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Abstract 

Background: To identify the critical genes in the onset and progression of Immunoglobulin A nephropathy (IgAN) 
and to explore its immune cell infiltration feature.

Methods: Differentially expressed genes (DEGs) were firstly screened from 1 blood-derived dataset GSE73953 and a 
glomerulus derived dataset GSE93798 through limma analysis, overlap genes omitting and weighted gene correla-
tion network analysis (WGCNA) and further reduced according to expression pattern and correlation with the clinical 
features: eGFR and proteinuria, followed by external validation using the GSE37460 dataset and an IgAN cohort. In 
addition, the CIBERSORT tool for immune cell infiltration analysis, ceRNA network construction and Connectivity Map 
(CMAP) were also performed.

Results: A total of 195 DEGs were found, and among them, 3 upregulated (ORMDL2, NRP1, and COL4A1) and 3 
downregulated genes (ST13, HSPA8 and PKP4) are verified to correlate clinically, and finally ORMDL2, NRP1 and 
COL4A1 were validated in patient cohort and with the ability of IgAN discrimination (highest AUC was COL4A1: 
97.14%). The immune cell infiltration results revealed that significant differences could be found on resting memory 
CD4 T cells, activated NK cells, and M2 macrophages between control and IgAN.

Conclusions: Our results demonstrated here that significantly upregulated DEGs: ORMDL2, NRP1 and COL4A1, could 
be served as the diagnostic marker for IgAN, and dysregulated immune cell infiltration hinted possible the immune 
system intervention point in the setting of IgAN.
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Background
Immunoglobulin A nephropathy (IgAN), characterized 
by glomerular IgA deposits on renal biopsy, is one of the 
most common primary glomerular disease and remains 
a leading cause of chronic kidney disease and end-stage 
kidney disease (ESKD) [1–3]. The common clinical 
manifestations include hematuria, fever and different 
degree of proteinuria [4, 5]. The estimated incidence of 
IgAN is about 2–10 per 100,000 person-years [6, 7] and 
a higher disease burden has been reported in the East 
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Asian countries, including China [2]. To realize quick 
diagnosis using a less invasive methodology, blood-based 
biomarkers rather than renal biopsy that could be more 
preference in early indication and urgently needed in the 
clinical practice.

Recent advances in the microarray and transcriptomic 
technology allow us to obtain a landscape view of the dif-
ferentially expressed genes (DEGs) in a certain kind of 
disease [8–10]. Several studies have been performed to 
assess the expression profiling of the samples from IgAN. 
For example, Nagasawa et al. [11] performed the micro-
array using 15 IgAN patients derived peripheral blood 
mononuclear cells (PBMCs), Liu et  al. [12] employed 
microarray analysis of the glomerular compartment of 
renal biopsy specimens from 19 IgAN patients and Guo 
et al. [13] used microarrays to analyze the transcriptome 
of microdissected renal biopsies from 27 patients with 
IgAN. However, certain bias could be presented in these 
isolated experiments due to the complicated human 
genetic background and different experimental condi-
tions. Integrative bioinformatics analysis can provide the 
possibility of multiple group verification of the DEGs, 
thereby facilitating the process of novel and reliable bio-
markers identification.

In the present study, we aimed to identify the critical 
genes in the onset and progression of IgAN via integra-
tive employment of blood-based microarray data and 
glomerular tissue-related data, thereby identifying the 
novel biomarkers for IgAN diagnosis. Moreover, we also 
explored immune cell infiltration feature using the glo-
merular-related data to discover the possible treatment 
intervention for IgAN.

Methods
Patients recruitment and clinical data collection
A total of 7 IgAN were recruited from the Department 
of Nephrology, the First Affiliated Hospital of Soochow 
University for peripheral blood mononuclear cells 
(PBMCs) collection from June 2021 to September 2021. 

The diagnosis of IgAN were based on The Oxford Clas-
sification for IgAN and our previous publication [14, 
15], and all the included IgAN patients were primar-
ily confirmed with histological features of deposition 
of IgA in the mesangial area by immunofluorescence. 
Patients who were presented with secondary IgAN, 
such as allergic purpura, chronic hepatitis B, were 
excluded. The clinical data include gender, serum cre-
atinine, estimated glomerular filtration rate (eGFR), 
and 24 h proteinuria was collected (Table 1). Moreover, 
PBMCs were also obtained from 5 healthy volunteers as 
controls. The current study protocol was approved by 
the Ethical Committee of the First Affiliated Hospital 
of Soochow University and adhered to the requirement 
of the Declaration of Helsinki. All the subjects were 
required to provide written informed consent.

Microarray data and related clinical data acquisition
The mRNA expression and related clinical data about 
IgAN were downloaded from Gene Expression Omni-
bus (GEO) (http:// www. ncbi. nlm. nih. gov/ geo/) using 
the search terms “Immunoglobulin A nephropathy”, 
“IgA nephropathy”, “IgAN” and “expression profil-
ing by array”. The gene expression microarray datasets 
GSE73953, GSE93798 and GSE37460 were selected and 
downloaded. The criteria for dataset selection were as 
follows: human clinical samples with detailed clinical 
and gene expression information. Among these data-
sets, GSE73953 and GSE93798 were used for differen-
tially expressed genes (DEGs) screening, and patient 
eGFR and proteinuria data downloaded from The 
Nephroseq v5 analysis engine (https:// v5. nephr oseq. 
org) was used for correlated gene screening. GSE37460 
and above cohort containing IgAN and control subjects 
were used for expression-level validation of the 6 iden-
tified eGFR and proteinuria correlated genes at differ-
ent tissue composition levels. Detailed information on 
these microarray datasets is listed in Additional file 11: 
Table S1.

Table 1 Patients characteristics

IgAN IgA nephropathy, eGFR estimated glomerular filtration rate
a Negative in the qualitative test

Parameters Healthy controls (n = 5) IgAN (n = 7)

Age (mean, range) 44.8 (38–54) 39.4 (24–62)

Gender (female, %) 3(60%) 3(43%)

Serum creatinine (mean ± SD, µmol/L) 67.12 ± 15.28 109.77 ± 21.20

eGFR (mean ± SD, mL/min/1.73  m2) 103.91 ± 8.09 (94.56–115.23) 65.78 ± 6.77

24 h urine protein (mean ± SD, g/24 h) Negativea 0.86 ± 0.57

http://www.ncbi.nlm.nih.gov/geo/
https://v5.nephroseq.org
https://v5.nephroseq.org
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Identification of the candidate genes via integrated 
bioinformatic analysis
The entire process of the analysis was shown in Fig. 1 and 
the detailed screening of the DEGs contains 3 steps as 
follows:

Data processing
The “limma” package in R [16] (http:// www. bioco nduct 
or. org/) was used for background correction, normaliza-
tion and differential expression analysis using IgAN and 
control samples from GSE73953 and GSE93798. Initial 
screening of the DEG was performed using the p < 0.05 
as the criteria, and was illustrated as Venn maps via an 
online tool (http:// bioin forma tics. psb. ugent. be/ webto 
ols/ Venn/) (Fig.  2A). Then the intersected DEGs from 
the 2 datasets were employed in the following analysis 
(Fig. 2B).

