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Methotrexate-loaded nanoparticles 
ameliorate experimental model 
of autoimmune arthritis by regulating 
the balance of interleukin-17-producing T cells 
and regulatory T cells
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Abstract 

Background: Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease that is characterized by infiltra‑
tion of inflammatory cells into the hyperplastic synovial tissue, resulting in subsequent destruction of adjacent articu‑
lar cartilage and bone. Methotrexate (MTX), the first conventional disease‑modifying antirheumatic drug (DMARD), 
could alleviate articular damage in RA and is implicated in humoral and cellular immune responses. However, MTX 
has several side effects, so efficient delivery of low‑dose MTX is important.

Methods: To investigate the efficacy of MTX‑loaded nanoparticles (MTX‑NPs) against experimental model of RA, free 
MTX or MTX‑NPs were administered as subcutaneous route to mice with collagen‑induced arthritis (CIA) at 3 weeks 
after CII immunization. The levels of inflammatory factors in tissues were determined by immunohistochemistry, con‑
focal microscopy, real‑time PCR, and flow cytometry.

Results: MTX‑NPs ameliorated arthritic severity and joint destruction in collagen‑induced arthritis (CIA) mice 
compared to free MTX‑treated CIA mice. The levels of inflammatory cytokines, including interleukin (IL)‑1β, tumor 
necrosis factor‑α, and vascular endothelial growth factor, were reduced in MTX‑NPs‑treated mice. Number of 
CD4 + IL‑17 + cells decreased whereas the number of CD4 + CD25 + Foxp3 + cells increased in spleens from MTX‑ 
NPs‑treated CIA mice compared to MTX‑treated CIA mice. The frequency of CD19 + CD25 + Foxp3 + regulatory B cells 
increased in ex vivo splenocytes from MTX‑loaded NPs‑treated CIA mice compared to MTX‑treated CIA mice.
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Background
Rheumatoid arthritis (RA) is a progressive autoimmune 
disease characterized by synovial inflammation, hyper-
plasia, and formation of rheumatoid pannus, result-
ing in destruction of the adjacent articular cartilage and 
bone structure. The development of RA involves a com-
plex interplay between immune cells and inflammatory 
mediators including inflammatory cytokines, proteolytic 
enzymes, and prostanoids [1–3]. Although the causes of 
RA are unclear, infiltration of T and B cells into the joints 
leads to induction of inflammatory cytokines, such as 
tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, 
and IL-17A and autoantibodies and drives the prolif-
eration of fibroblast-like synoviocytes and destruction of 
bone [3, 4].

IL-17-producing T helper (Th17) cells, which produce 
IL-17A, IL-17F, IL-21, and TNF-α, are involved in the 
pathogenesis of various autoimmune diseases, including 
RA, multiple sclerosis, and psoriasis [5, 6]. IL-6 drives the 
differentiation of naïve T cells into Th17 cells by activat-
ing STAT3, a key transcription factor for Th17 cells [7, 8]. 
In RA synovium, IL-17-producing cells were observed in 
the T cell-rich area and IL-17 contributes to increased 
production of IL-6 and leukemia inhibitory factor. More-
over, it has synergistic effects with IL-1β or TNF-α on 
inflammation [9–11]. Rheumatoid synovial tissue con-
tains abundant B cells, which secrete proinflammatory 
mediators and autoantibodies, including rheumatoid 
factor and anti–citrullinated protein antibodies [3, 12]. 
Moreover, B cells act as antigen-presenting cells for auto-
reactive T cells [13].

Methotrexate (MTX) is a first-line disease-modifying 
antirheumatic drug (DMARD) that alleviates articu-
lar damage in RA [14]. It is an antifolate metabolite that 
inhibits folate-dependent enzymes in the de novo syn-
thesis of purines and pyrimidines [15, 16]. MTX is used 
as monotherapy for patients with early RA [17] and 
as an anchor drug for combination therapy with other 
DMARDs or biologics in patients with established RA 
who are MTX-insufficient responders [18]. However, 
long-term use of MTX leads to drug resistance and 
causes severe side effects such as nausea, neutropenia, 
pulmonary fibrosis, and hepatitis [15, 19].

