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Abstract 

Background: Diverse drug vulnerabilities owing to the Chromatin regulators (CRs) genetic interaction across various 
cancers, but the identification of CRs genetic interaction remains challenging.

Methods: In order to provide a global view of the CRs genetic interaction in cancer cells, we developed a method to 
identify potential drug response-related CRs genetic interactions for specific cancer types by integrating the screen of 
CRISPR-Cas9 and pharmacogenomic response datasets.

Results: Totally, 625 drug response-related CRs synthetic lethality (CSL) interactions and 288 CRs synthetic viability 
(CSV) interactions were detected. Systematically network analysis presented CRs genetic interactions have biological 
function relationship. Furthermore, we validated CRs genetic interactions induce multiple omics deregulation in The 
Cancer Genome Atlas. We revealed the colon adenocarcinoma patients (COAD) with mutations of a CRs set (EP300, 
MSH6, NSD2 and TRRAP) mediate a better survival with low expression of MAP2 and could benefit from taxnes. While 
the COAD patients carrying at least one of the CSV interactions in Vorinostat CSV module confer a poor prognosis and 
may be resistant to Vorinostat treatment.

Conclusions: The CRs genetic interaction map provides a rich resource to investigate cancer-associated CRs genetic 
interaction and proposes a powerful strategy of biomarker discovery to guide the rational use of agents in cancer 
therapy.
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Introduction
Chromatin regulators (CRs) are indispensable upstream 
regulatory factors in establishing and maintaining epi-
genomic landscape [1]. According to their specialized 
functions in epigenetics, CRs can be categorized into 
three major subgroups: DNA methylators, histone mod-
ifers, and chromatin remodelers [2]. Genomic alteration 

of CRs is a prevalent feature in various cancer types [1]. 
Cancers with deficiency in CRs promote cancer cells 
to rewire transcriptional regulatory circuits, affect the 
expression of downstream regulatory factors. A grow-
ing number of dysfunction CRs have been recognized 
as novel therapeutic targets in cancers and offered new 
therapeutic opportunities [3, 4]. For example, ARID1A, 
a component of SWI/SNF chromatin-remodeling factor, 
is one of the most frequently mutated genes in various 
cancers. Furthermore, ARID1A-deficient cancer cells are 
specifically vulnerable to EZH2 inhibitors, HDAC inhibi-
tors and some other selective inhibitors [5].

Genetic interaction is generated when pairwise pertur-
bations of two genes result in an unexpected phenotypic 
outcome. According to the diverse impact in phenotype, 
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genetic interaction can be further divided into synthetic 
lethality and synthetic viability. A synthetic lethal inter-
action describes the scenario in which the deficiency of 
single gene is viable, while a combination of alterations in 
two genes simultaneously induces cell death, which can 
be applicable to identify drug targets and pharmaceutical 
sensitive biomarkers [6]. Synthetic lethality has emerged 
as an attractive therapeutic strategy, especially the suc-
cess of poly (ADP-ribose) polymerase 1 (PARP1)-tar-
geted therapy against the growth of BRCA1/2-mutated 
cancer cells [7]. Synthetic viability interaction refers 
to dysfunction of both genes that can rescue the lethal 
effects of the individual gene alterations. Our previous 
work revealed that synthetic viability could induce drug 
resistance in cancer cells [8]. Therefore, the identification 
of cancer viability-related genomic biomarkers should be 
conductive to marked improvements in drug response 
and cancer therapy.

Genetic interaction analysis in cancer genome revealed 
that dysfunction CRs may have potential synthetic 
effect with other genes and play major roles in cancer 
therapy [8]. However, rare studies focused on systemati-
cally detecting CRs synthetic lethality (CSL) interaction 
and CRs synthetic viability (CSV) interaction in cancer 
genome, especially their roles on drug response of cancer 
cells. Functional perturbation technologies, such as short 
hairpin RNA (shRNA) and CRISPR-Cas9 have offered 
effective tools to screen genetic interaction for human 
cancer cells [9]. An integration of pharmacogenomic 
datasets provided a robust and reliable implement to pre-
dict the CRs genetic interaction related to pharmacologi-
cal response in cancer cells [10].

In the present study, we developed an algorithm to 
identify CRs genetic interaction according to the coali-
tion of functional screen data and investigate the drug 
response effect using pharmacogenomic datasets (Fig. 1A 
and Fig. 1B). The CRs genetic interaction network analy-
sis indicated CSL and CSV interaction may be conducive 
to candidate biomarkers for cancer therapies (Fig.  1C). 
By mining drug response-related CR genetic interac-
tions in The Cancer Genome Atlas (TCGA), we inspected 
their special effect in transcriptional control, epigenetic 
changes, genomic instability, tumor microenvironment 
and survival outcome (Fig. 1D and Fig. 1E). Moreover, the 
biomarkers identified by our work will conductive to pre-
dict the mechanism of drug response in cancer treatment 
and will guide precise targeting of clinical application.

Methods
Identification of candidate CRs genetic interactions
CRs with documented functions were collected by man-
ual curation [2, 3]. A comprehensive list of drug targets 

was compiled from DrugBank (https:// go. drugb ank. 
com/) and some other public pharmacogenomic datasets.

In the present work, we collected and exploited three 
functional screen data, two high-throughput CRISPR-
Cas9 screening datasets and one shRNA data, to identify 
candidate genetic interaction related to CRs (Additional 
file 1: Table S1). CRISPR1 screening data, including 625 
cell lines, were obtained from DepMap Portal (https:// 
depmap. org/ portal/) (version 19Q3). DepMap Portal 
used the Avana CRISPR-Cas9 genome-scale knockout 
library and CERES algorithm to identify genetic vulnera-
bilities of cancer cells. Genes with lower scores represent 
that they are more essential [11]. Parental cell lines and 
mutation data were downloaded from the Cancer Cell 
Line Encyclopedia project (CCLE, https:// porta ls. broad 
insti tute. org/ ccle) [12].