Construction of weighted gene co‑expression network 
analysis (WGCNA)
The “WGCNA” package in R [17] was employed for the 
biologically meaningful module information mining 
based on pairwise correlations between genes from high-
throughput data. Co-expression networks were built 
using the intersected DEGs and corresponding clinical 
information from above step to illustrate strong and weak 

correlations between genes. To fit for the scale-free net-
work, the square of the between genes correlation coeffi-
cient was calculated to pick up the optimal soft threshold 
5 (Fig. 2C, left), followed by the mean connectivity calcu-
lation of the corresponding soft threshold (Fig. 2C, right). 
Then, the adjacency and topological overlap matrix 
(TOM) similarity matrices were generated based on the 
selected soft threshold for modules detection (generating 
dendrogram), followed by the module assignment under 
the dendrogram (Fig.  2D) and correlation of the mod-
ules to the clinical traits to identify the important DEGs 
(Fig. 2E).

Clinical correlated genes identification and functional 
enrichment analysis
The Nephroseq v5 analysis engine (https:// v5. nephr oseq. 
org) provides the gene expression features and clinical 
characteristics. Pearson correlation analysis was per-
formed using the DEGs from 2.3.2 to identify the genes 
that correlated with eGFR and proteinuria. Finally, pro-
tective genes with a definition of eGFR negatively corre-
lated and proteinuria positively correlated were selected.

Gene Ontology (GO) annotation and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analyses were performed with the “clusterProfiler” 
package in R [18]. Disease Ontology (DO) enrichment 

Fig. 1 Flow chart to illustrate the analysis process of the present study

http://www.bioconductor.org/
http://www.bioconductor.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://v5.nephroseq.org
https://v5.nephroseq.org
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analyses were performed on DEGs using the “clusterPro-
filer” and “DOSE” packages in R [19].

Immune cells infiltration analysis
To quantify the relative proportions of infiltrating 
immune cells based on the gene expression matrices 
from above IgAN datasets (GSE93798 and GSE37460), a 

bioinformatics algorithm named CIBERSORT (https:// 
ciber sortx. stanf ord. edu/) [20] was employed for immune 
cell infiltrations calculation. The putative abundance of 
immune cells was estimated using a reference set with 
22 types of immune cell subtypes (LM22) with 1,000 per-
mutations. Violin plots were drawn using the “ggplot2” 
package in R to visualize the differences in immune cell 

Fig. 2 Identification of differentially expressed genes (DEGs) using intersection and weighted gene co-expression network analysis (WGCNA) of the 
datasets. A DEGs were obtained via p-value criteria from GSE73953 (Peripheral blood mononuclear cells) and GSE93798 (Glomerular part of human 
kidney). B Intersection was performed to obtain the common DEGs from A. C Scale-free topology model to identify the best beta value (β = 5) 
using the intersected common genes. D Gene dendrogram and module colors. E Module-trait relationship

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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infiltration between the IgAN and control samples. Cor-
relation analysis and visualization of 22 types of infiltrat-
ing immune cells were performed using the “corrplot” 
package in R. Moreover, the relationships between the 
clinical correlated DEGs and 22 types of immune cells 
were also visualized.

ceRNA network construction and connectivity map (CMAP) 
analysis
The interaction of DEGs identified from 2.3.3 with the 
possible miRNA were predicted using TargetScan (http:// 
www. targe tscan. org) database, and the further interac-
tion between miRNA and circRNA or lncRNA were 
constructed using StarBase (http:// starb ase. sysu. edu. 
cn) database. In order to simplify the interaction links, 
CircRNAs or lncRNAs candidates with the weak inter-
action with miRNAs were removed using the ClipExp-
Num software from StarBase. Moreover, Connectivity 
Map (https:// clue. io/), an online database that relates 
disease, genes, and drugs based on similar or opposite 
gene expression signatures, was used for potential drug 
prediction. Briefly, the DEGs were compared with the 
reference data from the database to obtain a correlation 
score (− 100 to 100), and the small molecule compounds 
with a mean coefficient less than − 98 were ranked and 
selected.

Real‑time reverse transcription PCR to verification 
of the clinical related genes
PBMCs were obtained from the IgAN and healthy con-
trols via density gradient centrifugation using the Ficoll 
reagents from Solarbio (Wuhan, China). RNA extraction 
was employed the RNAeasy reagent (Vazyme, Nanjing, 
China) whereas reverse transcription was performed 
using the HiScript III 1st Strand cDNA Synthesis Kit 
(Nanjing, China) according to manufacturer’s instruction, 
and real-time PCR was carried out using  SYBR® Green 
Master Mix (Vazyme, Nanjing, China) on the ABI Ste-
pOne PlusTM real-time PCR system. The Relative mRNA 
expression was calculated using the  2−ΔΔCt method in a 
triplicated manner. Primers were as described in Table 2.

Statistical analysis
Statistical analysis was performed using R version 4.1.0. 
Quantitative data are expressed as the mean ± standard 
deviation (SD), and qualitative data are expressed as 
numbers and percentages. Unpaired t-tests and Mann–
Whitney U tests were respectively used for parametric 
and nonparametric 2-group comparisons of quanti-
tative data. Correlation analysis between the clinical 
parameters and gene expression level was performed 
using Pearson correlation. The diagnostic efficacy was 
calculated by receiver operator characteristic (ROC) 

curves and area under the curve (AUC) using the “sur-
vivalROC” and “ROCR” packages in R. Unless specifi-
cally mentioned, p < 0.05 was considered statistically 
significant.

Results
Identification of the candidate genes using GEO datasets 
and gene enrichment analysis
To find critical genes involved in the IgAN development 
and progression, we employed the 1 GEO dataset using 
PBMCs samples (GSE73953) and 1 GEO dataset using 
the glomerular part of the human kidney (GSE93798) 
as the training sets to perform the DEGs analysis. After 
application of the criteria of p < 0.05, a total of 4583 and 
9072 genes were respectively found in GSE73953 and 
GSE93798 (Fig. 2A, B; Additional file 1) and the intersec-
tion of the genes are 1766 (Additional file 1). To further 
decrease the gene number, WGCNA was applied to con-
firm the IgAN phenotype-related genes (Fig. 2C–E) and 
a total of 426 genes were found (Additional file 2). After 
confirmation of the consistent expression pattern in 2 
datasets, a total of 86 up- and 109 down-regulated genes 
were found (Fig.  3A; Additional file  3). Then, we per-
formed the GO enrichment, KEGG pathway and disease 
ontology analysis (Fig.  3B–D), the results showed that 
response to unfolded protein, response to topologically 
incorrect protein and homeostasis of the cell number 
are the top 3 GO terms, MAPK signaling pathway, tran-
scriptional misregulation in cancer and Estrogen signal-
ing pathway are the top 3 KEGG pathways. For disease 
ontology terms, peripheral nervous system neoplasm, 
autonomic nervous system neoplasm and neuroblastoma 
ranked top 3 terms, and kidney disease and urinary sys-
tem disease ranked 5 and 6 among the top 10 terms.