Nanoparticles (NPs) are promising therapeutics due to 
their ability to deliver and release drugs [20, 21]. Multi-
ple NPs have been developed for drug delivery in vari-
ous diseases. They can inhibit fast excretion of drug from 
body by sustained release. NPs are typically administered 

by intravenous injection, oral feeding, or subcutaneous 
injection. Intravenously injected NPs are rapidly effec-
tive but also rapidly excreted and have a high risk of side 
effects. Oral feeding is the easiest and low risk, but the 
absorption rate is too low. Subcutaneous injection shows 
moderate effectiveness in relation to these methods, so 
has an advantage in occupying the middle ground. How-
ever, most NP studies for RA therapy have used intrave-
nous injection and oral feeding.

MTX-loaded nanoparticles (MTX-NPs) ameliorated 
murine model of experimental arthritis after subcutane-
ous injection. They were formulated with hydrophobic 
poly (D, L lactide-co-glycolide) (PLGA) and amphiphilic 
polyvinyl alcohol (PVA). MTX was stably loaded into the 
NPs. MTX-NPs attenuated the severity of murine model 
of experimental arthritis and reciprocally regulated Th17 
and regulatory T and B cells in vivo.

Methods
Materials
Resomer RG 502 H PLGA and PVA (MW 30,000–70,000) 
were purchased from Sigma Aldrich (St. Louis, MO, 
USA). Dimethyl sulfoxide, 99.0% (methyl sulfoxide, 
DMSO) was purchased from Samchun (Seoul, Gangnam-
gu, Korea).

Preparation and characterization of MTX loaded 
nanoparticles
PLGA (50  mg) and methotrexate (5  mg) were dissolved 
in DMSO at 60 ℃. The solution was added dropwise to 
an aqueous solution of 1% PVA (w/v). The solution was 
homogenized at 7000 RPM for 2  min using a homog-
enizer (Ultra Turrax® T-25 homogenizer; IKA®-Werke, 
Staufen, Germany). After homogenization, non-encap-
sulated substances were removed by dialysis in distilled 
water for 1 h through a 14,000 molecular weight cut-off 
membrane. The size distribution of MTX-NP was meas-
ured in PBS using a Zetasizer Nano ZS90 (Malvern 
Instruments, Malvern, UK) at 25℃. Encapsulated MTX 
was quantified by assaying the absorbance of MTX at 
370  nm and encapsulation efficiency was calculated by 
the formula: ((amount of encapsulated drug/amount of 
added drug) × 100%). MTX-NP was placed in a dialysis 
bag and immersed in a container containing 50  mL of 
PBS to analyze the drug release profile. At predetermined 
time points, 200 μL of external PBS were removed and 
the absorbance at 370 nm of MTX was measured using 
Microplate Reader Synergy H1 (Bio-Tek, USA).

Conclusion: The results suggest that MTX‑loaded NPs have therapeutic potential for RA.
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Toxicological analysis
Mice were injected subcutaneously with vehicle, free 
MTX (2.5 mg/kg) or MTX-loaded nanoparticle (2.5 mg/
kg based on MTX). Twenty-four hours post-injection, 
blood samples were collected from the heart of mice 
under respiratory anesthesia. The blood sample for com-
plete blood count (CBC) was placed in EDTA tube and 
CBC was measured using HEMAVET 950FS blood cell 
counter (Drew Scientific, Inc., Dallas, TX, USA). The 
blood samples for blood chemistry analysis were placed 
in heparin tubes and plasma were isolated. Creatinine 
aspartate aminotransferase (AST) and alanine ami-
notransferase (ALT) in plasma were measured by Fuji 
Dri-Chem NX500 (Fujifilm Corporation, Tokyo, Japan).