Another CRISPR-Cas9 fitness screen with 324 cell 
lines, CRISPR2, was downloaded from DepMap Pro-
jectScore (https:// score. depmap. sanger. ac. uk/). Genome-
scale CRISPR-Cas9 fitness scores indicate the ability 
required for cell viability [13]. Higher fitness scores indi-
cated proficiency of cell growth and viability. Mutation 
data was obtained from Catalogue of Somatic Muta-
tions in Cancer (COSMIC, https:// cancer. sanger. ac. uk/ 
cosmic).

We downloaded shRNA data from DepMap Portal, 
Achilles 2.20.2, which provides gene knockdown viability 
effects (gene dependency scores) across 501 cancer cell 
lines. Higher shRNA scores indicate enrichment of cell 
viability [14]. The genetic background of cell lines was 
downloaded from CCLE [12].

Only tissue types with more than three cell lines were 
included for further analyses in individual dataset. For 
each pair of genes (target and partner, either target or 
partner gene was CRs), fitness scores of target knock-
down were compared between the cell lines with and 
without partner alterations (or multi-mutation types) 
using one-sided Wilcoxon rank-sum test. Provided that 
the fitness scores of partner mutation cells are lower/
higher than wild type samples (P < 0.05) when target is 
knocked down, partner and target were predicted as can-
didate CSL or CSV genetic interaction.

For each candidate genetic interaction observed in at 
least two procedures, we combined the P values obtained 
by each inference procedure into a single P value via 
Fisher’s combined probability test in metaseqR R package 
[15]. The combined P value with P < 0.05 was used to fur-
ther analysis.

Quantitative profiling of proteins by mass spectrom-
etry across 375 cell lines from diverse lineages was 
downloaded from DepMap Portal [16]. The correlation 
between several protein expressions of mutated genes 
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and the target genes dependency were computed in lung 
cancer cell lines via Pearson’s correlations analysis.

Screening CSL and CSV interaction related to drug 
response
Five drug datasets were applied to filter drug biomarkers 
in cancer cells (Additional file 1: Table S2). The original 
pharmacological screening data were downloaded from 
CCLE [12] (https:// porta ls. broad insti tute. org/ ccle), Can-
cer Therapeutics Response Portal [17, 18] (CTRP, https:// 
www. broad insti tute. org/ ctrp/), Cancer Genome Pro-
ject [19] (CGP) and another two datasets from Genom-
ics of Drug Sensitivity in Cancer[20] (GDSC, https:// 
www. cance rrxge ne. org/). CCLE dataset is constituted of 
the half maximal inhibitory concentration (IC50) values 

of 24 anti-cancer compounds used to treat 504 cancer 
cell lines. CGP dataset contained the IC50 of 130 drugs 
across 639 cancer cell lines; exceptionally low IC50 values 
from a cell-based assay were achieved along with remark-
ably high therapeutic indices. The CTRP data contained 
the area-under-concentration-response curve (AUC) of 
481 small molecules across 835 cancer cell lines. As a 
measure of cancer cell lines sensitivity to small molecule 
treatment, a low AUC usually indicates high sensitive 
in the cell  lines. The GDSC1 data contained AUC val-
ues of 304 drugs detected in 988 cell lines. The GDSC2 
data contained AUC values of 169 drugs detected in 811 
cell lines. The cell line information and mutation data of 
GDSC and CGP datasets were referenced from COSMIC, 
and information related to CTRP and CCLE was available 

Fig. 1 Workflow of this work. A Identification of CSL and CSV. B Screening drug response-related CRs genetic interaction based on 
pharmacogenomic datasets. C Analysis of CRs genetic interaction network. D Evaluation of CSL or CSV interaction in TCGA datasets. E CSL or CSV 
module analysis in COAD

https://portals.broadinstitute.org/ccle
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from CCLE. Only tissue types with more than three cell 
lines treated by the same compounds were included for 
further analyses in individual dataset.

If target in the CSL or CSV pair was targeted or 
affected by a drug, the IC50/AUC of cell lines with and 
without alterations in partner gene were compared using 
a one-sided Wilcoxon rank-sum test (P < 0.05). If the 
IC50/AUC of partner mutated cells are lower  or  higher 
than wild type samples (P < 0.05), the genetic interactions 
between the target and partner gene  were identified as 
drug response-related CSL or CSV genetic interaction.

Generation of CRs interaction network and functional 
analysis
The network of drug response-related CSL or CSV 
were constructed and visualized by Cytoscape software 
(https:// cytos cape. org/). Protein-protein interaction 
(PPI) data was obtained from the Pathway Commons 
database [21] (http:// www. pathw aycom mons. org/).

We randomly selected the same number of gene pairs 
from the genes having interactions in Pathway Commons 
and calculated the rate of direct or indirect interaction 
that overlapped with the PPI networks. The empirical P 
value was counted according to 1000 random CSL and 
CSV networks.

Gene expression, DNA methylation cohorts of TCGA 
were derived from the UCSC Xena database (http:// xena. 
ucsc. edu/). Pearson’s correlations were used for the sta-
tistical analysis of co-expression and co-methylation. The 
statistical P value was less than 0.05.

Cancer related genes were downloaded from the cancer 
gene census [22] (http:// cancer. sanger. ac. uk/ census).

The similarity analysis of drug pairs
We hypothesized that similar drugs share common part-
ner genes and divided the drug pairs into similar groups 
and non-similar groups, for paired drugs in CSL inter-
action and in CSV interaction by hypergeometric test 
(P < 0.05).

Clinical similarities of drug pairs derived from the drug 
Anatomical Therapeutic Chemical (ATC) classification 
systems codes were used to predict new drug targets [23]. 
The ATC codes for drugs used in this study were obtained 
from NCBO BioPortal [24]. Jaccard similarity coefficient 
was calculated to evaluate the similarity of paired drugs.

We also computed Gene Ontology (GO) similarity for 
each pair of targets in paired drugs by a graph-based 
semantic similarity measure algorithm implemented in 
GOSemSim R package [25]. GO similarity score con-
tained three type of score, biological processes (BP), 
molecular function (MF), and cellular component (CC).

Functional analysis of the genes interacting with CRs 
in CSL and CSV interaction
A hypergeometric distribution model was used to test 
whether the the genes interacting with CRs in CSL and 
CSV network were significantly enriched in biological 
pathways from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database [26]. The statistical P value 
was corrected by the Benjamini and Hochberg (BH) cor-
rection for multiple tests, with cutoffs of False discovery 
rate (FDR) < 0.1 established for significant pathways.