Table 2 Primer information

Target name Primer

ORMDL2 F CAG CAT TCC TGT TGT CTG GACC 

R TGT CAG TAG CCG AGC CTT TCCT 

NRP1 F CTG TGA AGT GGA AGC CCC TAC 

R TGT GAG CTG GAA GTC ATC ACC 

COL4A1 F TGT TGA CGG CTT ACC TGG AGAC 

R GGT AGA CCA ACT CCA GGC TCTC 

ST13 F AGA AGT TCA ACC TAG GGC ACAG 

R GAG CTC CTG ACT GTC GTC TG

PKP4 F TCT GTT CAG GCA AAT GCA GCGG 

R TCT GTG GTC CAG AAG GTC AACC 

GAPDH F GTC TCC TCT GAC TTC AAC AGCG 

R ACC ACC CTG TTG CTG TAG CCAA 

http://www.targetscan.org
http://www.targetscan.org
http://starbase.sysu.edu.cn
http://starbase.sysu.edu.cn
https://clue.io/
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Identification of the genes of clinical significance
Since the Nephroseq v5 analysis engine allows to 
explore the relationship between gene expression lev-
els and clinical characteristics, we further performed 
the correlation analysis using the gene expression char-
acteristics and 2 most critical clinical characteristics 
in IgAN, eGFR and proteinuria (Additional files 4, 5). 
Using the protective genes defined in the methods part, 
we totally found 3 upregulated (ORMDL2, NRP1 and 
COL4A1; Fig. 4A, left) and 3 downregulated protective 
genes (ST13, HSPA8 and PKP4; Fig.  4A, right). More-
over, we also provided the correlation maps of these 
6 genes, and a relatively high correlation parameter 
R-value (≥ 0.45) and significant p-value (all < 0.05) were 
found (Fig. 4B). Via above 3-step of integrated bioinfor-
matics analysis and combination of the clinical charac-
teristics, a total of 6 genes were found.

Validation of the expression pattern and evaluation 
of diagnostic efficacy of above identified genes
To further validate the clinical significance of 6 genes, 
we employed 1 GEO dataset (GEO37460) and a small 
cohort of patients from our hospital to verify. We firstly 
confirmed our results in 2 training sets, GSE73953 and 
GSE93798 (Fig. 5A, B), and the results showed that con-
sistent up- and downregulated expression pattern and 
high AUC values of all the 6 genes according to the ROC 
curves. Further validation using the dataset of GSE37460 
revealed that significantly upregulated genes were 
ORMDL2, NRP1 and COL4A1, and significantly down-
regulated genes were ST13 and PKP4. Therefore, HSPA8 
is omitted in the following cohort analysis due to the 
absence of differences. Moreover, according to the results 
from ROC curves, highest AUC could be observed using 
the gene NRP1 and COL4A1 (both are 99.25%; Fig. 5C).

Fig. 3 Gene enrichment analysis. A The genes from the most relevant modules of above WGCNA were further classified based on the up-or 
downregulation and intersection was performed to obtain the gene with consistent pattern in 2 datasets (GSE73953 and GSE93798). B Top 10 GO 
term enrichment analysis of the genes from A. C Top 10 KEGG pathway analysis of the genes from A. D Disease ontology analysis of the genes from 
A 
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In our cohort, DEGs with consistent pattern were only 
confirmed on 3 upregulated genes, ORMDL2, NRP1 
and COL4A1 (Fig.  6A–C), but not on PKP4 and ST13 
(Fig.  6D–E). Moreover, according to the ROC curves, 
highest AUC could be observed using the gene COL4A1 
(97.14%) (Fig.  6F). These results suggested that signifi-
cantly upregulated genes ORMDL2, NRP1 and COL4A1 
could be served as the gene marker to differentiate IgAN 
and controls.

ceRNA network construction and CMAP results
Since non-coding RNAs (including circRNAs, lncRNA 
and miRNA) are considered to play an important role 
in the regulation of the function of mRNA. To better 
understand the regulatory network of mRNAs found in 
the above analysis, we constructed 2 ceRNA networks. 
The results about lncRNA-miRNA-mRNA network and 
mRNA-miRNA-circ-RNA network are shown in Fig. 7A, 
B (Additional file 6). Strong interactions could be found 
in the genes COL4A1, NRP1 and ORMDL2 with 6 miR-
NAs, 16 lncRNAs and 13 cirRNAs. These data provided a 

preliminary view of the regulatory network of our identi-
fied mRNAs.

Moreover, according to the expression profiling the 
DEGs from 2.3.3, a total of 17 small-molecule com-
pounds were identified as potential therapeutic agents 
from CMAP analysis (Table 3; Additional file 7).

Results of immune cell infiltration
The autoimmune disease property of IgAN made it nec-
essary to explore the possible dysregulation of immune 
cells, whereas the dataset GSE93798 providing the 
expression profiling data from glomerulus made it pos-
sible to fulfill this goal. According to the immune cell 
infiltration results (Fig. 8A; Additional file 8), significant 
difference could be found on naive B cells (p = 0.016), 
resting memory CD4 T cells (p < 0.001), resting and 
activated NK cells (p = 0.021 and < 0.001), M1 and M2 
macrophages (p = 0.016 and 0.020), activated mast cells 
(p = 0.038), and neutrophils (p < 0.001) between control 
and IgAN.

