time points (patients who did 
not reach T4 were excluded from this analysis. First, we 
looked at whether patients who died and recovered dif-
fered in immune cell dynamics. Immune cell propor-
tion analysis using spline function identified significant 
changes in neutrophils (adjusted p < 0.05). Neutrophils 
showed a sudden increase in T3 and T4 in patients who 
later died. In contrast, those who recovered showed the 

Fig. 7 Summary of immune cells and methylation changes over four time points in COVID-19 patients. A. Spline regression plot of neutrophile 
changes over four time points in dead (red color) vs. recovered patients (blue color). B. Spline regression plot of significant CpGs (cg00237825) 
over four time points in recovered vs. dead patients for DEFB115 C. Spline regression plot of significant CpGs (cg13700506) over four time points in 
recovered vs. dead patients for DEFB116. Spline plots show the spline regression model fitted to the four time points neutrophile proportion data 
(A) and methylation (B). The blue line represents the fitted model for the recovered, while the red line represents dead patients. Blue and red dots 
represent the proportion of neutrophils/methylation of the biological replicates for dead and recovered patients. Vertical lines are the endpoints 
and interior knots representing 0.33 and 0.66 quantiles
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opposite scenario (Fig. 7. A, Additional file 7: Table S7A), 
suggesting the critical importance of these cells in the 
clinical outcome.

We identified differences in methylation trends 
between patients who died and those who recovered 
over four time points for 49 CpG sites that correspond 
to 27 genes (Fig. 8, Additional file 7: Table S7B), most of 
which are known to regulate the activity of protein bind-
ing Among those 27 genes, 19 were already reported in 
COVID-19 either in the viral entry and binding to recep-
tors, or in clinical prediction such as the severity of the 
disease or its associations with end-organ damage (Addi-
tional file 8: Table S8).

Among genes not reported in COVID-19, two are 
known to play a role in the immune system: DEFB116 
and DEFB115. Those genes belong to the beta-defensins 
system, which is a vital part of the innate immune 
response and plays an essential role in protection 
against infections [36]. We identified differential meth-
ylation of CpGs in those genes over all four time points 

(Fig. 7B and C). DEFB115 was overall less methylated in 
COVID-19 patients who died, suggesting a potentially 
increased expression in critical COVID-19 patients. 
DEF116 was only hypomethylated in patients who died.

Prediction of the outcome
We tested all CpGs (a total of 40,956) issued from 
the inter-comparison between baseline and the last 
recorded time point before the outcome in both 
COVID-19 groups, the intra-comparison between 
both groups at inclusion and by the end of follow-up, 
and those issued from the time course of differential 
methylation. A total of 13 CpGs corresponding to 8 
genes predicted the outcome. Three of those genes are 
issued from the comparison of methylation changes 
between baseline and the last time point in patients 
who survived (PSMB9, MFHAS1, and MRPS2), and five 
from the comparison of baseline and the last points in 

Fig. 8 Heatmap representing significant changes in CpGs between patients who died and those who recovered over four time points. Heatmap 
represents methylation beta values which were Z-score transformed (the euclidean clustering distance and Ward.D2 clustering methods were 
used). Details on these CpGs are shown in Additional file 7: Table S7B
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patients who died (MAT2B, YY1P2, ROCK1, ZNF789, 
H1F0).

Higher methylation of ROC1, ZNF789, and H1F0 
increased the mortality risk (cox proportional 
HR = 2.43, 95% CI [1.58–3.6]; 2.29, 95% CI [1.49–3.53]; 
2.62, 95%, CI [1.60–4.29]; respectively) (Fig.  9, Addi-
tional file  9: Table  S9) whereas higher methylation 
of PSMB9, MFHAS1, MRPS2, MAT2B, and YY1P2 
decreased it risk (cox proportional HR = 2.43, 95% 
CI [1.58–3.6]; 2.29, 95% CI [1.49–3.53]; 2.62, 95%, CI 
[1.60–4.29]; respectively) (Fig.  10). The ROC curves 
of sensitivity and specificity of the model showed 
a very good prediction of the outcome for ZNF789 
(80.6%) and MRPS2 (80%), a good one for PSMB9 
(78.5%), MFHAS (75.7%), H1F0 75.8%), YY1P2 (72%), 
and ROCK1(77.7%) genes, and a fair one for MAT2B 
(66.9%) (Figs. 9 and 10). Those genes are mostly linked 
to inflammation or DNA regulation. Interestingly, 
seven of those genes have been reported in previous 
COVID-19 studies (Additional file 10: Table S10). Fur-
ther, we looked at the string database to assess protein 
interaction in those genes. At the same time, no inter-
action exists in the five genes that decrease mortality 
and enrichment in the Reactome pathway [37], known 
as the “Apoptotic execution Pathway,” exists [38].