Differential expression/methylation/peak accessibility/
HRD/TIL analysis
Gene expression, DNA methylation, mutation, Assay 
for transposase-accessible chromatin with sequencing 
(ATAC-seq) peak signal [27] and homologous recombi-
nation deficiency (HRD) score cohorts of TCGA were 
derived from the UCSC Xena database (http:// xena. ucsc. 
edu/). The overall distribution of immune cell fractions 
in TCGA cancers were systemically inferred by CIBER-
SORT [28] (https:// ciber sort. stanf ord. edu/).The patients 
with partner gene mutation were divided into two 
groups, according to the median expression level of the 
targets. The partner genes with mutation frequency more 
than 10% were included in the analysis. One-sided Wil-
coxon rank-sum test were used to identify the differential 
expression mRNA and methylation gene, as well as dif-
ferential accessibility of peaks. The statistical P value was 
corrected by the BH correction for multiple tests, and the 
FDR < 0.1. One-sided Wilcoxon rank-sum test were used 
to identify the differential HRD score or immune micro-
environment, with cutoffs of P < 0.05.

Survival analysis
The mutation and mRNA expression profiles of TCGA 
were analyzed to examine the prognostic value embed-
ded in the CSL and CSV networks. For individual CSL 
or CSV, the patients with partner gene mutation were 
divided into two groups according to the median expres-
sion value of the targets in CSL or CSV. For the accu-
mulated effect of CSL or CSV interaction, the patients 
were divided into three groups according as the number 
of individual CSL or CSV interactions they carried. The 
log-rank test was used to assess the survival difference in 
specific cancer types. We presented the results by Kaplan 
Meier plots.

Results
Generation of a drug response‑related CRs genetic 
interaction map in cancer cells
A set of 895 CRs with documented functions in the 
following chromatin regulation procedures: histone 

https://cytoscape.org/
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modification, chromatin remodeling, DNA methylation 
and some genes of unknown function were complied 
(Fig.  2A). There are 45 genes playing multiple roles in 
chromatin regulation (Fig.  2B). Histone modifiers and 
DNA methylators can be further divided into three sub-
groups: reader, writer and editor (Fig.  2C and Fig.  2D). 
18490 drug and targets relationships were are composed 
of 5289 drugs and 2454 targets. We identified candidate 
CSL or CSV based on a combination of CRISPR-Cas9 
and Achilles shRNA dataset (Fig.  1A; Additional file  1: 
Table  S1). The strategy was based on the notion that 
knockdown of target causes a selective reduction (CSL) 

or enhancement (CSV) in cell viability, with simultane-
ous mutation in another partner gene. Only these gene 
pairs with a united effect detected by at least two of the 
three functional screen datasets and with combined P 
value less than 0.05 were selected for further analysis. 
According to the screening criteria, 409248 candidate 
CSL interaction (Fig.  2E) and 388337 candidate CSV 
interaction (Fig.  2F) were identified in tissue-specific 
cancer cell lines.

Five drug datasets were used to predict drug bio-
markers by investigating the CSL and CSV interaction 
in cancer cells with specific drugs treatment (Fig.  1B; 

Fig. 2 Identification of CSL and CSV interactions in cancer cells. A Bar charts show the numbers of CRs in different categories. B Specific roles of the 
CRs with two functions, including Dm & Hm (DNA methylation and histone modification), Dm & Cr (DNA methylation and chromatin remodeling), 
Hm & Cr (histone modification and chromatin remodeling). C Subgroups of the histone modifiers. D Subgroups of the DNA methylator. Dm, 
Hm and Cr depicts DNA methylator, histone modifier and chromatin remodeler. Two means two types, including W & R (Writer and Reader), W 
& E (Writer and Eraser) and R & E (Reader and Eraser). A denotes ambiguous. R, W and E represent reader, writer and eraser. E Overlapping of the 
candidate CSL interactions identified in functional screen datasets. F Overlapping of the candidate CSV interactions identified in functional screen 
datasets. G Statistics of CSL and CSV in different types of cancer cells
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Additional file 1: Table S2). For CSL interaction between 
drug target and partner gene, we tested whether cell 
lines with mutations of the partner gene were more sen-
sitive than the cell lines with wild-type partner gene to 
the drug (P < 0.05, one-sided Wilcoxon rank-sum test). 
For CSV interaction between drug target and partner 
gene, we tested whether cell lines with mutations of the 
partner gene were more resistant than the cell lines with 
wild-type partner gene to the drug (P < 0.05, one-sided 
Wilcoxon rank-sum test). Ultimately, we revealed 625 
CSL interactions (Additional file 2: Table S3), as well as 
288 CSV interactions (Additional file 2: Table S3) in tis-
sue-specific cancer cells, which have potentiality to pre-
dict drug response (Fig. 2G). For example, we found RB1 
mutation was associated with resistance to Palbociclib, a 
highly selective inhibitor of CDK4/6, in lung cancer cells 
(Additional file  1: Fig. S1). Thangavel et  al. found that 
CDK4/6 inhibition results in apoptosis specifically in RB-
proficient non-small cell lung cancer (NSCLC) models, 
but did not impact growth on RB-deficient tumors [29].

Drug response‑related CRs genetic interaction network 
shows biological characteristics
Drug response-related CSL and CSV networks were 
constructed, respectively. The CSL interaction network 
was constituted of 552 genes, 202 CRs included, as well 
as 67 drugs (Fig.  3A). 328 genes, 134 CRs included, 
and 54 drugs comprised the CSV interaction network 
(Fig. 3B). The percentage of cancer genes in CRs genes 
increased in CRs genetic interaction networks than the 
primary 895 CRs, either in CSL (P = 0.05, Chi-square 
test) or CSV networks (P = 8.9E−3, Chi-square test), 
which suggest CRs genetic interaction is closely related 
to cancers. 83% of CSL interactions and 75% of CSV 
interactions have direct or indirect contact in Pathway 
Commons, which cannot expected by random chance 
(P < 1E−3; Fig. 3A and B). Both CSL and CSV networks 
showed scale-free characteristics (Fig.  3C and D). The 
aforementioned results indicate that the CSL and CSV 
networks have potential biological functions.

