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Abstract 

Glioma is the most common malignant tumors in the brain. Previous studies have revealed that, as the innate 
immune cells in nervous system, microglia cells were involved in glioma pathology. And, the resident microglia 
displayed its specific biological roles which distinguished with peripheral macrophages. In this study, an integrated 
analysis was performed based on public resource database to explore specific biological of microglia within glioma. 
Through comprehensive analysis, the biological characterization underlying two conditions, glioma microglia 
compared to glioma macrophage (MicT/MacT) as well as glioma microglia compared to normal microglia (MicT/
MicN), were revealed. Notably, nine core MicT/MicN genes displayed closely associations with glioma recurrence and 
prognosis, such as P2RY2, which was analyzed in more than 2800 glioma samples from 25 studies. Furthermore, we 
applied a random walk based strategy to identify microglia specific subpathways and developed SubP28 signature 
for glioma prognostic analysis. Multiple validation data sets confirmed the predictive performance of SubP28 and 
involvement in molecular subtypes. The associations between SuP28 score and microglia M1/M2 polarization were 
also explored for both GBM and LGG types. Finally, a comprehensive drug-subpathway network was established for 
screening candidate medicable molecules (drugs) and identifying therapeutic subpathway targets. In conclusions, the 
comprehensive analysis of microglia related gene and functional signatures in glioma pathobiologic events by large-
scale data sets displayed a framework to dissect inner connection between microglia and glioma, and identify robust 
signature for glioma clinical implications.
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Introduction
Glioma is the most common primary brain tumors, 
which arises from glial cells within the central nervous 
system (CNS). The World Health Organization (WHO) 
classifies glioma on a grading scale of I, II, III, IV. Low 
Grade Glioma (LGG) typically ranges from grades I–III, 
while high grade glioma (HGG) are categorized as grades 
III–IV [1]. Glioblastoma multiforme (GBM) is a grade 
IV glioma subtype which highly invasive, making tumor 
recurrence certain even after a complete resection [2]. 
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With the current standard of care, the median survival 
of patients diagnosed is approximately between 12 and 
15 months. Thus, there is a substantial need to discovery 
of more effective therapies to improve patient outcomes.

Microglia, the resident macrophages of the CNS, are 
directly derived from yolk-sac erythro-myeloid precursor 
cells (EMP) during embryonic development [3, 4]. These 
mono-nuclear cells are 5–10% of cells and distributed 
throughout the brain, and their functions include regu-
lating immune responses, supporting the homeostasis of 
the neurons, and maintaining the integrity of the blood–
brain barrier (BBB) [4]. In the healthy brain, there is little 
turnover for microglia, however, the blood macrophages 
exhibit a high turnover rate. Although these two immune 
cell sub-populations were major included in the brain 
immune system, the different functions of microglia and 
peripheral macrophages were observed in brain pathol-
ogy. And, the opposing effects of these two macrophage 
populations were reported in GBM tumors [5–7]. Fur-
thermore, the genes/proteins used to distinguish these 
two populations are not exclusively expressed by either 
microglia or macrophages, but are only enriched, bring-
ing more challenge for exploring the microglia specific 
biological roles.

Glioma microenvironment consists of various non-
neoplastic cells that play an important role in tumor 
growth, progression, immune response evasion [8–10]. 
Among these cells, microglia is composed of about 30% 
of tumor mass [10] and displayed a close interaction 
with neoplastic cells. Also, the glioma cells secrete vari-
ous cytokines acting as polarizing factors on the resident 
microglia. Recently, many single-molecular signatures 
which associated microglia and glioma cells were iden-
tified by low-throughput experiment strategy. In the 
study of Sarkar et al., the authors identified a novel factor 
Gas1 through which microglia arrest the growth of brain 
tumor initiating cells and displayed anti-tumor property 
[11]. And, study of Miyauchi et  al. showed that Nrp1 
could manipulate the immune functions of macrophages 
or microglia, and further exhibit its anti-glioma biologi-
cal roles [12]. At the aspects of patient prognosis, it was 
indicated that M2-type microglia hold an unfavourable 
prognostic value in glioma by low-throughput methods 
[13]. However, most of these previous researches identi-
fied a limited number of microglia signatures at the gene 
level, and confirmed the glioma relevance using lim-
ited number of datasets. Also, the biological differences 
between microglia and macrophages, as well as cell-spe-
cific involvement in glioma events, were not performed.

Here, we performed a systematically integrated analy-
sis based on several glioma-related microglia datasets. 
By comprehensively considering the difference between 
glioma-related microglia profiles and normal microglia 

profiles, as well as glioma-related microglia profiles and 
macrophage profiles, we explored the inner biological 
mechanisms involved in microglia at the glioma condi-
tion. In the meanwhile, the gene and subpathway-level 
signatures were specifically identified for microglia, and 
the closely connections between these signatures and 
glioma biological issues were revealed. Finally, a global 
drug-subpathway network was constructed for explor-
ing the complex drug target relationship and identifying 
candidate treatment target regions. Based on compre-
hensive analysis of large-scale microglia and glioma data 
sets, several novel gene and functional signatures were 
identified to link microglia features and glioma biological 
events, with the potential of further clinical applications.