Moreover, the correlation of 22 types of immune cells 
were also calculated, the results revealed that naive B 

Fig. 4 Correlation analysis of DEGs and corresponding clinical characteristics of estimated glomerular filtration rate (eGFR) and proteinuria to 
identify the protective genes. Protective gene was defined as eGFR positive correlated and proteinuria negative correlated in downregulated genes 
whereas the opposite trend in upregulated genes. A A total of 6 genes were found, including 3 upregulated (left) and 3 downregulated protective 
genes (right). B Correlation maps of above-identified 6 genes were shown, including ORMDL2, NRP1, COL4A1, ST13, HSPA8 and PKP4
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Fig. 5 Validation of the expression pattern and evaluation of diagnostic efficacy of 6 clinical correlated genes using the GEO datasets. A In the 
dataset of GSE73953, significantly upregulated genes are ORMDL2, NRP1 and COL4A1, and significantly downregulated genes are ST13, HSPA8 
and PKP4. According to the ROC curves, the highest area under curve (AUC) could be observed using the gene ORMDL2, NRP1, HSPA8 and PKP4. 
B In the dataset of GSE93798, the same results were found on significantly upregulated and downregulated genes as that in GSE73953. According 
to the ROC curves, the highest AUC could be observed using the gene COL4A1. C In the dataset of GSE37460, significantly upregulated genes are 
ORMDL2, NRP1 and COL4A1, and significantly downregulated genes are ST13 and PKP4. According to the ROC curves, the highest AUC could be 
observed using the gene NRP1 and COL4A1
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cells were significantly positively correlated with rest-
ing memory CD4 T cells (r = 0.37, p = 0.015), regulatory 
T cells (r = 0.38, p = 0.014), M0 macrophages (r = 0.37, 
p = 0.016), resting mast cells (r = 0.44, p = 0.003) and 
neutrophils (r = 0.35, p = 0.021), and negatively cor-
related with memory B cells (r = −  0.34, p = 0.027), 
follicular helper T cells (r = -0.42, p = 0.006), resting 
dendritic cells (r = − 0.34, p = 0.029) and activated mast 
cells (r = −  0.33, p = 0.033); resting memory CD4 T 
cells were significantly positively correlated with resting 
NK cells (r = 0.37, p = 0.017) and neutrophils (r = 0.44, 
p = 0.003) and negatively correlated with resting den-
dritic cells (r = − 0.38, p = 0.013) and activated mast cells 
(r = − 0.49, p < 0.001); resting NK cells were significantly 
positively correlated with eosinophils (r = 0.39, p = 0.011) 
and neutrophils (r = 0.37, p = 0.015) and negatively cor-
related with activated NK cells (r = −  0.41, p = 0.007) 
and activated mast cells (r = − 0.49, p = 0.001); activated 
NK cells were significantly positively correlated with 
resting dendritic cells (r = 0.36, p = 0.018) and activated 

mast cells (r = 0.45, p = 0.003) and negatively correlated 
with M0 macrophages (r = −  0.41, p = 0.007) and neu-
trophils (r = −  0.68, p < 0.001); M2 macrophages were 
significantly negatively correlated with activated mast 
cells (r = −  0.35, p = 0.023); and activated mast cells 
were significantly negatively correlated with neutrophils 
(r = − 0.46, p = 0.002) (Fig. 8B; Additional file 9).

In addition, we used the external dataset GSE37460 
to validate the above identified 8 different infiltrated 
immune cells between IgAN and normal controls. The 
violin plot of the immune cell infiltration showed that, 
compared with the normal control, resting memory CD4 
T cells (p < 0.001), activated NK cells (p < 0.001), and M2 
macrophages (p < 0.001) were confirmed as difference 
(Fig. 8C).

Immune cell infiltration correlation analysis of 3 validated 
genes
Furthermore, we also explored the correlations between 
3 validated genes and different immune cell types, the 

Fig. 6 qPCR Validation of the expression pattern and evaluation of diagnostic efficacy of 6 clinical correlated genes using our patient cohort. In 
our cohort, significantly upregulated genes were confirmed on ORMDL2 (A), COL4A1 (B) and NRP1 (C), whereas PKP4 (D) and ST13 (E) were not 
consistent with the results from datasets. According to the ROC curves (F), the highest AUC could be observed using the gene COL4A1
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results showed that ORMDL2 had positive correlation 
with activated mast cells (r = 0.31, p = 0.0477), and nega-
tive correlations with CD4 memory activated T cells 
(r =  − 0.31, p = 0.0430), and naive B cells (r =  − 0.35, 

p = 0.0219), resting NK cells (r =  − 0.44, p < 0.0001), 
CD4 memory resting T cells (r =  − 0.44, p < 0.0001) and 
neutrophils (r =  − 0.49, p < 0.0001) (Fig.  9A); NRP1 had 
positive correlation with activated NK cells (r = 0.40, 

Fig. 7 CeRNA network of the 3 key genes were shown using Sankey diagram. A.LncRNAs-miRNAs-mRNAs network, B. CirRNAs-miRNAs-mRNAs 
network. The connection degree of each gene is visualized according to the size of the rectangle
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Table 3 Small molecular compounds identified by connectivity map

Cell ID molecule A375 A549 HCC515 HEPG2 HT29 MCF7 PC3 HA1E VCAP Summary

BNTX − 99.82 26.26 − 99.4 NaN − 99.76 − 98.98 − 93.17 − 99.91 − 99.58 − 99.3

MLN-2238 − 99.74 − 99.77 − 97.45 − 99.93 − 99.24 − 97.23 − 99.51 − 88.12 − 98.67 − 99.08

NVP-AUY922 − 97.55 − 99.63 − 80.98 − 99.33 − 92.44 − 99.77 − 98.95 − 99.31 − 99.37 − 99.01

NSC-632839 − 99.81 − 92.34 − 99.56 − 99.88 − 99.09 − 53.98 − 97.23 − 99.61 − 99.5 − 98.98

Calmidazolium NaN − 99.55 − 95.85 0 − 99.39 − 99.04 − 99.57 NaN − 80.09 − 98.91

Homoharringtonine − 99.47 − 99.52 − 99.68 − 97.24 − 99.5 − 98.45 − 94.95 − 99.67 NaN − 98.86

QL-XII-47 − 99.74 − 93.89 − 99.5 − 99.88 − 99.38 − 88.94 0 0 0 − 98.8

Geldanamycin − 95.31 − 99.17 − 96.98 − 97.4 − 95.78 − 99.72 − 99.76 − 99.39 − 99.45 − 98.77

Diphencyprone − 98.84 − 67.82 NaN NaN 0 4.47 − 99.21 − 98.88 − 61.33 − 98.7

Puromycin − 99.18 − 99.65 − 99.06 − 99.56 − 98.09 − 99.71 − 98.41 − 99.74 − 98.29 − 98.66

PU-H71 − 27.33 − 94.9 − 96.15 − 93.12 − 99.15 − 94.61 − 98.88 − 81.98 − 99.37 − 98.48

Verrucarin-a − 99.11 − 99.41 − 99.53 − 96.35 − 99.03 − 13.53 − 88.33 − 98.88 − 59.74 − 98.31

MG-132 − 98.94 − 99.14 − 99.13 − 99.42 − 98.34 − 97.43 − 99.69 − 99.45 − 92.85 − 98.31

EI-346-erlotinib-analog − 99.72 − 93.78 − 90.77 − 98.86 39.52 − 98.16 − 65.15 − 99.92 − 80.7 − 98.24

kinetin-riboside − 98.73 − 98.78 − 97.87 − 99.12 − 94.46 − 95.06 − 92.65 − 99.45 − 54.55 − 98.18