Fig. 3 Analysis of CRs genetic interaction networks. A Drug response-related CSL interaction network. B Drug response-related CSV interaction 
network. C Distribution of the degree of genes or drugs in the CSL network. D Distribution of the degree of genes or drugs in the CSV network. 
E CHEK1 subnetwork in drug response-related CSL network. F CHEK1 subnetwork in drug response-related CSV network
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In CSL and CSV networks, the top 5 genes with high-
est degree were marked with symbols (Fig.  3A and B). 
Some CR genes, such as CHEK1 and histone deacetylase 
(HDAC) family, had high degrees in both CSL and CSV 
network. Nevertheless, the hubs interacted with distinct 
partner genes across various cancer cells or were influ-
enced by different drugs (Fig.  3E and F). CHEK1 was 
inhibited by AZD7762, and the mutation of some sensi-
tive genes, such as BRF1, CDK4 and MSH2, associated 
with a worse viability to large intestine cancer cells (Addi-
tional file  1: Fig. S2). Several studies have reported that 
mismatch repair genes MSH2 deficiency could enhance 
tumor proliferation via the ATR-CHEK1 pathway in pitu-
itary adenoma [30]. Interestingly, lung cancer cells with 
mutations of resistant genes, such as ABCB5, IGFBP5, 
MAP4, showed high proliferation treatment by drug 
AZD7762 (Additional file 1: Fig. S3). We highlighted the 
variation in synthetic lethal/viable effects observed in dif-
ferent cancer cells in consideration of the major genetic 
heterogeneity.

CRs genetic interactions have biological function 
relationship
In addition, we discovered gene pairs in CSL or CSV 
tended to be co-expressed or co-methylated in the tissue-
specific cancer types from TCGA. More than 25% of CSL 
interaction showed positive expression correlation; 21% 
of CSL interaction were negatively correlated at mRNA 
expression level (Fig. 4A). 75% of the CSL showed posi-
tive correlation at methylation level, however, only 2% 
CSL gene pairs showed negative correlation at methyla-
tion level (Fig.  4B). There was a positive correlation for 
27% of the CSV interaction at mRNA expression level 
as well as 21% were negative correlation (Fig. 4D). Also, 
77% of the CSV interactions displayed positive correla-
tion and less than 2% was negative at the methylation 
level (Fig. 4E). Notably, the genetic interactions with co-
expression tended to exhibit more positive co-methyla-
tion, either in CSL or in CSV interactions (Fig.  4C and 
F). Thus, these results suggest that genetic interactions 
present biological regulation relationship not only in cell 
lines, but also in tissue-specific cancers.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was performed to investi-
gate the biological pathways of non-CR genes involved 
in CSL and CSV interaction network. Genes interacting 
with CRs were enriched with 57 and 50 non human dis-
eases pathways of KEGG, respectively in CSL and CSV 
interactions (FDR < 0.1, hypergeometric test; Additional 
file 1: Fig. S4A and B). The overlapping pathways, such as 
cell cycle, PI3K-AKT signaling pathway and Rap1 sign-
aling pathway, are cancer hallmark signaling pathways 
(Additional file 1: Fig. S4C). The aforementioned results 

indicate that biomarkers have synthetic lethal and syn-
thetic viable effect with CRs by disturbing cancer related 
signaling pathways.

There were 67 drugs and 54 drugs involved in the CSL 
and CSV interaction. Under the hypothesis that similar 
drugs often share similar partner genes, the similar drug 
pairs were defined when two drugs have significantly 
overlap between their partner genes. We identified 137 
similar drug pairs and 2074 other drug pairs in CSL inter-
action network. For example, vinblastine and vincristine, 
both of which are vinca alkaloids drugs, shared 8 partner 
genes in CSL interaction network (P < 1.0E−6, hypergeo-
metric test). Also, the similar drugs defined by our work 
had higher drug therapeutic similarity score based on the 
Anatomical Therapeutic Chemical Classification System 
(ATC) code (Fig. 4G). According to the GO annotations, 
the targets of similar drug pairs had higher similarity 
score in terms of their BP (Fig. 4H), MF (Fig. 4I) and CC 
(Fig. 4J). Moreover, 52 similar drug pairs and 1379 other 
drug pairs were identified in CSV interaction network. 
Two epidermal growth factor receptor (EGFR)-targeted 
agents afatinib and erlotinib shared significantly part-
ner genes in the CSV interaction network (P = 9.4E−4, 
hypergeometric test). The similar drug groups also 
exhibited higher ATC similarity score (Fig.  4K) and 
GO similarity score (Fig. 4L,  M and N). Thus, our drug 
response-related CRs genetic interaction map proposes a 
reliable measure of drug-drug relationships and may con-
tribute to drug reposition.

CRs genetic interactions induce multiple omics 
deregulation in TCGA 
CRs regulate localized or globalized epigenome and tran-
scriptome to affect multiple target genes [3]. For a CRs 
genetic interaction pair, the cancer patients with muta-
tions of the partner genes were divided into two groups 
according to the expression of the drug target, where low 
expression of the drug target mimicked the drug inhi-
bition effect. And, we tested the difference of mRNA 
expression, DNA methylation, homologous recombina-
tion repair ability and immune cell infiltration between 
the two groups. On the precondition of partner genes 
mutation, targets expression level significantly disrupted 
a vast number of genes mRNA expression and DNA 
methylation in CSL (FDR < 0.1, one-sided Wilcoxon rank-
sum test; Fig.  5A) and CSV (FDR < 0.1, one-sided Wil-
coxon rank-sum test; Fig.  5B) interactions. More than 
91% (55/61) of CSL interactions deregulated gene expres-
sion and more than 26% (16/61) of CSL interactions 
disrupted DNA methylation. 88% (30/34) of CSV inter-
actions deregulated gene expression and more than 17% 
(6/34) of CSV interactions disrupted DNA methylation. 
For example, TP53 mutation has synthetic lethal effect 
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Fig. 4 Functional analysis of CRs genetic interactions. The co-expression analysis for CSL interaction (A) and CSV interaction (D) were investigated 
in TCGA. The co-methylation analysis for CSL interaction (B) and CSV interaction (E) were investigated in TCGA. The co-expressed interaction and 
co-methylaetd interaction were detected, respectively for CSL (C) and CSV (F). The drug therapeutic similarity score of similar drug pairs and 
other drug pairs in CSL (G) and CSV (K) map were showed. Similarity of drug targets in terms of BP (H), MF (I) and CC (J) in CSL map was detected. 
Similarity of drug targets in terms of their BP (L), MF (M) and CC (N) in CSV map was detected. P values were calculated by t test in G-N
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with the inhibition of KIT by Dasatinib. In glioblastoma 
(GBM) or low-grade glioma (LGG) with TP53 mutations, 
3137 and 3648 genes were significantly differentially 
expressed in the KIT down-regulation GBM  or  LGG 
group compared with KIT up-regulation GBM  or  LGG 
group (Additional file  1: Fig. S4D). The overlapping 
between the two sets of differentially expressed genes 
could not be expected by random chance (P < 1E−16, 