CIA induction and treatment with nanoparticles
Six-week-old male DBA/1  J mice were purchased from 
Orient Bio Inc. (Seongnam, Korea). CIA was induced as 
described previously [22]. To induce CIA in mice, CII 
was dissolved overnight in 0.1  N acetic acid (4  mg/mL) 
with gentle rotation at 4 °C. DBA/1 J mice were injected 
intradermally at the base of the tail with 100  μg of CII 
emulsified in Freund’s adjuvant (Chondrex). Two weeks 
later, 100  μg of type II collagen dissolved and emulsi-
fied 1:1 with incomplete Freund’s adjuvant (Difco) was 
administered to the hind leg of mice as a booster injec-
tion. On day 24 after the first immunization, mice were 
injected subcutaneously with 2.5 mg/kg MTX or MTX-
NPs twice weekly. Animals were maintained under spe-
cific pathogen-free conditions at the Institute of Medical 
Science of the Catholic University of Korea and were 
fed standard mouse chow and water. All experimental 
procedures were examined and approved by the Animal 
Research Ethics Committee of the Catholic University of 
Korea; the procedure conformed to all National Institutes 
of Health of the United States guidelines (Permit num-
ber: 2020-0067-01).

Clinical assessment of arthritis
To assess the severity of joint inflammation, the arthritis 
index was scored twice weekly from the onset of arthri-
tis for up to 8–10  weeks after the primary immuniza-
tion. The severity of arthritis was assessed on a scale of 
0–4 according to the following criteria, as described pre-
viously [23]: 0 = no edema or swelling, 1 = slight edema 
and erythema limited to the foot or ankle, 2 = slight 
edema and erythema from the ankle to the tarsal bone, 
3 = moderate edema and erythema from the ankle to the 
tarsal bone, and 4 = edema and erythema from the ankle 
to the entire leg. The arthritic score for each mouse was 
expressed as the sum of the scores of four limbs. Inci-
dence was calculated as 25 percent of the presence of 
arthritis symptoms in one foot.

Antibodies
The following antibodies were used for immunohis-
tochemistry: rabbit polyclonal anti-TNF-α (#ab6671) 
and rabbit polyclonal anti-vascular endothelial growth 
factor (VEGF) (EP1176Y, #ab52917) antibodies were 
from abcam; rabbit polyclonal anti-IL-1β (#NB600-633) 
antibody was from Novus Biologicals. The following 
antibodies were used for flow cytometry: rat monoclo-
nal APC anti-CD45R (B220) (RA3-6B2, #17-0452-83), 
mouse monoclonal PE anti-CD95 (APO-1/Fas) (15A7, 
#12-0951-81), mouse monoclonal PerCP-Cyanine5.5 
anti-CD19 (SJ25C1, #45-0198-42), rat monoclonal FITC 
anti-CD5 (53-7.3, #11-0051-82), rat monoclonal PE anti-
CD1d (1B1, #12-0011-82), rat monoclonal APC anti-
IL-10 (JES5-16E3, #17-7101-82) antibodies were from 
Thermo Fisher Scientific; rat monoclonal PE-Cy™7 anti-
CD19 (ID3, #552854) antibody was from BD Biosciences; 
Alexa Fluor® 488 anti-GL7 (GL7, # 144612) antibodies 
was from BioLegend. The following antibodies were used 
for confocal microscopy: rat monoclonal Alexa Fluor® 
488 anti-CD4 (GK1.5, #100423) and rat monoclonal APC 
anti-CD25 (PC6, #102012) antibodies were from BioLe-
gend; rat monoclonal PE anti-IL-17A (eBio17B7, #12-
7177-81) antibody was from Thermo Fisher Scientific; 
mouse monoclonal PE anti-STAT3 (pY705) (4/P-STAT3, 
#612569) antibody was from BD Bioscience; rabbit poly-
clonal PE anti-Foxp3 antibody (#NP100-39002) antibody 
was from Novus Biologicals.