Triciribine − 91.35 45.62 − 77.55 − 98.88 − 75.13 − 97.27 − 93.95 − 98.95 − 67.77 − 98.17

Narciclasine − 99.3 − 98.58 − 99.07 0 − 99 − 98.96 − 96.81 − 99.51 0 − 98.06

Fig. 8 Immune infiltration analysis. A Violin plot of the estimated proportion of 22 types of immune cells between control and IgA nephropathy 
using the dataset of GSE93798. Significant difference could be found on naive B cells, resting memory CD4 T cells, resting and activated NK cells, M1 
and M2 macrophages, activated mast cells, and neutrophils. B Correlation heat map of 22 types of immune cells. Positive and negative correlation 
was respectively shown in blue and red color, whereas the number represent the correlation parameters. C. Validation of the immune cell infiltration 
results using the datasets of GSE37460. Compared with the normal control, resting memory CD4 T cells, activated NK cells, and M2 macrophages 
were confirmed as difference
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p < 0.0001), M1 macrophages (r = 0.37, p = 0.0206), rest-
ing dendritic cells (r = 0.34, p = 0.0264), and negative cor-
relation with resting NK cells (r =  − 0.38, p = 0.0140) and 
neutrophils (r =  − 0.62, p < 0.0001) (Fig.  9B); COL4A1 
had positive correlation with activated NK cells (r = 0.42, 
p < 0.0001), M1 macrophages (r = 0.42, p < 0.0001), and 
resting dendritic cells (r = 0.32, p = 0.0395), and negative 
correlation with resting memory CD4 T cells (r =  − 0.36, 
p = 0.0204), resting NK cells (r =  − 0.41, p < 0.0001), 
and neutrophils (r =  − 0.65, p < 0.0001) (Fig.  9C). These 
results indicated certain types of immune cells are dys-
regulated in the setting of IgAN.

Discussion
With the biomedical research entering into the big data 
era, steadily increased number of algorithms and analy-
sis tools are proposed by different research groups each 
year; moreover, multiple types of omics data about a 
specific type of disease are also repeated assessed by dif-
ferent groups. To obtain full insights into the systemic 
and pathological effects of omics data, an integrative 
bioinformatics analysis of these datasets by using the 

effective algorithms or tools have become the top prior-
ity, which can facilitate the further exploration by “Wet” 
experiments.

In present study, we employed limma analysis, over-
lap genes omitting and WGCNA to obtain DEGs from 
1 blood-derived dataset and a glomeruli-derived data-
set, and a total of 195 DEGs were found. Then we found 
3 upregulated and 3 downregulated DEGs via check-
ing of expression pattern and clinical features correla-
tion. Finally, through the external dataset and an IgAN 
cohort validation, 3 genes including ORMDL2, NRP1, 
and COL4A1 were confirmed with the ability of IgAN 
discrimination, and the highest AUC was found by 
COL4A1, which is 97.14%.

During the datasets screening process, we also found 
another 2 datasets (GSE35488 and GSE14795) related 
with IgAN in the GEO website. In GSE35488 [21], RNA 
from tubulointerstitial compartments was extracted 
and processed for microarray analysis and the authors 
used these tissues for screening for proteinuria related 
DEGs. Finally, they identified an albumin-regulated 
11-gene signature, which is shared in all forms of 

Fig. 9 Correlation map of 22 types of immune cells and 3 key genes. A positive and negative correlation was respectively shown in right and left 
direction, whereas the high and low p-value was respectively shown in light and deep blue color. The size of the circle represents the strength of 
correlation, the larger of the size, the stronger of the correlation. A ORMDL2. B NRP1. C COL4A1
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glomerulonephritits, including IgAN and membrano-
proliferative glomerulonephritis. Due to the poor gene 
clustering (Additional file 10) and inaccurate tissue deri-
vation, this dataset was omitted. For GSE14795 [22], the 
whole blood cells from 12 IgAN patients were used for 
analysis using a specific commercial system, and DEGs 
were identified using SAM method, however, the DEGs 
obtained by us using the same SAM method showed 
significant difference from those reported in the papers, 
and we guess that the data from this GEO dataset is 
incomplete.

In the DEGs discovery process, we found 5 genes are 
of clinical significance. Among them, ORMDL2 is con-
sidered as a negative regulator of sphingolipid synthe-
sis and is predicted to be located in the endoplasmic 
reticulum. Clarke et al. [23] reported that ORMDLs are 
able to restrain sphingolipid metabolism, thereby limit-
ing levels of dangerous metabolic intermediates that can 
interfere with essential physiological processes such as 
myelination, whereas Bugajev et  al. [24] demonstrated 
that ORMDL2 deficiency could affect mast cell signal-
ing during the systemic anaphylactic reaction. Due to an 
abnormal sphingolipid metabolism could contribute to 
various pathologic processes, including kidney diseases 
[25], and activated mast cells were revealed according 
to the immune infiltration results, it is highly possible 
that ORMDL2 may an important role in IgAN. NRP1, a 
transmembrane receptor protein, has been reported to 
play an important role in several kidney diseases, includ-
ing regulation of apoptosis and cytoskeleton organization 
of cells located in glomerular during the process of dia-
betic nephropathy [26], and prediction of renal outcome 
in patients with lupus nephritis [27]. COL4A1 encodes 
the α1 chain of collagen IV, which a major component 
of basement membranes and its mutation could result 
in glomerulocystic kidney disease [28–30]. According to 
previous reports [31, 32], macrophage can directly con-
tribute to collagen generation in wound healing and other 
pathological conditions. They suggested that primary 
function of type VI collagen secreted by macrophages 
could be cell–cell (immune cells) and cell–matrix inter-
actions modulation and production of type VI colla-
gen is a marker for a nondestructive, matrix-conserving 
macrophage phenotype that could profoundly influence 
physiological and pathophysiological conditions in  vivo. 
PKP4 is considered to play a role as a regulator of Rho 
activity during cytokinesis and is confirmed as one of 
DEGs in glomerular diseases reported by Ding et al. [33]. 
Most recently, Raby found that PKP4 is presented in the 
urine exosome in patients with Autosomal Dominant 
Polycystic Kidney Disease (ADPKD) as poor treatment 
responder biomarker [34]. In our cohort validation, we 
found that PKP4 is also upregulated in IgAN compared 

to normal controls, and it is omitted due to inconsistent 
expression pattern between the datasets and our patient 
cohort. HSPA8 is a chaperone protein with important 
roles in various cellular processes, including autophagy 
[35] and protection from reactive oxygen species (ROS) 
production by mitochondria during inflammatory condi-
tions [36]. Kim et al. [37] reported that HSPA8 could be 
used as an effective and sensitive non-invasive biomarker 
for the assessment of nephrotoxicity, whereas Wen et al. 
[38] suggested that possible the role of HSPA8 in organ 
fibrosis in diabetic kidney disease (DKD) patients. In 
a recent study by Lin et  al. [39], downregulated HSPA8 
was found in IgAN patients, however, we did not find 
an obvious difference on HSPA8 in our discovery data-
sets. Therefore, further confirmation using more subjects 
might be carried out. No report was found on the role 
of ST13 in the kidney disease, whereas most of studies 
about ST13 are about the cancer biology [40]. Further-
more, ST13 was found with no significant downregula-
tion in our validation cohort. We attributed the reasons 
that limited patient number or possible the error in the 
microarray analysis.