hypergeometric test). The overlapping differentially 
expressed genes were significantly enriched in ErbB sign-
aling pathway (P = 1.8E−04, hypergeometric test), Ras 
signaling pathway (P = 1.5E−05, hypergeometric test) 
and Rap1 signaling pathway (P = 9.8E−04, hypergeomet-
ric test; Additional file 1: Fig. S4E). Above results suggest 
that mutations of TP53 may have synthetic lethal effect 

Fig. 5 CRs genetic interactions induce multiple omics deregulation in TCGA. A CSL interactions disrupt gene expression, DNA methylation, 
homologous recombination repair ability and immune cell infiltration in TCGA. B CSV interactions disrupt gene expression, DNA methylation, 
homologous recombination repair ability and immune cell infiltration in TCGA. Red or green entries represent the number of up-regulated or 
down-regulated genes and hyper-methylated or hypo-methylated DNA. Differentially methylated genes or differentially expressed gene were 
identified using one-sided Wilcoxon rank-sum test with FDR < 0.1. Yellow entries indicate up-regulation of the HRD score or TIL, and purple entries 
imply down regulation of the HRD score or TIL. Heatmap of the HRD score and TIL shows the –logP, where P values were calculated by one-sided 
Wilcoxon rank-sum test
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with the inhibition of KIT by disrupting cancer related 
signaling pathways.

To better understand epigenomic landscape differ-
ences between patients with and without CSL/CSV 
interactions, we analyzed differential chromatin acces-
sibility for breast cancer (BRCA) and colon adenocarci-
noma (COAD) (Additional file 1: Fig. S5A). We revealed 
distinct patterns of genome-wide chromatin accessibil-
ity between patients with and without CSL/CSV inter-
actions. We found 1423 differentially accessible peaks 
between BRCA patients with and without TP53-TUBA1B 
CSL interaction and 4120 differentially accessible peaks 
for BRCA patients with and without MUC4-HDAC9 
CSL interactions (Additional file  1: Fig. S5B and C). In 
COAD, 4331 peaks showed increased accessibility and 
4040 showed decreased accessibility peaks in patients 
with TP53-NFKB1 CSL interaction (Additional file 1: Fig. 
S5D). In addition, there were 278 and 500 differentially 
accessible peaks for TP53-TUBA4A and TP53-TUBB8 
of which had CSV interactions in COAD, respectively 
(Additional file  1: Fig. S6A  and B). Above results reveal 
CRs genetic interactions could induce distinct chromatin 
accessibility.

More than 36% (22/61) of CSL interactions deregu-
lated homologous recombination repair ability and more 
than 95% (58/61) of CSL interactions disrupted immune 
cell infiltration (Fig. 5A). 17% (6/34) of CSV interactions 
deregulated homologous recombination repair ability 
and more than 85% (29/34) of CSV interactions disrupted 
immune cell infiltration (Fig.  5B). For example, HRD 
scores were upregulated under the influence of eight 
CSL interactions in COAD. In uterine corpus endome-
trial carcinoma (UCEC), three CSL interactions signifi-
cantly promoted memory B cells infiltrating and five CSL 
interactions downregulated M2 Macrophages. Memory 
B cells and M2 Macrophages contribute to a collective 
function in synthetic lethality. Above results indicate that 
CSL or CSV genetic interactions have effects on drug 
response by interfering DNA repair ability and tumor 
microenvironment in cancer.

CRs genetic interaction mediate distinct drug response 
and survival outcomes
TUBA1C, an oncogene and key microtubule component 
implicated in multiple cancers, was targeted by Doc-
etaxel and Vincristine [31]. TUBA1C interacted with 5 
CRs in drugs related CSL interaction network across 3 
tissues (Additional file  1: Fig. S7). Pathway enrichment 
analysis indicated that the partner genes of TUBA1C in 
CSL interaction network were mainly enriched in the 
p53 signaling pathway, Lysine degradation and apoptosis 
pathway (P < 0.05, hypergeometric test; Additional file 1: 
Fig. S7). For example, knock-down TUBA1C by shRNA 

in lung cancer cells with ATM mutation showed a worse 
survival than cells with wild-type ATM (P = 0.01, one-
sided Wilcoxon rank-sum test; Fig. 6A). A similar results 
can be identified in CRISPR1 dataset (P = 4.9E−03, one-
sided Wilcoxon rank-sum test; Fig.  6B). Furthermore, 
ATM mutation cell lines were linked with Docetaxel 
sensitivity and Vincristine sensitivity in lung tissues 
(P < 0.05, one-sided Wilcoxon rank-sum test; Fig. 6C, D, 
E and F). ATM frequently alters in various cancers and 
plays a crucial role in numerous DDR-regulated cellular 
responses, such as DNA repair, apoptosis and cell cycle 
arrest [32]. The ATM mutated patients with TUBA1C 
low expression showed better survival than patients with 
over-expression of TUBA1C in lung adenocarcinoma 
(LUAD) (P = 0.03, log-rank test; Fig.  6G). These results 
suggest that LUAD patients with ATM mutation may be 
beneficial from Docetaxel and Vincristine. In addition, 
other CSL interactions also have the potentiality to be a 
survival prediction biomarker, such as TP53 and KIT in 
LGG (P = 0.01, log-rank test; Additional file 1: Fig. S8A) 
as well as BCORL1 and GSTP1 in LUAD (P = 0.01, log-
rank test; Additional file 1: Fig. S8B). 