Results
Transcriptomic datasets integrated analysis reveals 
microglia specific biological roles
To explore the specific biological roles of microglia 
at the glioma condition, we leveraged a series of pub-
lished RNA sequencing and microarray datasets from 
brain microglia and macrophage populations isolated 
from glioma as well as normal samples (see “Mate-
rials and methods”). Considering microglia specific 
biological characterization, we performed two kinds 
of differential expression analysis, tumor microglia 
compared to tumor macrophage (MicT/MacT, two 
datasets) and tumor microglia compared to normal 
microglia (MicT/MicN, four datasets). We identified 
the differentially expression genes based on each data-
sets from MicT/MacT and MicT/MicN (Fig.  1A, see 
“Materials and methods”). Take the GSE86573 as an 
example (see Additional file  1: Fig. S1), many known 
signatures CXCL13, CCL1 and FFAR2 were differen-
tially expressed in MicT/MacT. CXCL13 and CCL1 are 
all expressed in spinal astrocytes and previous stud-
ies have shown that CXCL13 played key roles in some 
microglia, macrophages, and endothelial cells after 
CNS infection [14, 15]. For the MicT/MicN results 
from GSE86573, HAS3, SOX10, AGT and SPAG6 were 
identified. SOX10, a transcription factor that interacts 
with Olig2, is important in non-neoplastic oligoden-
droglial development, and the dys-regulation of mRNA 
transcripts and protein expression are identified in a 
wider variety of CNS glial neoplasms [16, 17]. SPAG6 
is incorporated into the central apparatus, showing its 
unambiguously important roles in stabilizing the axo-
neme [18]. There exists consistent differentially results 
among multiple datasets both for MicT/MacT and 
MicT/MicN (Fig.  1A and Additional file  2: Fig. S2). 
Notably, 9 up-regulated genes were shared by four data-
sets in MicT/MicN. As shown in Fig. 1A, the functional 
results in MicT/MacT contained neurotransmitter 
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metabolic process, forebrain neuron differentiation, 
and positive regulation of odontogenesis (up-regulated) 
and immune related terms, such as regulation of T cell 
activation and positive regulation of lymphocyte acti-
vation (down-regulated). In MicT/MicN up-regulated 
results, some developmental and neural terms were 
involved, including metanephric mesenchyme devel-
opment (shared by 3 datasets) and regulation of axon 
guidance (shared by 2 datasets). Neuron differentiation 
related terms were identified from MicT/MicN down-
regulated results. Moreover, some tumor hallmarkers 
were also related with microglia specific genes, espe-
cially the MicT/MicN up-regulation genes (Fig. 1B).

To further explore the relationship among these 
microglia specific signature genes, we constructed a 
sub-network based on consistent differential expression 

genes which were shared by at least two datasets from 
MicT/MacT and MicT/MicN. Firstly, we obtained a 
high-quality interaction which were shared by at least 
two resources based on global protein–protein inter-
action (PPI) network derived from a previous study 
[19]. Then, a direct interaction among consistent sig-
nature genes based on PPI relation were constructed 
(Fig. 1C). The interactions with same directions within 
MicT/MacT or MicT/MicN were defined as “inside 
the group”, and the other interactions were defined as 
“outside the group”. As a result, many MicT/MicN sig-
natures were located in the center of this sub-network 
and closely interacted with other genes, such as JUN, 
MAP2K4, and LRRK2. And some MicT/MacT signa-
tures displayed “outside the group” interactions, such 
as PHGDH and MAGI1.

Fig. 1 Microglia specific biological characterization and interaction network. A Two level of comparison analysis, microglia tumor vs macrophage 
tumor (MicT/MacT) as well as microglia tumor vs microglia normal (MicT/MicN), were performed. Bra indicated the brain tissue, epi indicated the 
epilepsy tissue, and pos indicated the postmortem tissue. The enrichment analysis for biological functions were performed based on signatures 
which existed at least two data sets (overlapping signatures). For MicT/MacT comparison, the functional analysis for the signatures which existed at 
least three data sets were further performed. B The associations between overlapping signatures (shared by three data sets) and known functional 
hall-markers derived from gene sets in The Molecular Signatures Database (MsigDB). The significant value was calculated by hypergeometric test. C 
The interaction network for gene signatures involved in MicT/MacT and MicT/MicN groups. The hub or key genes were shown in the network
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9 MicT/MicN core gene signatures in glioma biology
The 9 common genes shared by four datasets in MicT/
MicN were defined as MicT/MicN core genes, and 
we further dissected the involvement of these micro-
glia specific genes in glioma biological issues, including 
tumor formation, recurrence and prognosis. A total of 34 
public datasets derived from GEO, TCGA, CGGA and 

PCAWG were obtained (see “Materials and methods”, 
Additional file 15: Table S1). As shown in Fig. 2A, these 
9 MicT/MicN core genes were closely associated with 
glioma biology. Some genes displayed consistent expres-
sion pattern across different glioma events. For example, 
OAS3 and MMP19 displayed higher expression levels in 
glioma samples compared to normal samples, recurrence 