Histology
Mouse joint tissues were fixed in 10% neutral-buffered 
formalin, decalcified in a decalcifying agent (National 
Diagnostics, Atlanta, GA, USA), embedded in par-
affin, and sectioned. The sections (5  μm thick) were 
stained with hematoxylin and eosin (H&E) and scored 
as described previously [24]. Inflammation was scored 
using the following criteria: 0, no inflammation; 1, slight 
thickening of the lining or infiltration of some cells into 
the underlying layer; 2,  slight thickening of the lining 
with infiltration of some cells into the underlying layer; 
3, thickening of the lining, with an influx of cells into the 
underlying layer and cells evident in the synovial space; 
and 4,  extensive infiltration of the  synovium  by inflam-
matory cells. Cartilage damage was evaluated by stain-
ing with Safranin O and  toluidine blue, and the extent 
of damage was scored using the following criteria: 0, no 
destruction; 1, minimal erosion (limited to single spots); 
2,  slight-to-moderate erosion in a limited area; 3,  more 
extensive erosion; and 4, general destruction.

Immunohistochemistry
Sections were treated with 3% (v/v)  H2O2 in meth-
anol to block endogenous peroxidase activity. 



Page 4 of 11Park et al. Journal of Translational Medicine           (2022) 20:85 

Immunohistochemistry was performed using the Envi-
sion Detection™ kit (DAKO Agilent Technologies Inc., 
Santa Clara, CA, USA). Tissue sections were incubated 
with primary antibodies against IL-1β, TNF-α, and VEGF 
for 2  h at room temperature. Sections were then incu-
bated with a biotinylated secondary antibody and strepta-
vidin–peroxidase complex for 30 min. The final colored 
products were developed using chromogen diaminoben-
zidine. The sections were examined by light microscopy 
(Olympus, Tokyo, Japan). The number of positive cells 
was counted at high-power field (magnifications × 400) 
with the aid of Adobe Photoshop software by four indi-
viduals and averaged three randomly selected fields per 
tissue section.

Isolation of splenocytes
Mouse spleens were ground using sterilized glass slides 
with frosted ends and red blood cells were lysed in hypo-
tonic ACK buffer (0.15  mM  NH4Cl, 1  mM  KCO3, and 
0.1 mM EDTA, pH 7.4). The remaining splenocytes were 
filtered through a 40  µm cell strainer (Falcon, Durham, 
NC) and maintained in RPMI 1640 medium containing 
5% fetal bovine serum (ThermoFisher Scientific, MA, 
USA).

Flow cytometry
For surface marker staining, single-cell suspensions were 
washed with FACS buffer and incubated with fluoro-
chrome labeled-antibodies for 30 min at 4 °C. For intra-
cellular staining, single-cell suspensions were cultured 
with 25  ng/ml phorbol 12-myristate 13-acetate (Sigma-
Aldrich, St. Louis, MO, USA) and 250 ng/ml ionomycin 
(Sigma-Aldrich) with the addition of GolgiStop (BD Bio-
sciences, Franklin Lakes, NJ, USA) for 4 h. After surface 
staining, cells were fixed and permeabilized with Cyto-
fix/Cytoperm according to the manufacturer’s instruc-
tions (BD Biosciences). After washing with Perm/Wash 
buffer, antibodies for intracellular staining were added for 
30 min at 4  °C. To determine the frequency of germinal 
center (GC) B cells, splenocytes were immunostained 
with Alexa Fluor® 488-conjugated anti-GL7 PE-conju-
gated anti-Fas, APC-conjugated anti-B220, and PerCP-
Cyanine5.5 anti-CD19 antibodies. For regulatory B cells, 
splenocytes were immunostained with PE-Cy™7 anti-
CD19, rat monoclonal FITC anti-CD5, PE anti-CD1d, 
and APC anti-IL-10 antibodies. Events were collected 
using the FACS Calibur (BD Biosciences) or CytoFLEX 
(Beckman Coulter), and the data were analyzed using 
Flow Jo software, v. 7.6 (Treestar, Ashland, OR, USA).