Discussion
To our knowledge, this is the first longitudinal study to 
investigate the methylation profile in critically ill COVID-
19 patients with ARDS under mechanical ventilation and 
identify a methylome signature that predicts survival.

We showed that the epigenetic signature of critical 
COVID-19 infection is enriched for immune response 
pathways, particularly type I Interferon signaling, which 
is a key signature of the host response to this virus [14, 
33, 39, 40]. Interferon-driven response plays a vital role 
in shaping the fate of a viral infection, affecting the acti-
vation and differentiation of immune cells and the virus 
spread [14, 33, 39, 40]. Other differentially methylated 
genes also contribute to immune-related functions and 
viral pathogenesis. For example, IFNAR1 and IFNAR2 
genes partake in type I interferon-related pathways 
as main receptors for interferon-alpha and beta [41]. 
Another gene is CLEC4M which encodes for the CD209L 

receptor and mediates the virus entry to epithelial and 
endothelial cells of various tissues [42].

Compared to controls, critically ill COVID-19 patients 
showed a similar differential methylation pattern to pre-
viously reported studies [12, 13, 30–35]. Konigsberg et al. 
recently identified 13033 differentially methylated CpGs, 
from which we have confirmed 3613 that represent 2290 
genes [40]. In particular, we found that the probes of 
robust predictors of COVID-19 were hypomethylated in 
our patients, including genes involved in interferon regu-
lation and viral response. This may suggest an increased 
expression of those genes during critical COVID-19 
infection, which has also been reported earlier [14].

Interestingly, at inclusion, we did not observe any 
intra-differences in DNA methylation between dead 
and recovered groups. However, the same comparison 
showed significant differences at the last recorded time 
point, suggesting that most changes occurred as the dis-
ease progressed. Further, the inter-comparison of meth-
ylation changes between baseline and the last recorded 
time point revealed hypermethylation of pathways linked 
to host immune response such as interferon-alpha, TNF 
alpha, IL-6, and IL-2 signaling in patients who recovered, 
but not in those who died. Among the reported genes 
in patients who recovered, AIM plays a vital role in the 
immune response. It initiates the inflammatory cytokines 
release upon sensing exogenous nucleic acid inside the 
host cell, followed by pyroptosis (lytic cell death) [43]. It 
has been associated with intensified immune responses 
to COVID-19 [44]. CpGs in that gene are promoter-
associated, and their hypermethylation suggests reduced 
AIM expression in patients just before recovery; thus, 
its reduced activity might be related to improvement 
and survival. Among the genes we reported in patients 
who died, LZTFL1 is known to inhibit epithelial-mesen-
chymal transition (EMT) in the lungs in the presence of 
inflammation or cancer [45, 46]. EMT is a well-known 
pathway in fibrosis that is activated in prolonged lung 
inflammation and tissue injury [47]. In-vitro studies 
showed that COVID-19 upregulates EMT pathway genes 
[48]. In our study, LZTFL1 was hypermethylated, which 
would be translated by a decrease in its expression, less 
inhibition of EMT, and progressive lung injury.