Fig. 2 The 9 core MicT/MicN genes in glioma biology. A the performance of core genes in glioma Tumor/Normal, Recurrence/Primary, and 
High-risk/low-risk conditions. B An example for MMP19 gene from consistent signatures in GSE50161, GSE101113 and GSE83300. C the correlation 
map of core genes and tumor purity from four methods (Estimate, Lump, Ihc and CPE). The outside circle indicated GBM results and inside circle 
indicated LGG results. Red indicated positive correlation and blue indicated negative correlation. And star indicated significant results with 
FDR < 0.05. D The 5 genes with significantly positive and negative correlation were shown. And the prognostic performance of these genes in 
samples with high purity and low purity from CPE method were further evaluated. Red star indicated risk factors and blue star indicated protective 
factors. *0.05–0.01, **0.001–0.01, ***< 0.0001. The detailed survival results were displayed for P2RY2 gene. E The expression levels of P2RY2 signature 
in samples with different treatment results, PD: Progression Disease, SD: Stable Disease, PR: Partial Response, CR: Complete Response. F The 
associations between P2RY2 expression level and tumor characterization, including Wound healing, Indel neoantigens and Aneuploidy for both 
GBM and LGG types
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samples compared to primary samples, high-risk group 
compared to low-risk group (Fig.  2B). MMP19, as a 
member of the MMPs family, had been reported to pro-
mote tumor growth, invasion, metastasis and chemore-
sistance [20, 21]. And previous study had revealed that 
glioma patients with higher expression of MMP19 pro-
tein had shorter overall survival times [22], which was 
consistent with our findings. At the aspect of recurrence, 
the P2RY2 gene displayed higher expression level within 
three datasets, which was also consistent with the prog-
nostic results.

To test the cell source from immune cells or tumor 
cells, we further explored the associations between these 
MicT/MicN core genes and tumor purity, where were 
estimated by four methods based on TCGA GBM and 
LGG samples [23]. Among these genes, five genes dis-
played significant associations with tumor purity (see 
Fig.  2C and D). Notably, MMP19, LY9 and P2RY2 dis-
played negative association GBM and LGG purity. Pre-
vious researches had found that tumor purity was a 
prognostic factor for glioma samples [24]. And then, we 
divided all samples into low-purity and high-purity sam-
ples, and the prognostic performance of purity associated 
genes within these two groups were tested. As shown 
in Fig.  2D, most genes displayed good predictive per-
formance in LGG than GBM, reflecting the high-grade 
of GBM. Still, for both GBM and LGG samples, P2RY2 
displayed consistent risk predictive performance for 
both high-purity and low-purity groups, based on four 
methods (Fig.  2D). Furthermore, we tested the involve-
ment of these P2RY2 signature in clinical response 
within LGG type with adequate sample number (Fig. 2E). 
Consistent with the prognostic performance, the risk-
ing genes P2RY2 also displayed higher expression level 
in PD group than SD group (P-value = 0.008), PR group 
(P-value < 0.001) and CR group (P-value = 0.003). To 
explore the biological roles, it was observed that the 
expression level of P2RY2 was associated with wound 
healing function in GBM type and indel neoantigens and 
aneuploidy functions in LGG type (Fig. 2F).

Identifying microglia specific subpathways and crosstalk 
network
Subpathways, regions within the whole pathways, dis-
played closely association with disease formation and 
progression, which were revealed by our previous stud-
ies [25, 26]. We further developed a novel framework to 
identify microglia specific subpathways based on both 
MicT/MacT and MicT/MicN conditions (see Addi-
tional file  3: Fig. S3, Materials and Methods). In briefs, 
we firstly applied network-based random walk algo-
rithm to optimize candidate genes for consistent up-
regulated and down-regulated signatures of MicT/MacT 

and MicT/MicN groups. To validate the robust of ran-
dom walk results, we obtained another independent 
data set (GSE29949) to test the results of top 10 genes 
from MicT/MacT group. As shown in Additional file  4: 
Fig. S4, nine of ten up-regulated genes displayed signifi-
cant higher expression level in microglia than other cell 
types, including monocyte and dendritic cell. And for 
down-regulated genes ranked by random walk, consist-
ent expression patterns were also observed. Secondly, we 
obtained subpathway list and calculated the subpathway 
score by comprehensive considering different dysregu-
lated impacts. And a random strategy (5000 times rand-
omization) was applied to evaluate the significance of all 
subpathways. As a result, a total of 1/34 up-regulated/
down-regulated subpathways from MicT/MacT, and 
18/46 up-regulated/down-regulated subpathways from 
MicT/MicN were identified (see Additional file  5: Fig. 
S5). Notably, four subpathways were shared by MicT/
MacT down-regulated and MicT/MicN down-regulated 
results, including four subpathways from Regulation 
of Action Cytoskeleton (Path: 04810) pathway. Finally, 
based on four types of microglia specific subpathways, 
we utilized gene overlapping to construct a subpathway 
crosstalk network. As shown in Additional file 6: Fig. S6, 
the subpathways with same dysregulated direction dis-
played closely interactions and most of these subpath-
ways (68/82) were down-regulated. Many subpathways 
from Axon guidance, Natural killer cell mediated cyto-
toxicity, and Leukocyte transendothelial migration were 
the hub subpathways, and four shared subpathways were 
located in the center of this network.