For the immune infiltration results, we found that dif-
ferentially ratio of naive B cells (p = 0.016), resting mem-
ory CD4 T cells (p < 0.001), resting and activated NK 
cells (p = 0.021 and < 0.001), M1 and M2 macrophages 
(p = 0.016 and 0.020), activated mast cells (p = 0.038), 
and neutrophils (p < 0.001) between control and IgAN. B 
cells may be involved in the production of galactose-defi-
cient IgA1(Gd-IgA1) and its antibodies in IgA nephropa-
thy [41], and decreased number of naive B cell could be 
resulted by more of activated B cells. Moreover, Eijgen-
raam et al. [42] showed previously that dendritic cells of 
IgAN patients have an impaired capacity to induce IgA 
production in naive B cells. As heterogeneous cells of the 
innate immune system, macrophages can fluidly modu-
late their phenotype in response to the local microenvi-
ronment, and macrophage polarization is found during 
chronic kidney disease (CKD) [43], therefore, it is reason-
able to observe elevation of M1 and M2 macrophages in 
IgAN. Moreover, activated mast cells mediated antibody 
production [44], neutrophils caused glomerular injury 
[45], NK induced hematuria [46] and T cell-induced Gd-
IgA1 synthesis elevation [47] are reported according to 
previous reports during the IgAN.

In addition, according to the results from ceRNA net-
work, miR-135a-5p and miR-135b-5p are found signifi-
cantly correlated with the gene ORMDL2 found here, in 
the recent studies by Pawluczyk et al. [48] and Min et al.
[49], miR-135a-5p showed differentially expressed in 
IgAN patients, whereas miR-135b-5p was confirmed as 
the differentially expressed miRNA using the urinary exo-
some samples from IgAN patients. Moreover, circulating 
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miR-29a [50] and urinary exosome derived miR-29c [49] 
are also found differentially expressed in IgAN according 
to previous studies.

There are also some limitations in present study. First, 
the number of validation cohort is limited and no follow-
up information is available, thereby resulting in possible 
the bias on the results and inability of examination of the 
genes in the prognosis. Second, although several immune 
cells were found dysregulated and the results were con-
sistent with previous reports, the detailed function of 
these immune cells and the exact molecular events dur-
ing the IgAN remains unknown. Therefore, further 
clinical validation with a large cohort of patient and 
experimental verification of these genes are required in 
near future.

Conclusions
In summary, we demonstrated here that significantly 
upregulated DEGs: ORMDL2, NRP1 and COL4A1 could 
be served as the diagnostic marker for IgAN and dysregu-
lated immune cell infiltration hinted possible the immune 
system intervention points in the setting of IgAN.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967- 022- 03330-w.

Additional file 1: Supp1-Differentially expressed genes. Differentially 
expressed genes obtained after the screening process.

Additional file 2: Supp2-WGCNA color module genes. Detailed gene 
information form the specific WGCNA color module

Additional file 3: Supp3-Share up- and downregulated genes. Detailed 
information of the shared up- and downregulated genes.

Additional file 4: Supp4-eGFR and proteinuria correlated up genes. 
Detailed information of the eGFR and proteinuria correlated upregulated 
genes.

Additional file 5: Supp5-eGFR and proteinuria correlated down genes. 
Detailed information of the eGFR and proteinuria correlated downregu-
lated genes

Additional file 6: Supp6-ceRNA network. Detailed mRNA, miRNA and 
cirRNA gene information of the ceRNA network.

Additional file 7: Supp7-CMAP results. Detailed information of target 
genes and related drugs.

Additional file 8: Supp8-CIBERSORT-Results. Detailed information of 
p-value of the CIBERSORT results.

Additional file 9: Supp9-correlation map results. Detailed information of 
the correlation parameters from CIBERSORT results.

Additional file 10: Fig. S1. Quality control report on the dataset screen-
ing process; For the datasets obtained from GEO that met the search 
criteria, we performed sample normalization (black for the control group 
and rose red for the IgAN group in box plots), clustering (dendrograms) 
and PCA analysis to obtain better quality samples. As shown in the follow-
ing Figure, GSE73953 (A), GSE93798 (B) and GSE37460 (C) datasets were 
relatively homogeneous according to the sample expression abundance 
with well distinguished 2 groups of samples and no abnormal values from 
PCA results. However, for the dataset GSE35488 (D) and GSE14795 (E), 
bad clustering results from the dendrogram results and no discrimination 

could be found from PCA results. Furthermore, no effective values are 
found in GSE14795 according to the Venn map and using “limma” pack-
age. Therefore, GSE35488 and GSE14795 datasets were not included in the 
analysis.

Additional file 11: Table S1. Detailed information about the platform 
and sample information of the included microarray datasets (GSE73953, 
GSE93798 and GSE37460).

Acknowledgements
Not applicable.

Authors’ contributions
JX and ZW conceived and designed the experiments; JX, XS, XW, DJ, JY and 
ZW performed the experiments; JX and ZW analyzed the data; JX, XS, XW, 
DJ, JY, ZW and YH contributed reagents/materials/analysis tools; JX and ZW 
contributed to the writing of the manuscript. All authors read and approved 
the final manuscript.

Funding
This work was supported by National Natural Science Foundation of 
China [81700129 and 82070123], Translational Research Grant of NCRCH 
[2020WSA01], Science and Technology Plan of Suzhou City (SYSD2019043 and 
SKJY2021050), KJXW Scientific Grant from Suzhou Commission of Health for 
Young Scholars [KJXW2020002] and the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions (PAPD).

Availability of data and materials
The datasets supporting the conclusions of this article are included within the 
article and its additional files.

Declarations

Ethics approval and consent to participate
The present study was approved by the Ethical Committee of the First Affili-
ated Hospital of Soochow University and was carried out in accordance with 
the Declaration of Helsinki.

Consent for publication
Written informed consent was provided by all the included subjects.

Competing interests
The authors declare that they have no competing interests.