In contrast to CSL interaction, CSV interaction medi-
ated drug resistance and a worse prognosis. For exam-
ple, LCK had synthetic viability effect with SETBP1. A 
enhancement of cell growth or viability were identi-
fied when LCK was knocked down by shRNA (P = 0.02, 
one-sided Wilcoxon rank-sum test; Fig. 6H) or CRISPR1 
(P = 0.04, one-sided Wilcoxon rank-sum test; Fig.  6I) in 
endometrium tissue with mutations of SETBP1. In addi-
tion, SETBP1 mutated endometrium cancer cells were 
resistant to Dasatinib, a targeted drug of LCK in CTRP 
(P = 0.02, one-sided Wilcoxon rank-sum test; Fig. 6J) and 
GDCS2 (P = 0.04, one-sided Wilcoxon rank-sum test; 
Fig.  6K). In UCEC patients with mutations of SETBP1, 
individuals with low-expression of LCK showed worse 
prognosis than those with high-expression of LCK 
(P = 8.8E−03, log-rank test; Fig. 6L). Besides that, other 
CSV interactions also can be a predictive biomarker in 
other cancers, such as BRWD3 and PSMB8 in LUAD 
(P = 8E−04, log-rank test; Additional file  1: Fig. S8C), 
as well as CNTN2 and HDAC11 (P = 0.01, log-rank test; 
Additional file 1: Fig. S8D) in LUAD. The aforementioned 
results indicate the possibility and reliability of our CSV 
interaction in survival prediction of tumor patients.

The accumulation of CSL interaction confer favorable 
prognosis
As we known, the accumulation of genetic interactions 
conferred to the prognosis of cancer patients [33]. The 
cancer patients were divided into three groups according 
to the number of activated CSL pairs within each patient: 
none, fewer interactions (less than the median number of 



Page 11 of 16Chen et al. Journal of Translational Medicine          (2022) 20:438  

−2.5

0.0

2.5

P=0.01

shRNA TUBA1C

Fi
tn

es
s 

sc
or

e

−1.6

−1.2

−0.8

−0.4

Fi
tn

en
ss

 s
co

re

P=4.0E-03

CRISPR1 TUBA1C

2.5

5.0

7.5

10.0

AU
C

CTRP Docetaxel

0.4

0.6

0.8

1.0

AU
C

GDSC1 Docetaxel

4

8

12

16

AU
C

CTRP Vincristine 

0.25

0.50

0.75

AU
C

GDSC2 Vincristine 

P=4.9E-03 P=0.04

P=4.9E-03 P=0.03

−1

0

1

2

Fi
tn

es
s 

sc
or

e

shRNA LCK

0.6

0.7

0.8

0.9

1.0

Fi
tn

es
s 

sc
or

e

2.5

5.0

7.5

10.0

12.5

AU
C

CTRP Dasatinib 

0.0

0.2

0.4

AU
C

GDSC2 Dasatinib CRISPR1 LCK

P=0.04 P=0.04

P=0.02 P=0.02
A 

B

C 

D 

E

F 

H

I

J 

K

G

ATM WILD

ATM MUT

SETBP1 WILD

SETBP1 MUT

+ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++

+++++++
+++++++++++

++ ++
+

+

+++++
+

+++
++ + +

+ +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++
+++++

+++++
+
+

++

+

+

p= 0.03 

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

LGG
+++++++++

++++++++++++
++++++++

++
+++

+

+++ ++ +

+

+++ + +

++++++++++++++++
++++++++

+
++++++++++

++++++++++++++

++++
++

+++
++

+
+ +

+

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++
++++++++++++++

+++++++++++++++++++++++++++++++++++++++++
++++ ++++++++++++++++++++ +

+++
+

+
+

p= 0.04

0.00

0.25

0.50

0.75

1.00

0 3000 6000 9000 12000

++ +++ + + + + + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ ++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++ + +

p= 0.04

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Su
rv

iv
al

 p
ro

ba
bi

lit
y

+
More CSL interaction
Less CSL interaction
None CSL interaction

+

+

UCEC SKCM

L 

N O 

+
+

++
+++++

+

++

+ +

+++++ ++
+ +++ +++ ++ + + +

+ +

p= 0.03 

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Survival time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

LUAD
+
+

ATM MUT,TUBA1C high-exp
ATM MUT,TUBA1C low-exp

M

++ ++++++++++++ +++++++ +++ ++++ +++++ + + + + + + +++++ ++
+

++++
+ +++ ++ ++ + + + +

p= 8.8 E-03

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

SETBP1 MUT,LCK high-exp
SETBP1 MUT,LCK low-exp+

+UCEC

Survival time in days

Survival time in days Survival time in days Survival time in days

Fig. 6 CRs genetic interaction mediate distinct drug response and prognosis. Lung cancer cell lines with ATM mutation have worse viability when 
TUBA1C were knocked down in shRNA (A) and CRISPR1 (B). Cell lines with ATM mutation are sensitive to Docetaxel in CTRP (C) and GDSC1 (D). Cell 
lines with ATM mutation are sensitive to Vincristine in CTRP (E) and GDSC2 (F). The Kaplan–Meier overall survival of ATM mutation carriers in LUAD 
patients in two groups as follows: TUBA1C low-expression and TUBA1C high-expression (G). Endometrium cell lines with SETBP1 mutation have 
better viability when LCK were knocked down in shRNA (H) and CRISPR1 (I). Endometrium tissues with SETBP1 mutation are resistant to Dasatinib in 
CTRP (J) and GDSC2 (K). The Kaplan–Meier overall survival of SETBP1 mutation carriers in UCEC patients in two groups as follows: LCK low-expression 
and LCK high-expression (L). The cumulative effect of CSL interaction induces a better prognosis in LGG (M), UCEC (N) and SKCM (O). P values in A–F 
and H–K were calculated by one-sided Wilcoxon rank-sum test. P values in G, L, M, N and O were tested by log-rank test