Microglia subpathways associated with glioma biology
Based on the available glioma data sets used in Fig. 2A, 
we further explored the associations between micro-
glia specific subpathways and glioma biological events 
(see “Materials and methods”). As shown in Fig. 3A, all 
these subpathways displayed two types of expression 
patterns. Most subpathways from Type I displayed 
risk expression pattern in glioma formation, recur-
rence and prognosis, whereas the subpathways from 
Type II displayed protective pattern. Type I subpath-
ways were majorly derived from Immune system and 
Cellular community classes, and Type II subpathways 
were derived from Cell motility, and Development and 
regeneration classes (see Additional file  7: Fig. S7). 
At the glioma biology, these subpathways displayed 
closely associations with tumor formation, especially 
the prognosis condition. Take the path: 04810_15 
(from Type II) as an example, this subpathway dis-
played higher expression pattern in tumor samples 
not normal samples, whereas the other subpathways 
from the same whole pathway (path: 04810) displayed 
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consistent higher expression pattern in normal sam-
ples. Next, we calculated the NES score for this sub-
pathway by using the ssGSEA method (see Fig.  3B 
and C). Similar as the expression pattern from previ-
ous result, this subpathway indeed displayed higher 

functional activity in tumor samples (GSE44971, 
P-value = 6.3E-05), and higher functional activity in 
recurrence samples (CGGA693, P-value = 6.8E-08).

Fig. 3 The associations between microglia subpathways and glioma biology. A The associations of genes involved in subpathways and glioma 
Tumor/Normal, Recurrence/Primary, and High-risk/low-risk conditions. The data analyzed were the same as Fig. 2A. And two types of subpathways 
were defined based on the association with glioma biology. B A subpathway graph of path: 04810_15 in KEGG database. C The subpathway activity 
calculated by ssGSEA method in two GEO datasets, GSE44971 (Tumor/Normal) and CGGA693 (Primary/Recurrence)
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A subpathway‑based risk signature for glioma prognosis
Our findings revealed that subpathways in the network 
were closely related with glioma prognosis, especially 
LGG type (see Fig. 3A). Therefore, we further performed 
a lasso-based strategy to construct a prognostic model 
based on 1185 glioma samples of integrated microarray 
datasets (see “Materials and methods”). As a result, 28 
microglia specific subpathways with best predictive per-
formance were identified and defined as SubP28 signa-
ture (see “Materials and methods”, Additional file 8: Fig. 

S8). And the detailed coefficient information of SubP28 
signature was provided in Additional file 16: Table S2. For 
the seven independent testing sets from CGGA, TCGA 
and PCAWG database, the samples with higher SubP28 
score displayed consistent poor survival results than 
samples with lower score (see Fig. 4A). When considering 
the aspect of tumor purity, we observed that the SubP28 
score of LGG samples was negatively related with tumor 
purity, however the GBM samples did not (see Addi-
tional file 9: Fig. S9A and B). Within the low-purity and 

Fig. 4 The predictive performance of SubP28 signature and immune infiltration association. A The K-M plot of SubP28 signature in independent 
testing sets from CGGA, PCAWG, and TCGA databases. B The SubP28 score in the Ivy Glioblastoma Atlas Project. Each column annotates 
subpathway activity in RNA-seq of an anatomically defined tumor compartment. C The associations between SubP28 signature and other microglia 
signatures of C8 gene sets from MsigDB database. D The associations of SubP28 score with GBM samples with different molecular sub-types and 
LGG samples with IDH1 mutation event. E The associations between SubP28 score and immune infiltration characterization
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high-purity LGG samples, the SubP28 score also predicts 
the patient survival with significant results (Additional 
file 9: Fig. S9C and S9D). In the meanwhile, the SubP28 
displayed independently predictive performance when 
considering other clinical factors such as grade, age and 
IDH1 mutation (see Additional file 9: Fig. S9E).

Furthermore, we quantified our SubP28 signature in 
data from the Ivy Glioblastoma Atlas Project (IGAP), 
which performed RNA-seq on microdissections of gli-
oma anatomical structures from hematoxylin and eosin 
(H&E) staining [Ivy Glioblastoma Atlas Project. http:// 
gliob lasto ma. allen insti tute. org]. The higher functional 
activity of SubP28 signatures were enriched in samples 
from the leading edge of invading glioma and in infil-
trating tumor regions. And these subpathway signatures 
displayed lower activity in cellular tumor and pseudopali-
sading cells (see Fig.  4B). To test the microglia associa-
tion of our SubP28 signature, we further obtained several 
microglia related sets from MsigDB database and calcu-
lated the significance of overlapping using the hypergeo-
metric test. As shown in Fig.  4C, the SubP28 signature 
displayed close association with other microglia (MG) 
signature.

The glioma samples with different subtypes displayed 
different prognostic results, and the difference of the 
SubP28 score between samples with GBM molecular 
subtypes was also observed (see Fig.  4D). The samples 
with mesenchymal and neural types exhibited higher 
SubP28 score than other types. For LGG, we further 
explored the associations between SubP28 score and 
IDH1 mutation. The results showed that LGG samples 
with IDH1 wide type displayed higher SubP28 score. In 
the meanwhile, the SubP28 displayed significant predic-
tive performance in LGG samples with IDH1 wide type 
(see Additional file 10: Fig. S10). The correlation analyses 
revealed that the SubP28 score was positively related with 
macrophage regulation function, and negatively related 
with CD4 T cells (see Fig. 4E). Notably, the SubP28 score 
was also positively related with Macrophage M2 type (a 
tumor promoting factor), which was consistent with its 
risk maker in the prognostic results.