Confocal microscopy
Spleen tissues were snap-frozen in liquid nitrogen 
and stored at − 70  °C. Tissue Sects.  (5  μm thick) were 

fixed in acetone. To stain IL-17 + or phosphorylated 
(p)-STAT3 + in CD4 + cells, Alexa Fluor® 488-labeled 
anti-CD4, PE-labeled anti-IL-17A, and PE-labeled anti-
p-STAT3 (pTyr705) antibodies were used. To stain regu-
latory T (Treg) cells, Alexa Fluor® 488-labeled anti-CD4, 
PE-labeled anti-Foxp3, and APC-labeled anti-CD25 
antibodies were used. Sections were analyzed using the 
LSM 510 Meta Confocal Microscopy System (Carl Zeiss, 
Oberkochen, Germany). Positive cells were counted visu-
ally at high magnification by four investigators.

Real‑time polymerase chain reaction
Total RNA was extracted using TRI Reagent (Molecular 
Research Center, Inc., Cincinnati, OH, USA), and cDNA 
was synthesized with the Dyne First-Strand cDNA Syn-
thesis Kit (Dyne Bio, Seongnam, Korea) according to the 
manufacturer’s protocol. Gene expression was measured 
using the StepOnePlus Real-Time PCR System (Applied 
Biosystems, Foster City, USA) with SYBR premix (Bio-
line USA Inc. Taunton, MA). The following primers were 
used: IL-1β, 5′-GGA TGA GGA CAT GAG CAC ATTC-3′ 
(sense) and 5′-GGA AGA CAG GCT TGT GCT CTGA-
3′ (antisense); IL-6, 5′-AAC GAT GAT GCA CTT GCA 
GAAA-3′ (sense) and 5′-TCT GAA GGA CTC TGG CTT 
TGTC-3′ (antisense); IL-17A, 5′-TTT AAC TCC CTT 
GGC GCA AAA-3′ (sense) and 5′-CTT TCC CTC CGC 
ATT GAC AC-3′ (antisense); and β-actin, 5′-GTA CGA 
CCA GAG GCA TAC AGG-3′ (sense) and 5′-GAT GAC 
GAT ATC GCT GCG CTG-3′ (antisense). mRNA levels 
were normalized to that of β-actin mRNA.

Statistical analysis
All statistical analyses were performed using Prism (v. 8 
for Windows; GraphPad Software). P-values were calcu-
lated by two-tailed paired t-test and two-way analysis of 
variance (grouped). P < 0.05 was considered indicative of 
statistical significance.

Results
Preparation and characterization of MTX‑NPs
We prepared PLGA NPs via a homogenization method 
using PVA as stabilizer. MTX was physically loaded 
into the NPs (Fig.  1a). MTX was stably encapsulated 
in a hydrophobic core (PLGA) with an encapsulation 
efficiency of 76.6 ± 4.9%. The size of MTX-NPs was 
227.2 ± 1  nm and MTX-NPs were spherical by trans-
mission electron microscopy (TEM) (Fig.  1b). The size 
is suitable for injection into body by syringes with small 
needle. The polydispersity index (PdI) and zeta potential 
of MTX-NP were 0.139 ± 0.041 and − 2.8 ± 0.02, respec-
tively, showing a homogeneous formulation without 
aggregation and near-neutral surface, respectively. In 
PBS at pH 7.4, free MTX was slowly released from the 
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PLGA core (Fig.  1c), indicating sustained release (Fig 
1d). To investigate side effect of MTX-loaded nanopar-
ticle, we measured complete blood count (CBC), cre-
atinine, aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT). In CBC and liver function (AST, 
ALT), free MTX, MTX loaded NPs did not show any tox-
icity (Fig. 1e), (Table 1). Free MTX exhibited renal toxic-
ity with low creatinine concentration, a typical side effect. 