(See figure on next page.)
Fig. 9 Kaplan–Meier and ROC analysis of genes that are top predictors of COVID-19 survival showing the three genes that increase mortality (A 
Kaplan–Meier plot represents the difference in survival probability between high and low methylation associated with CpG within a gene region. 
High and low methylation represents two groups determined based on the median of methylation Z-score as a cutoff. The X-axis represents time. 
The Y-axis represents survival probability. The tick marks indicate the censored patients. B ROC curves of the differentially methylated genes were 
used to demonstrate the sensitivity and specificity in predicting the survival of COVID-19 patients at inclusion. The X-axes show the false positive 
percentages, while the y-axes show the true positive percentages. P values on the plots represent the significance of logistic regression, where 
methylation was used as a dependent variable and survival (dead/alive) as an independent variable. The area under the curve (AUC) is shown for 
each gene showing how good the model is for hazard prediction
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Fig. 9 (See legend on previous page.)
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Time course differential methylation analysis identi-
fied 49 CpGs, two of which are beta-defensin genes. 
Beta-defensins are antimicrobial peptides, modulators 
of microbiome diversity and host-microbe equilibrium 
in the mucosa of oropharyngeal and tracheal highways, 
and regulators of inflammatory responses secreted by 
neutrophils during infections [49]. They are one of the 
primary arms of the innate immune system, contributing 
to immune cell activation and proliferation [36]. In our 
study, the lower methylation of those genes in non-sur-
vivors suggests a higher expression of antimicrobial pep-
tides throughout their ICU stay.

CD4 and CD8 T cells are critical elements in anti-viral 
immunity; they work harmoniously to recognize viral 
antigens, proliferate, kill infected cells, neutralize the 
virus, and memorize the viral print to respond faster in 
the case of future encounters [50]. Our deconvolution 
analysis confirmed a lymphopenic profile (low CD4 and 
CD8 proportion) in COVID-19 patients upon admis-
sion to the ICU. This is consistent with previous reports 
and could be interpreted as a sign of dysfunctional or 

exhausted immune cells [51]. At late stages, CD4 T cell 
proportion increased in survivors, indicating the restored 
function of the immune system [51]. Neutrophils showed 
a sudden increase in patients who died at the last two 
time points, which could reflect a prolonged inflamma-
tory response, contributing to severe conditions [52]. 
One of the plausible theories behind the increase in neu-
trophils and hyper expression of the beta-defensins and 
other immune-related genes is the re-occurrence of a 
cytokine storm before death.

Among the genes that predict mortality, ROCK1 plays 
a crucial role in apoptosis by regulating membrane bleb-
bing, a characteristic feature of apoptotic cells [53], and 
H1F0 through apoptosis-induced DNA fragmenta-
tion and cellular component disassembly [54]. It is well 
known that the apoptotic execution pathway initiates 
cell death once activated by an abnormal immune reac-
tion [55]. This finding was reported in cancer cells that 
resist the activation of this pathway to escape anti-can-
cer therapeutics in vitro [56] but never reported in vivo 
in COVID-19 infections. On the other hand, higher 

Fig. 10 Kaplan–Meier and ROC analysis of genes that are top predictors of COVID-19 survival showing the five genes that decrease mortality) A 
Kaplan–Meier plot represents the difference in survival probability between high and low methylation associated with CpG within a gene region. 
High and low methylation represents two groups determined based on the median of methylation Z-score as a cutoff. The X-axis represents time. 
The Y-axis represents survival probability. The tick marks indicate the censored patients. B ROC curves of the differentially methylated genes were 
used to demonstrate the sensitivity and specificity in predicting the survival of COVID-19 patients at inclusion. The X-axes show the false positive 
percentages, while the y-axes show the true positive percentages. P values on the plots represent the significance of logistic regression, where 
methylation was used as a dependent variable and survival (dead/alive) as an independent variable. The area under the curve (AUC) is shown for 
each gene showing how good the model is for hazard prediction
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methylation of PSMB9, MRPS2, MFHAS1, and MAT2B 
genes are known to be expressed in COVID-19 patients 
with high viral load or severe infection [57–61], which 
could translate to a lower expression of those genes. 
It might be possible that a less severe infection at ICU 
admission predicts better survival.

Cumulative data suggest that epigenetics play an impor-
tant role in the pathophysiology of several pathologies such 
as cardiovascular disease, diabetes, and cancer [7, 62–63]. 
Recently, epigenetic markers were suggested as potential 
indicators and biomarkers for disease detection and pro-
gression [64]. In acute Charcot disease, a rare diabetes 
complication characterized by bone destruction, we have 
previously shown the presence of differentially methylated 
genes involved in the migration process during monocyte 
differentiation into osteoclasts [65]. Further, epigenetic-
based therapy is increasingly used in several disciplines such 
as immunotherapy and cancer [66, 67]. Current experimen-
tal approaches in infectious diseases in general and viral 
infections, mainly, are promising [68, 69].