SubP28 related with microglia states for both GBM 
and LGG
To further explore the associations between SubP28 
signature and microglia cell state, we calculated the 
microglia score for TCGA GBM and LGG samples by 
using the ssGSEA method. And the homeostasis marker 
(CX3CR1, CSF1R, P2RY12, and TMEM119), M1 marker 
(IL12B, IL12A, IL23A, TNF, NOS2, and CXCL10) and 
M2 marker (RETNLB, IL10, ARG1, and MRC1) were 
utilized for correlation analysis. As shown in Fig. 5A, the 
SubP28 score of LGG samples were positively related 

with microglia homeostasis condition, which was not 
for GBM samples. And for microglia M1 and M2 condi-
tions of GBM samples, the SubP28 score was positively 
related with microglia activity. It implied the possible 
mechanism that GBM was majorly consisted of M1/M2 
microglia than ones of LGG samples, which was consist-
ent with previous findings. When considering the molec-
ular subtypes and IDH1 mutation, we further observed 
that M1 and M2 specific associations (see Fig.  5B). It 
was shown that the SubP28 score displayed positive cor-
relation with M1 markers within LGG samples without 
IDH1 mutation. For GBM molecular subtypes, the posi-
tive correlations with M1 and M2 markers were special-
ity involved in neural types. Furthermore, we utilized two 
single-cell RNAseq data sets of glioma to test the SubP28 
signature in multiple cells. And it was observed that the 
SubP28 signature was specific involved in microglia and 
oligodendrocytes (GSE84465 and GSE89567, see Addi-
tional file 11: Fig. S11).

Drug‑subpathway network reveals novel treatment 
strategies
To predict the drug sensitivity in high SubP28 or low 
SubP28, we systematically evaluated the association 
between SubP28 score and response sensitivity to anti-
neoplastic agents. We obtained the drug response data 
from three resources, (1) Genomics of Drug Sensitivity 
in Cancer (GDSC) database for GBM and LGG cell lines 
[27], (2) Human Glioma Cell Culture (HGCC) cohort, 
which reported an integrated pharmacogenomic analysis 
of 100 patient-derived GBM cell cultures treated by 1544 
drugs [28], (3) the predicted results from Elastic Net pre-
diction model (LENP), which predict the response sen-
sitivity to antineoplastic compounds for TCGA tumor 
types, including GBM and LGG [29]. Using the half 
maximal inhibitory concentration (IC50) value, we calcu-
lated the correlation relationship between IC50 of drug/
molecules and SubP28 score. Combining the correlation 
results and drug treatment information, we obtained 
two candidate drug sets, (1) the drugs displayed higher 
response sensitivity in cell lines with high SubP28 score, 
(2) the drugs displayed higher sensitivity with low SubP28 
score (see Additional file 12: Fig. S12). Among the drug 
set i, Lapatinib, a drug for BRCA treatment was identified 
as sensitive molecule within high SubP28 score group. In 
the meanwhile, Gemcitabine, Methotrexate, and 5-Fluo-
rouracil were identified to be more sensitive in cases with 
low SubP28 score.

To explore the detailed associations between anti-
neoplastic compounds and 28 microglia subpathways, 
we constructed a multi-omic integrated network based 
on HGCC resource (see “Materials and methods”). As 
shown in Fig. 6, many microglia specific subpathways 

http://glioblastoma.alleninstitute.org
http://glioblastoma.alleninstitute.org
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were targeted by many candidate drugs from three 
omics levels, such as path: 03013_19, path: 03008_9, 
path: 04621_7, and path: 04010_8. And most of these 
subpathways belonged to the risk subpathway set 
within the SubP28 model. And the different subpath-
ways (_7 and _8) from the same pathway (path: 04621) 
displaying opposite prognostic pattern also shared 

some drugs, such as Clofarabine, Dasatinib, and Thap-
sigargin. Notably, the path: 04010_8 was enriched by 
GBM related genes, and GBM mutation genes, includ-
ing RAC2, NFKB1, RAC1 (disease gene) and MAP4K3, 
and MAP3K1 (mutation). Also the risk path: 04670_9 
was also enriched by GBM related genes, showing its 
potential roles as the treatment target in the clinical 
trails.

Fig. 5 A The association of SubP28 score and microglia homeostasis, M1 and M2 scores for both GBM and LGG types. B The correlation of SubP28 
score with microglia conditions when considering GBM molecular subtypes, and LGG IDH1 mutation conditions
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Discussion
In this study, we performed comprehensive analysis for 
identifying microglia specific gene and subpathway sig-
natures and exploring their associations with glioma biol-
ogy based on large-scale transcriptomic datasets. Among 
the gene signatures, P2RY2 displayed predictive perfor-
mance in glioma patients when considering other clinical 
factors such as tumor purity. Furthermore, the subpath-
way-level risk model, subP28, were constructed as a 
functional signature for predicting patient prognosis and 
clinical treatment response. Finally, the complex asso-
ciations between these subpathways and candidate drugs 
were explored. All these findings indicated inner evi-
dence for connecting microglia and glioma, also provided 
core signatures for glioma prognostic, drug response and 
clinical treatment guidance.