Author details
1 MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematol-
ogy, The First Affiliated Hospital of Soochow University, Suzhou 215006, 
China. 2 Department of Nephrology, The First Affiliated Hospital of Soochow 
University, Suzhou 215006, China. 3 Department of Infectious Disease, Nantong 
First People’s Hospital, The Second Affiliated Hospital of Nantong University, 
Jiangsu 226001, China. 4 Department of Laboratory Medicine, The First Affili-
ated Hospital of Soochow University, Suzhou 215006, China. 5 MOE Engineer-
ing Center of Hematological Disease, Soochow University, Suzhou 215123, 
China. 6 National Clinical Research Center for Hematologic Diseases, The First 
Affiliated Hospital of Soochow University, Suzhou 215006, China. 7 Collabora-
tive Innovation Center of Hematology, Soochow University, Suzhou 215006, 
China. 8 Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, 
China. 

Received: 24 December 2021   Accepted: 3 March 2022

References
 1. Huang X, Xu G. An update on targeted treatment of IgA nephropathy: an 

autoimmune perspective. Front Pharmacol. 2021;12:715253.
 2. Rodrigues JC, Haas M, Reich HN. IgA nephropathy. Clin J Am Soc Nephrol. 

2017;12:677–86.

https://doi.org/10.1186/s12967-022-03330-w
https://doi.org/10.1186/s12967-022-03330-w


Page 15 of 16Xu et al. Journal of Translational Medicine          (2022) 20:145  

 3. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368:2402–14.
 4. Hassler JR. IgA nephropathy: a brief review. Semin Diagn Pathol. 

2020;37:143–7.
 5. Roberts IS. Pathology of IgA nephropathy. Nat Rev Nephrol. 

2014;10:445–54.
 6. Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: an interesting 

autoimmune kidney disease. Am J Med Sci. 2021;361:176–94.
 7. Schena FP, Nistor I. Epidemiology of IgA nephropathy: a global per-

spective. Semin Nephrol. 2018;38:435–42.
 8. Malone JH, Oliver B. Microarrays, deep sequencing and the true meas-

ure of the transcriptome. BMC Biol. 2011;9:34.
 9. Oliverio AL, Bellomo T, Mariani LH. Evolving clinical applications of tis-

sue transcriptomics in kidney disease. Front Pediatr. 2019;7:306.
 10. Tajti F, Kuppe C, Antoranz A, Ibrahim MM, Kim H, Ceccarelli F, Holland 

CH, Olauson H, Floege J, Alexopoulos LG, et al. A functional landscape 
of CKD entities from public transcriptomic data. Kidney Int Rep. 
2020;5:211–24.

 11. Nagasawa Y, Okuzaki D, Muso E, Yamamoto R, Shinzawa M, Iwa-
saki Y, Iwatani H, Nakanishi T, Isaka Y, Nojima H. IFI27 is a useful 
genetic marker for diagnosis of immunoglobulin a nephropathy 
and membranous nephropathy using peripheral blood. PLoS ONE. 
2016;11:e0153252.

 12. Liu P, Lassen E, Nair V, Berthier CC, Suguro M, Sihlbom C, Kretzler M, 
Betsholtz C, Haraldsson B, Ju W, et al. Transcriptomic and proteomic 
profiling provides insight into mesangial cell function in IgA nephropa-
thy. J Am Soc Nephrol. 2017;28:2961–72.

 13. Guo F, Zhang W, Su J, Xu H, Yang H. Prediction of drug positioning for 
Quan-Du-Zhong capsules against hypertensive nephropathy based on 
the robustness of disease network. Front Pharmacol. 2019;10:49.

 14. Shen XH, Liang SS, Chen HM, Le WB, Jiang S, Zeng CH, Zhou ML, Zhang 
HT, Liu ZH. Reversal of active glomerular lesions after immunosuppres-
sive therapy in patients with IgA nephropathy: a repeat-biopsy based 
observation. J Nephrol. 2015;28:441–9.

 15. Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, Liu 
ZH, Roberts IS, Yuzawa Y, Zhang H, et al. Oxford classification of IgA 
nephropathy 2016: an update from the IgA nephropathy classification 
working group. Kidney Int. 2017;91:1014–21.

 16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma 
powers differential expression analyses for RNA-sequencing and micro-
array studies. Nucleic Acids Res. 2015;43:e47.

 17. Langfelder P, Horvath S. WGCNA: an R package for weighted correla-
tion network analysis. BMC Bioinformatics. 2008;9:559.

 18. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for compar-
ing biological themes among gene clusters. OMICS. 2012;16:284–7.

 19. Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor package for 
disease ontology semantic and enrichment analysis. Bioinformatics. 
2015;31:608–9.

 20. Steen CB, Liu CL, Alizadeh AA, Newman AM. profiling cell type abun-
dance and expression in bulk tissues with CIBERSORTx. Methods Mol 
Biol. 2020;2117:135–57.

 21. Reich HN, Tritchler D, Cattran DC, Herzenberg AM, Eichinger F, 
Boucherot A, Henger A, Berthier CC, Nair V, Cohen CD, et al. A 
molecular signature of proteinuria in glomerulonephritis. PLoS ONE. 
2010;5:e13451.

 22. Cox SN, Sallustio F, Serino G, Pontrelli P, Verrienti R, Pesce F, Torres DD, 
Ancona N, Stifanelli P, Zaza G, Schena FP. Altered modulation of WNT-
beta-catenin and PI3K/Akt pathways in IgA nephropathy. Kidney Int. 
2010;78:396–407.

 23. Clarke BA, Majumder S, Zhu H, Lee YT, Kono M, Li C, Khanna C, Blain H, 
Schwartz R, Huso VL, et al. The Ormdl genes regulate the sphingolipid 
synthesis pathway to ensure proper myelination and neurologic func-
tion in mice. Elife. 2019;8.

 24. Bugajev V, Halova I, Demkova L, Cernohouzova S, Vavrova P, Mrkacek 
M, Utekal P, Draberova L, Kuchar L, Schuster B, Draber P. ORMDL2 
deficiency potentiates the ORMDL3-dependent changes in mast cell 
signaling. Front Immunol. 2020;11:591975.

 25. Abou Daher A, El Jalkh T, Eid AA, Fornoni A, Marples B, Zeidan YH. 
Translational aspects of sphingolipid metabolism in renal disorders. Int 
J Mol Sci. 2017;18:2528.

 26. Bondeva T, Wolf G. Role of neuropilin-1 in diabetic nephropathy. J Clin 
Med. 2015;4:1293–311.

 27. Torres-Salido MT, Sanchis M, Sole C, Moline T, Vidal M, Vidal X, Sola 
A, Hotter G, Ordi-Ros J, Cortes-Hernandez J. Urinary neuropilin-1: a 
predictive biomarker for renal outcome in lupus nephritis. Int J Mol Sci. 
2019;20:4601.

 28. Chen Z, Migeon T, Verpont MC, Zaidan M, Sado Y, Kerjaschki D, Ronco P, 
Plaisier E. HANAC syndrome Col4a1 mutation causes neonate glomeru-
lar hyperpermeability and adult glomerulocystic kidney disease. J Am 
Soc Nephrol. 2016;27:1042–54.