This study has a few limitations. The sample size of our 
patients was relatively moderate; hence a higher number of 
participants might have enabled us to detect more methyla-
tion calls knowing that power calculations for the sample size 
are not established for epigenetic analysis. We conducted the 
study in early 2020 during the first wave of COVID-19 when 
the Alpha variant was the only one universally reported. 
Therefore, we cannot ascertain that the same methylation 
changes exist with different variants in vaccination or the 
constant changes in drug therapies.

Conclusion
In total, we identified an epigenetic signature in criti-
cally ill COVID-19 patients with ARDS that predicts the 
clinical outcome. While immune-related pathways, inter-
feron-alpha and -gamma, were initially the main biologi-
cal mechanisms differentiating critically ill COVID-19, 
an epigenetic signature set of eight genes predicted sur-
vival. Further studies are needed to elucidate the poten-
tial use of the methylome as a biomarker of the disease 
and, most importantly, to assess DNA methyltransferase, 
nucleoside inhibitors, or other pharmaceutical potential 
epigenetic-targeted therapies in COVID-19.

Appendix

I‑ Inclusion/Exclusion criteria of participants.
 

1) For COVID-19 positive patients

Inclusion criteria:
 

1.Male or female aged over 18 years.
2.Tested positive for COVID-19 by Real-Time Quan-
titative Reverse Transcription.
3.Admitted to ICU for critically COVID-19 with 
acute respiratory distress syndrome (ARDS) under 
mechanical ventilation.
4.Patients satisfying the score of 7 to 9 on the WHO 
clinical progression scale [1] and severe ARDS 
according to the Berlin definition [2].

Exclusion criteria:
 

1.Burn and trauma.
2.Any immunological diseases or immunosuppres-
sive medications.
3.Other immune-related conditions (cancer, hema-
tological malignancies, bone marrow diseases, or 
transplant).
4.Unsigned informed consent form.
For non-COVID-19 controls:

Inclusion criteria:
 

1.Male or female aged over 18 years.
2.Signed informed consent form.

Exclusion criteria:
 

1.Positive COVID-19 infection.
2.Person with an infectious syndrome during the 
last 90 days.
3.Person receiving within the last 90 days, a treat-
ment based on: antivirals; antibiotics; antiparasit-
ics; antifungals.
4.Person having received within the last 15 days a 
treatment based on: non-steroidal anti-inflamma-
tory drugs
5.Person having received within the last 
24  months, a treatment based on: immunosup-
pressive therapy; corticosteroids; therapeutic anti-
bodies; chemotherapy.
6.Person with history of innate or acquired 
immune deficiency; hematological disease; solid 
tumor; severe chronic disease; surgery or hospi-
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talization within the last two years; pregnancy 
within the previous year; participation in a phase 
I clinical assay in the previous year; participation 
to a degree I clinical assay in the previous year; 
pregnant or breastfeeding women; a person with 
restricted liberty or under legal protection.
7.Person with a history of cardiovascular disease.
8.Unsigned informed consent form [15, 70]

Abbreviations
ARDS: Acute respiratory distress syndrome; DMR: Differentially methylated 
regions; PBMCs: Peripheral blood mononuclear cells; WHO: World health 
organization.
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Additional file 9: Table S9. Summary of univariate Cox proportional 
hazard analysis of the previously identified CpGs. Column variables 
represent Name; chr; chromosome number, pos; position, CpG name, 
relation_to_Island; where is CpG located in relationship to island, UCSC 
RefGene Name; UCSC gene name, UCSC RefGene Accession; UCSC gene 
accession, UCSC RefGene Group; where in respect to gene is CpG located, 
Beta; estimated coefficient beta from the model, StandardError; standard 
error, Z; z-score, LRT; likelihood ratio test, Wald; Wald test, LogRank; log-
rank test, HR; Hazardous ratio, HR lower; Hazardous ratio lower 95% bound, 
HR upper; Hazardous ratio upper 95% bound. 

Additional file 10: Table S10. Description of the eight genes that are 
predictors of mortality. Data were collected from Gene Ontology (GO) to 
identify the functional annotation of each gene and recently published 
COVID-19 related articles to highlight the role of each gene in relation to 
COVID-19. 

Additional file 11. Supplementary Figures.
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