Among the MicT/MicN group, nine consistent up-reg-
ulated genes were identified by four datasets. And these 
genes displayed closely associations with glioma forma-
tion, recurrence, and prognosis events. Notably, there 
exists connection between P2RY2 signature and glioma, 

both in low-purity and high-purity samples. Several 
subtypes of the P2Y receptors and their functions have 
been identified in microglia. A previous study found that 
upregulation of the P2RY2 is detected in macrophage/
microglia after spinal cord injury [30]. P2RY2 expres-
sion was also found to be increased in activated micro-
glia. In mice model, P2RY2 is an important receptor for 
the recruitment and activation of microglia [31]. Among 
the purinergic receptors that are activated by ATP, P2RY2 
could regulates cell proliferation in various tumors, such 
as lung and bladder cancer [32, 33]. Moreover, P2RY2 up-
regulation occurs in response to stress or injury in blood 
vessels and epithelium, and has been linked to the stimu-
lation of smooth muscle growth [34, 35]. Thus, the novel 
mechanisms of P2RY2 up-regulation and function in the 
nervous system warrant further investigation, providing 
new strategies for the treatment and management of cor-
responding brain diseases.

Based on the global random walk, the microglia spe-
cific subpathways were identified. The subpathways, dif-
ferent regions within whole pathway, displayed more 

Fig. 6 The drug-subpathway network in HGCC. The network shows the subpathways (squares) that could be targeted by drugs (diamonds) based 
on three level of omics data from HGCC database. The associations between genes within subpathway and three level datas are denoted by colors 
in the ring chart. The color of subpathway and drug indicates the pathway class and drug class. The subpathway classification (risk or protective) is 
denoted by the color of the square border. The edge width indicated the number of associations between drug and corresponding subpathway at 
three levels. The size of subpathways increase with the degree which reflects the associations with drugs
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specificity than whole pathway and more robust than 
gene-level signature. As shown in Fig.  3A, the differ-
ent subpathway signatures derived from the same path-
way indeed displayed different patterns, such as Path: 
04810_15. Similarity, we also observed that this subpath-
way displayed higher activity in samples with mesenchy-
mal type (Additional file 13: Fig. S13A) and samples with 
IDH1 wide type (Additional file 13: Fig. S13B). And the 
similar results were also shown in another independent 
datasets (Additional file 13: Fig. S13C).

Glioma cells secrete various cytokines and chemokines 
acting as chemo-attractants and polarizing factors on 
the resident microglia [10]. In tumor microenvironment, 
infiltrating microglia adopt different activation states 
between antitumor M1 and protumor M2 phenotypes, 
and these functional phenotypes are defined by differ-
ential expression of surface markers, secreted cytokines, 
and roles in immunoregulation [36]. Activated microglia 
assume the M1 phenotype characterized by the expres-
sion of STAT1 and are capable of stimulating antitumor 
immune responses by presenting antigens to adaptive 
immune cells, producing proinflammatory cytokines, and 
phagocytosing tumor cells. In comparison, the alterna-
tively activated pathway, M2 is characterized by expres-
sion of the scavenger receptors, intracellular STAT3 
and the production of immunosuppressive cytokines. 
M2 polarization prevents the production of cytokines 
required to support tumor-specific  CD8+ T,  CD4+ Th1, 
and Th17 cells and promotes the function of tumor-
supportive  CD4+ regulatory T cells [37]. Recent studies 
indicate that glioma cells induce a mixed population of 
GAMs expressing both M1-and M2-related molecules 
[38]. And in this study, the microglia specific SubP28 
score was positively related with macrophage M2 condi-
tion, which was also the high risk factor in glioma prog-
nosis (see Fig.  4E). The concept of GAMs playing a key 
role in glioma pathobiology has been verified in recent 
studies that demonstrated reduction of glioma growth 
after macrophage ablation or pharmacological inhibi-
tion [39]. Furthermore, we systematically compared our 
SubP28 signatures with several glioma functional sets 
[40–42]. As shown in Additional file 14: Fig. S14, it was 
shown that SubP28 shared many overlapping genes with 
microglia/macrophage gene sets, and glioma NPC2 & 
MES conditions. In the meanwhile, these exists no asso-
ciations with SubP28 signatures and cell cycle characteri-
zation (G1/S and G2/M sets).

To comprehensively explore specific biological roles 
involved in microglia not in macrophage, we searched 
and obtained datasets from brain tissues which contained 
both microglia/macrophage and glioma/normal infor-
mation. Some datasets derived from blood or other fluid 
tissue were removed, which provided limited resource 

for resident microglia functional exploration. With the 
development of more available datasets, the gene and 
subpathway signature will be further confirmed as their 
clinical roles. We conclude that engaging microglia sig-
natures identified, reflecting the immune roles within the 
microenvironment of glioma, will lead to novel therapies 
that improve the outcome of patients suffering from this 
terrible disease.

Materials and methods
Gene expression data sets
In this study, available gene expression datasets were 
identified from Gene Expression Omnibus (GEO) data-
base by specifically choosing only studies that performed 
gene expression analysis of both resident microglia 
and macrophages from brain tissue in glioma condi-
tion. Datasets utilized for microglia integrated analy-
sis included GSE65868, GSE86573 and GSE80338. The 
disease condition (glioma or normal) and cell popula-
tions (microglia or macrophage) were obtained from the 
previous researches. Two species involving mouse and 
human were included, and gene IDs conversation were 
performed using R package org.Hs.eg.db. Within the 
GSE86573, the blood tissue was not considered, and the 
samples from brain tissue were regarded as normal sam-
ples. Within the GSE80338, epilepsy and postmortem 
samples were respectively regarded as normal samples.