Page 12 of 16Chen et al. Journal of Translational Medicine          (2022) 20:438 

interactions in patients) and more interactions (greater 
than the median number of interactions in patients). As 
expected, cancer patients with more activated CSL pairs 
showed better prognosis in LGG (P = 0.03, log-rank test; 
Fig.  6M), UCEC (P = 0.04, log-rank test; Fig.  6N) and 
SKCM (P = 0.04, log-rank test; Fig.  6O). For CSV inter-
action, the opposite result can be detected in esophageal 
cancer (ESCA). The ESCA patients with at least one of 
the activated CSV gene pairs had poorer prognosis than 
patients without activated CSV pairs (P = 0.13, log-rank 
test; Additional file 1: Fig. S8E).

MAP2 CSL module mediate better prognosis in COAD
Mutation frequency of individual partner genes in CSL 
or CSV interactions is quite low. To enhance the cover-
age of prediction range, we merged a module by integrat-
ing partner genes interacted with the same drug target 
in specific tissue. Four CRs (TRRAP, EP300, NSD2 and 
MSH6) having synthetic lethal interactions with MAP2 
were integrated as a MAP2 CSL module in COAD, where 
MAP2 was affected by two taxnes (Paclitaxel and Doc-
etaxel) (Fig.  7A).These four CRs play roles in cell cycle, 
notch signaling pathway and mismatch repair in human 
cancers. The mutation frequency of individual partners 
varied in 6%-14%, and the MAP2 CSL module covers 22% 
samples in COAD (Fig.  7B). The accumulation of syn-
thetic lethal effect in MAP2 module mutations mediated 
a better prognosis in COAD patients with low expres-
sion of MAP2 than COAD patients with high expression 
of MAP2 (P = 0.02, log-rank test; Fig.  7C). However, no 
significant survival differences can be detected in the 
patients with wild-type of MAP2 module genes (P = 0.80, 
log-rank test; Additional file  1: Fig. S9A). Next, using 
the fractions estimated by CIBERSORT, we found the 
patients with MAP2 low expression or high expression 
showed significant difference in enrichment of tumor 
immune cell infiltration when MAP2 module mutations. 
In COAD samples with mutations of MAP2 module gene, 
the infiltration of M1 macrophages (P = 0.05, one-sided 
Wilcoxon rank-sum test; Additional file 1: Fig. S9B) and 
Resting Mast Cells (P = 0.02, one-sided Wilcoxon rank-
sum test; Additional file  1: Fig. S9C) was lower in the 
COAD patients with MAP2 low expression than those 
with MAP2 high expression. The infiltration of Activated 
Mast Cells (P = 0.05, one-sided Wilcoxon rank-sum test; 
Additional file 1: Fig. S9D) and Regulatory T cells (Tregs; 
P = 0.03, one-sided Wilcoxon rank-sum test; Addi-
tional file 1: Fig. S9E) were higher in the COAD patients 
with MAP2 low expression than those with MAP2 high 
expression. 

Vorinostat CSV module confer poor prognosis in COAD
Vorinostat inhibits histone deacetylases (HDAC) fam-
ily, including HDAC2 and HDAC8. Inhibiting by Vori-
nostat, HDAC8 had synthetic viable effects with six genes 
(AHCTF1, DRD1, EXOC6B, PCDHGA10, TGFBR1 and 
C1R) and HDAC2 had synthetic viable effects with TPO 
in large intestine tissue (Fig.  7D). Generally, the muta-
tion frequency of individual partner genes was less than 
8% (Fig.  7E). The partners mainly participate in MAPK 
signaling pathway, TGF-beta signaling pathway and 
Hippo signaling pathway. By integrating these partners 
as Vorinostat CSV module, the mutation frequency of 
module increased to 24%. The COAD individuals with 
at least one of the CSV interaction tended to have worse 
clinical outcome than the patients without these interac-
tions in TCGA (P = 0.07, log-rank test; Fig.  7F). Differ-
entially expressed genes between COAD patients with 
and without Vorinostat CSV interactions were signifi-
cantly enriched in immune related biological processes, 
such as antigen processing presentation (P = 9.1E−08, 
hypergeometric test), B cell receptor signaling pathway 
(P = 1.6E−07, hypergeometric test) and T cell receptor 
signaling pathway (P = 1.1E−06, hypergeometric test).

In addition, the COAD individuals with at least one of 
the Vorinostat CSV module interactions showed lower 
genomic instability than the patients without Vorinostat 
CSV module interactions, including three independent 
DNA-based measures, telomeric allelic imbalance (TAI; 
Additional file 1: Fig. S10A; P = 8.0E−08, one-sided Wil-
coxon rank-sum test), large-scale state transitions (LST; 
Additional file  1: Fig. S10B; P = 3.2E−05, one-sided 
Wilcoxon rank-sum test), loss of heterozygosity (HRD-
LOH; Additional file  1: Fig. S10C; one-sided Wilcoxon 
rank-sum test, P = 1.2E−06) and the combined HRD 
score (Fig.  7G; P = 1.4E−07, one-sided Wilcoxon rank-
sum test). High HRD score indicate genomic instability 
in the absence of homologous recombination. Therapies 
that target alternative DNA repair mechanisms, such as 
poly(ADP)-ribose polymerase inhibitors, have the poten-
tiality to expand chemotherapy sensitivity and overcome 
drug resistance for COAD patients [34]. Besides genomic 
instability, the COAD patients carrying Vorinostat CSV 
interactions and the patients without Vorinostat CSV 
interactions showed distinct immune infiltration of 
tumor microenvironment. The infiltration of plasma cells 
was lower in the patients with Vorinostat CSV module 
interactions than the patients without Vorinostat CSV 
module interactions (Fig.  7H; P = 6.2E−03, one-sided 
Wilcoxon rank-sum test). The infiltration of M1 mac-
rophages (Additional file  1: Fig. S10D; P = 5.4E−05, 
one-sided Wilcoxon rank-sum test), M2 macrophages 
(Fig. 7I; P = 9.4E−03, one-sided Wilcoxon rank-sum test) 
as well as Follicular helper T Cells (Additional file 1: Fig. 
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Fig. 7 CSL and CSV module are related to distinct prognosis in COAD. A The CSL interactions with MAP2 in COAD. B Mutation frequency of partner 
genes of MAP2 in COAD. C The Kaplan–Meier survival analysis of classifications generated by MAP2 expression in the patients with module partner 
genes mutation. P values were tested by log-rank test. D The CSV interactions with Vorinostat in large intestine cancer cells. E Partner genes 
mutation frequency in COAD. F The Kaplan–Meier survival analysis of classifications generated from the patients with and without Vorinostat CSV 
module interactions. G The comparison of HRD scores for the two subgroup in F. The distribution of Plasma cells (H) and M2 macrophages (I) 
infiltration for 2 subtypes in F. P values were calculated by one-sided Wilcoxon rank-sum test
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S10E; P = 0.01, one-sided Wilcoxon rank-sum test) was 
distinctly higher in the patients with Vorinostat CSV 
module interactions than the patients without. M2 mac-
rophages had been reported to pro-cancer roles in vari-
ous types of cancers [35].