 29. Gale DP, Oygar DD, Lin F, Oygar PD, Khan N, Connor TM, Lapsley M, 
Maxwell PH, Neild GH. A novel COL4A1 frameshift mutation in familial 
kidney disease: the importance of the C-terminal NC1 domain of type 
IV collagen. Nephrol Dial Transplant. 2016;31:1908–14.

 30. Gulati A, Sevillano AM, Praga M, Gutierrez E, Alba I, Dahl NK, Besse W, 
Choi J, Somlo S. Collagen IV gene mutations in adults with bilateral 
renal cysts and CKD. Kidney Int Rep. 2020;5:103–8.

 31. Simoes FC, Cahill TJ, Kenyon A, Gavriouchkina D, Vieira JM, Sun X, 
Pezzolla D, Ravaud C, Masmanian E, Weinberger M, et al. Macrophages 
directly contribute collagen to scar formation during zebrafish heart 
regeneration and mouse heart repair. Nat Commun. 2020;11:600.

 32. Schnoor M, Cullen P, Lorkowski J, Stolle K, Robenek H, Troyer D, 
Rauterberg J, Lorkowski S. Production of type VI collagen by human 
macrophages: a new dimension in macrophage functional heteroge-
neity. J Immunol. 2008;180:5707–19.

 33. Ding F, Tan A, Ju W, Li X, Li S, Ding J. The prediction of key cytoskeleton 
components involved in glomerular diseases based on a protein-
protein interaction network. PLoS ONE. 2016;11:e0156024.

 34. Raby KL. Urinary exosomes protein cargo as biomarkers of Autosomal 
Dominant Polycystic Kidney Disease (ADPKD). UCL (University College 
London), 2020.

 35. Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone 
protein: structure, function, and chemical targeting. Autophagy. 
2013;9:1937–54.

 36. Wang F, Bonam SR, Schall N, Kuhn L, Hammann P, Chaloin O, Madinier 
JB, Briand JP, Page N, Muller S. Blocking nuclear export of HSPA8 after 
heat shock stress severely alters cell survival. Sci Rep. 2018;8:16820.

 37. Kim SY, Lee HM, Kim KS, Kim HS, Moon A. Noninvasive biomarker can-
didates for cadmium-induced nephrotoxicity by 2DE/MALDI-TOF-MS 
and SILAC/LC-MS proteomic analyses. Toxicol Sci. 2015;148:167–82.

 38. Wen J, Ma Z, Livingston MJ, Zhang W, Yuan Y, Guo C, Liu Y, Fu P, Dong 
Z. Decreased secretion and profibrotic activity of tubular exosomes in 
diabetic kidney disease. Am J Physiol Renal Physiol. 2020;319:F664–73.

 39. Lin H, Tang D, Xu Y, Zhang R, Ou M, Zheng F, Chen J, Zhang Y, Zou G, 
Xue W, et al. Quantitative analysis of protein crotonylation identifies 
its association with immunoglobulin A nephropathy. Mol Med Rep. 
2020;21:1242–50.

 40. Bai R, Shi Z, Zhang J-W, Li D, Zhu Y-L, Zheng S. ST13, a proliferation 
regulator, inhibits growth and migration of colorectal cancer cell lines. 
J Zhejiang Univ Sci B. 2012;13:884–93.

 41. Zhang YM, Zhang H. Insights into the role of mucosal immunity in IgA 
nephropathy. Clin J Am Soc Nephrol. 2018;13:1584–6.

 42. Eijgenraam JW, Woltman AM, Kamerling SW, Briere F, de Fijter JW, Daha 
MR, van Kooten C. Dendritic cells of IgA nephropathy patients have an 
impaired capacity to induce IgA production in naive B cells. Kidney Int. 
2005;68:1604–12.

 43. Lee H, Fessler MB, Qu P, Heymann J, Kopp JB. Macrophage polarization 
in innate immune responses contributing to pathogenesis of chronic 
kidney disease. BMC Nephrol. 2020;21:270.

 44. Holdsworth SR, Summers SA. Role of mast cells in progressive renal 
diseases. J Am Soc Nephrol. 2008;19:2254–61.

 45. Lai KN. Future directions in the treatment of IgA nephropathy. 
Nephron. 2002;92:263–70.

 46. Uchida T, Ito S, Kumagai H, Oda T, Nakashima H, Seki S. Roles of natural 
killer T cells and natural killer cells in kidney injury. Int J Mol Sci. 
2019;20.

 47. Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Debska-Slizien A, 
Witkowski JM. T cells in IgA nephropathy: role in pathogenesis, clini-
cal significance and potential therapeutic target. Clin Exp Nephrol. 
2019;23:291–303.

 48. Pawluczyk IZA, Didangelos A, Barbour SJ, Er L, Becker JU, Martin R, 
Taylor S, Bhachu JS, Lyons EG, Jenkins RH, et al. Differential expression 



Page 16 of 16Xu et al. Journal of Translational Medicine          (2022) 20:145 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

of microRNA miR-150-5p in IgA nephropathy as a potential mediator 
and marker of disease progression. Kidney Int. 2021;99:1127–39.

 49. Min QH, Chen XM, Zou YQ, Zhang J, Li J, Wang Y, Li SQ, Gao QF, Sun F, 
Liu J, et al. Differential expression of urinary exosomal microRNAs in 
IgA nephropathy. J Clin Lab Anal. 2018;32:e22226.

 50. Hu H, Wan Q, Li T, Qi D, Dong X, Xu Y, Chen H, Liu H, Huang H, Wei C, 
et al. Circulating MiR-29a, possible use as a biomarker for monitoring IgA 
nephropathy. Iran J Kidney Dis. 2020;14:107–18.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Identification of blood-based key biomarker and immune infiltration in Immunoglobulin A nephropathy by comprehensive bioinformatics analysis and a cohort validation
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Patients recruitment and clinical data collection
	Microarray data and related clinical data acquisition
	Identification of the candidate genes via integrated bioinformatic analysis
	Data processing
	Construction of weighted gene co-expression network analysis (WGCNA)
	Clinical correlated genes identification and functional enrichment analysis

	Immune cells infiltration analysis
	ceRNA network construction and connectivity map (CMAP) analysis
	Real-time reverse transcription PCR to verification of the clinical related genes
	Statistical analysis

	Results
	Identification of the candidate genes using GEO datasets and gene enrichment analysis
	Identification of the genes of clinical significance
	Validation of the expression pattern and evaluation of diagnostic efficacy of above identified genes
	ceRNA network construction and CMAP results
	Results of immune cell infiltration
	Immune cell infiltration correlation analysis of 3 validated genes

	Discussion
	Conclusions
	Acknowledgements
	References