To explore the biological roles of microglia gene or 
functional signatures in glioma pathology, large amount 
of gene expression data sets with glioma clinical informa-
tion were obtained from GEO, The Cancer Genome Atlas 
(TCGA), Chinese Glioma Genome Atlas (CGGA), and 
Pan-Cancer Analysis of Whole Genome (PCAWG) data-
bases. And a total of 26 data sets were included. These 
data sets contained three kinds of glioma events, includ-
ing glioma and normal samples, recurrence and primary 
samples, and samples with prognostic information. The 
detailed description of all gene expression data sets men-
tioned above were given in Additional file 15: Table S1.

Differentially expression analyses
We utilized two methods to respectively performed dif-
ferentially expression analyses for RNA sequencing 
and microarray datasets. For RNA sequencing datasets 
(GSE86573 and GSE80338), we utilized R DEseq2 pack-
age to identify differentially expression genes based 
on the raw count matrix. For one microarray dataset 
(GSE65868), we identified the differentially expression 
genes based on FPKM expression matrix by integrating 
fold change and T-test methods. For all datasets, the dif-
ferentially expression genes were obtained by absolute 
log2-based fold change > 1.5 and false discovery rate 
(FDR) or adjusted P-values < 0.05.



Page 12 of 14Zhang et al. Journal of Translational Medicine          (2022) 20:277 

Functional exploration for microglia specific genes
Based on the consistent differential expression genes 
shared by 2 MicroT/MacroT datasets, and 2 or 3 MicroT/
MicroN datasets, we further performed functional 
enrichment analysis by using the R clusterProfiler pack-
age [43]. And the Gene Ontology (GO)—Biological 
Process (BP) terms were considered. Also, the tumor 
hallmark gene sets were obtained from the molecular 
signature database (MsigDB) for functional association 
analysis. And hypergeometric distribution test was used 
to evaluate the associations between consistent genes and 
known hallmarkers, and the P-values were calculated as 
follows:

where m was the number of the human whole genome, 
and t was the number of genes included in one hallmark 
gene set. The number of consistent signature genes was 
n, and r genes out of n genes were included in the hall-
mark gene set.

A novel framework for identifying microglia specific 
subpathways
For exploring the biological roles of microglia at the func-
tional level, we developed a novel framework to identify 
microglia specific subpathways. As shown in Additional 
file 3: Fig. S3, we firstly obtained a high-quality PPI net-
work from a previous study [19], which displayed pro-
tein–protein interaction from at least two data resources. 
Based on the global network, we further performed a 
global impact analysis to rank candidate mRNAs by using 
random walk algorithm [44]. And the consistent gene 
signatures of microglia, shared by two data sets in MicT/
MacT group and three data sets in MicT/MicN group, 
were regarded as seed nodes. As a results, a total of 55/36 
up-regulated/down-regulated genes from MicT/MacT 
group, and 59/5 up-regulated/down-regulated genes 
from MicT/MicN group, were respectively annotated 
into network as seed. And, the random walk algorithm 
was performed four times to evaluate the global impact 
of seed nodes at different aspects as follows:

where W was the column-normalized adjacency matrix 
of the global network, which consisted of 0 and 1.  Pt was 
a vector, in which a node in the network held the prob-
ability of finding itself in this process up to step t. The ini-
tial probability vector, P0, was constructed in such a way, 

P = 1−

r−1
∑

x=0

(

t
x

)(

m− t
n− x

)

(

m
n

)

Pt+1 = (1− r)WPt + rP0

where equal probabilities were assigned to all seed nodes 
and the sum of their probabilities was equal to 1. Addi-
tionally, the restart of the walker at each step was the 
probability, r (r = = 0.7). When the difference between 
 Pt and  Pt+1 fell below  10−6, the probabilities reached a 
steady state. Finally, each gene in the network was given a 
score according to the values in the steady-state probabil-
ity vector, P∞. After random walk algorithm, each can-
didate gene get four scores (score_up and score_down) 
from both MicT/MacT and MicT/MicN groups.

Then, we obtained subpathway list from R subpath-
wayMiner package [26], which contained at least three 
gene components from 1773 subpathways. For each sub-
pathway, we calculate the subpathway score based on the 
gene score from random walk analysis. And, the formula 
was provided as follow:

where Scoreup/Scoredown was respectively the mean score 
of genes within one subpathway for MicT/MacT and 
MicT/MicN groups. For each subpathway, we further 
performed 5000 random perturbation by random assign-
ing score which was equal to original gene number to cal-
culate the significance as follows:

where was the true subpathway score and was the ran-
dom results. From this analysis, the subpathways with 
P-value < 0.001 were identified as the microglia specific 
subpathways. Based on these subpathways, a subpathway 
network was also constructed if any two subpathways 
shared more than seven gene components.