Discussion
In the present work, we found mutations of CR genes 
have genetic interactions with mutations in cancer 
genome, which can affect the drug response in cancer 
cells. Totally, we identified 625 CSL interactions and 288 
CSV interactions related to drug response. The majority 
of drug response-related CSL or CSV interactions have 
biological relationship revealed by protein interaction or 
pathway enrichment analysis. In TCGA, the drugs related 
CSL or CSV interactions have impact on patient progno-
sis by deregulating genome, epigenome, tumor micro-
environment and genomic stability. Furthermore, in 
patients with mutations of a CR set (EP300, MSH6, NSD2 
and TRRAP), COAD patients with MAP2 low expression 
showed better prognosis and could benefit more from 
Paclitaxel and Docetaxel.

Mutations of CRs have synthetic viable or lethal effect 
with other genes by deregulating methylation and gene 
expression, which were validated by co-expression and 
co-methylation analysis. Notably, majority of CRs genetic 
interactions showed positive correlation at methylation 
level, either in CSL or CSV interaction. Positive correla-
tion at methylation level may be a potential signature of 
CRs genetic interaction involved in cancer cells.

In the present work, we provided a novel perspective 
on the identification of personalized biomarkers for drug 
response and expand the scope of precision oncology 
via CRs genetic interactions. For instance, SMARCA4, a 
subunit of the SWI/SNF chromatin remodeling complex, 
and FLT1 (VEGFR1) were identified as a CSL interac-
tion in ovarian cancer cells. Most of the Small Cell Car-
cinoma of the Ovary Hypercalcemic Type (SCCOHT) 
patients carried variants in SMARCA4 [36]. SMARCA4 
mutation was associated with sensitivity to four FLT1 
(VEGFR1) inhibitors in ovarian cancer  cells, including 
axitinib, foretinib, pazopanib and sorafenib (Additional 
file 1: Fig. S11). Above results suggest SCCOHT patients 
with mutations of SMARCA4 may benefit from FLT1 
(VEGFR1) inhibitors. In addition, RB1 mutations com-
bined with CDK4/6 deficiency had synthetic viable effect 
in lung cancer cells, which indicates that the lung cancer 
patients with RB1 mutations could not be suggested to 
use Palbociclib (Additional file  1: Fig. S1). Experimen-
tal verification researches are warranted to elucidate the 
mechanism of drug sensitivity and resistance, which will 
be the major focus in our future studies.

Basic drug response was highly heterogeneous among 
tissue-specific cell lines [37]. Consequently, the drug 
response analysis in this study was performed on tissue 
specific cancer cells. However, the amount of specific 
cancer cell lines was small. Thus, we did not use FDR to 
identify the biomarkers with the limitation of statistical 
power restricted to the sample size. Nevertheless, drug 
response-related CSL and CSV interactions were identi-
fied by different functional screens and pharmacological 
datasets. We filtered drug response-related CRs genetic 
interaction by a combined P value via Fisher’s combined 
probability test. In addition, majority of the genetic inter-
actions have directly or indirectly PPI (Fig. 3A and B) and 
genomic characterization (Fig.  4A–F) in tissue specific 
cancers. The aforementioned results indicate that CSL 
and CSV genetic biomarkers are robust and reliable.

Protein dysregulation in cell lines is valuable and 
vital data resources to better understand and interpret 
the CRs genetic interactions. We focused the correla-
tion between some corresponding protein expression of 
mutation genes and the target genes dependency in lung 
cancer cell lines due to the limitation of sample numbers, 
including PCDH19-ZHX2, CHD7-YES1 (Additional file 1: 
Fig. S12). Furthermore, we speculated that mutation 
genes form synthetic lethal/viable effects with the target 
genes via the dysregulation of the corresponding protein.

Furthermore, we found that missense mutations con-
fer to the most effect of both CSL and CSV interactions 
in the functional screens datasets (shRNA, CRISPR1, 
CRISPR2), and the second mutation type is nonsense 
mutation (Additional file  1: Fig. S13  and S14). Further 
detailed researches are warranted to unravel the mecha-
nism of missense mutations confer to drug sensitivity and 
resistance in our future studies.

The mutation frequencies of CRs have high heteroge-
neity in various cancers. In the present work, we focused 
on single synthetic effects and several united effects 
related to CRs. A large number of high-order genetic 
interaction and drug combinations analysis warrant our 
future work, especially for the CRs belonging to same 
categories or sharing common functions.

Conclusions
Overall, we proposed an algorithm to identify CRs 
genetic interaction and systematically investigated the 
drug response effect due to the CSL and CSV interac-
tion. By mining drug response-related CR genetic inter-
actions in TCGA, we further discovered their special 
effect in transcriptional control, epigenetic changes, 
genomic instability, tumor microenvironment and sur-
vival outcome. Regardless, we believe that the biomark-
ers identified by our work will conductive to predict the 
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mechanism of drug response in cancer treatment and will 
guide precise targeting of clinical application.
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