The associations between microglia subpathways 
and glioma biology
For all glioma data sets, we took three types of com-
parison into consideration, including tumor compared 
to normal samples, recurrence compared to primary 
samples, high-risk compared to low-risk samples. And 
the R limma package was utilized to perform the dif-
ferentially expressed analysis. For this analysis, we iden-
tified differentially expressed genes (up-regulated and 
down-regulated both considered) based on the adjusted 
P-value < 0.05 and absolute log2-based fold-change > 0.5. 
And the univariate cox analysis was performed to identify 
high-risk or low-risk genes based on the P-value < 0.01 
and absolute HR > 1. And the data sets without signifi-
cant gene results were removed. And then, the overlap-
ping between genes within subpathway and up-regulated 
(high-risk) or down-regulated (low-risk) genes from each 
data set were evaluated using the hypergeometric test 

Scoresubpath = Scoreup − Scoredown

P - valuesubpath =
|ScoreRandom > ScoreTrue|

5000



Page 13 of 14Zhang et al. Journal of Translational Medicine          (2022) 20:277  

method. And P-value < 0.05 was considered as the signifi-
cant associated result.

Identification of subpathway prognostic model
We constructed a prognostic model by utilizing expres-
sion profiles of microarray platform as the training set. 
There were systematic deviations between the microar-
ray datasets generated by different laboratories at differ-
ent times. Therefore, we firstly utilized Combat function 
in the R SVA package to eliminate the batch effect and 
formed a merged training set. Based on the training 
set, we further calculated the NES enrichment score 
for each subpathway. And then, a generalized linear 
model by a maximum likelihood estimation with the l1 
penalty (Lasso), implemented in R glmnet package was 
performed. The optimal parameter λ was identified by 
choosing the minimum over a grid and subpathway sig-
natures with non-zero coefficients were selected.

A drug‑subpathway network was constructed based 
on HGCC resource
Based on the HGCC resource [28], we obtained the drug 
IC50 information, as well as gene expression, methyla-
tion and CNV data for each GBM cell line. Firstly, based 
on the median IC50 value as cutoff, we defined two cell 
line groups, high IC50 groups and low IC50 groups. And 
then, based on these two groups, we respectively identi-
fied drug related genes based on gene expression level, 
methylation condition, and CNV data. For gene expres-
sion profiles, the T-test was used. And for methylation 
and CNV data, the wilcoxon rank sum test was used. 
And the cutoff for differentially expression (DE) analy-
sis was set as adjusted P-value < 0.05. Finally, we evalu-
ated the associations between DE genes and 28 microglia 
subpathways by using the hypergeometric test method. 
And the result with P-value < 0.05 was considered as the 
significant associations. An integrated drug-subpathway 
network was constructed by considering three level of 
omics data.
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Additional file 1: Figure S1. Valcanic map of GSE86573 as an example. 
The differential expression result in MicT/MacT group (A) and MicT/MicN 
group (B). Red nodes indicated up-regulated genes, and blue nodes 
indicated down-regulated genes. Glioma related genes were shown in 
the maps.

Additional file 2: Figure S2. The number of up-regulated and down-
regulated genes for MicT/MicN group based on different cutoffs. And the 
overlapping results among any two data sets was shown.

Additional file 3: Figure S3. The framework for constructing microglia 
specific subpathway network. And the overall framework contained 
three steps: i) random walk algorithm based on global network to rank 

candidate genes, ii) identification of microglia specific subpathways, iii) 
Construct subpathway network.

Additional file 4: Figure S4. The verification of top 10 up-regulated and 
10 down-regulated genes after random walk analysis from MicT/MacT 
group, using an independent data set, GSE29949.

Additional file 5: Figure S5. The subpathway scores for representative 
subpathways from MicT/MacT and MicT/MicN groups. And the venn plot 
shows the associations among these subpathway results.

Additional file 6: Figure S6. The microglia subpathway network. The 
shape reflected the MicT/MacT and MicT/MicN groups. And the color 
reflected the up-regulated and down-regulated subpathways.

Additional file 7: Figure S7. The sankey plot shows the associations 
between two types of subpathways, total pathway, and pathway classes 
from KEGG database.

Additional file 8: Figure S8. The parameters selection in the Lasso 
method for identifying SubP28 signature.

Additional file 9: Figure S9. The SubP28 score, tumor purity and glioma 
survival. The correlation relationship between SubP28 score and tumor 
purity for GBM type (A) and LGG type (B) based on four methods as 
Fig. 2C. The predictive performance of SubP28 signature in high-purity 
LGG samples (C) and low-purity LGG sample (D) based on CPE method. (E) 
The univariate and multivariate cox results of SubP28 score, when further 
considering sex, grade, age, other clinical factor.

Additional file 10: Figure S10. The predictive performance of SubP28 
signature in LGG samples without IDH1 mutation.

Additional file 11: Figure S11. The SubP28 score of each cell type in two 
single cell RNA sequencing data, GSE84465 (A) and GSE89567 (B).

Additional file 12: Figure S12. The association between SubP28 score 
and candidate drugs. (A) The associations between SubP28 score and IC50 
value of candidate drugs, from three databases including GDSC, HGCC 
and LENP. The candidate drugs used for treating other tumor types were 
shown.

Additional file 13: Figure S13. The associations of path: 04810_15 activ-
ity with glioma molecular subtypes and IDH1 mutation conditions. (A) 
TCGA GBM dataset. (B) TCGA LGG dataset. (C) GSE72951.

Additional file 14: Figure S14. The associations between SubP28 signa-
ture and previous glioma functional sets.

Additional file 15: Table S1. All the datasets used in the manuscript.

Additional file 16: Table S2. The detailed coefficient for each subpath-
way in SubP28.
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