Fig. 1 Characteristics of MTX‑NPs. a Schematic of MTX‑NP synthesis. b Size distribution, zeta‑potential value, and TEM image of MTX‑loaded 
nanoparticles. c MTX release profile of MTX‑NPs. d Toxicological analysis of MTX‑NPs in plasma. Plasma level of hepatotoxicity biomarker, aspartate 
aminotransferase (AST) and alanine aminotransferase (ALT). e Creatinine concentration, biomarker for kidney function. Error bar represents 
mean ± S.D. (n = 3). **P < 0.01 vs. control group
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However, in case of MTX-loaded NPs, the value was sim-
ilar with that of control group, which means that NPs are 
useful for reducing renal toxicity of MTX (Fig. 1f ). 

MTX‑NPs attenuate the severity of autoimmune arthritis
To determine whether MTX-NPs could modulate the 
development of experimental model of arthritis in vivo, 
free MTX or MTX-NPs were administered to mice 
with CIA at 3  weeks after CII immunization (Fig.  2a). 
Subcutaneous injection of MTX-NPs in arthritic mice 
significantly reduced the arthritis score and incidence 
compared with vehicle-treated CIA mice. Injection of 
free MTX also reduced the arthritis score and inci-
dence in CIA mice, but statistical significance was not 
consistently achieved (Fig. 2b). Histologic examination 
of joints stained with H&E showed that the ankles of 
MTX-NPs-treated mice exhibited less severe inflam-
mation, bone damage, and cartilage damage compared 
with vehicle-treated mice. Application of MTX-NPs, 
in particular, exerted a more profound inhibitory effect 

on joint destruction compared with free MTX (Fig. 2c). 
Furthermore, the levels of inflammatory mediators—
including IL-1β, TNF-α, and VEGF—were significantly 
lower in the joint sections from MTX-NPs-treated mice 
compared with vehicle-treated mice (Fig. 3).

MTX‑NPs reciprocally regulate the Th17 cells and Treg cells 
in vivo
To evaluate whether MTX-NPs suppress Th17 cells 
in  vivo, the number of CD4 + IL-17 + Th17 cells in 
the spleens from CIA mice injected with MTX-NPs 
was investigated by confocal microscopy. The number 
of Th17 cells was lower in MTX-NPs- or free MTX-
treated CIA mice compared with vehicle-treated CIA 
mice (Fig.  4a). STAT3 phosphorylation in CD4 + cells 
decreased in MTX-NPs- or free MTX-treated CIA 
mice compared to vehicle-treated CIA mice, but there 
was no statistical significance (Fig.  4b). To investigate 
whether MTX-NPs reciprocally regulate the popu-
lation of Th17 and Treg cells in  vivo, the number of 
CD4 + CD25 + Foxp3 + Treg cells in the spleen was 
investigated. The number of Treg cells in the spleen of 
MTX-NPs-injected mice significantly increased com-
pared to vehicle-injected mice, and the increase was 
also significant compared with free MTX-injected mice 
(Fig. 4c). In addition, the mRNA levels of IL-6 and IL-
17A, inflammatory cytokines related to Th17 cell devel-
opment, significantly decreased in ex  vivo splenocytes 
of mice injected with MTX-NPs compared to mice 
injected with vehicle (Fig. 4d).

MTX‑NPs increase regulatory B cells in vivo
To evaluate whether MTX-NPs act on B-cell 
responses in  vivo, we examined the number of 
ex  vivo CD19 + B220 + GL-7 + Fas + GC B cells and 
CD19 + CD5 + CD1d + IL-10 + regulatory B (Breg) 
cells in splenocytes from CIA mice injected with MTX-
NPs by flow cytometry. The number of GC B cells was 
lower whereas the number of regulatory B cells was 
higher in ex vivo splenocytes from MTX-NPs-injected 
CIA mice compared with vehicle-injected mice, but 
there was no statistical significance (Fig. 5).

Table 1 Complete blood count of mice which were 
subcutaneously injected with vehicle, free MTX or MTX NPs

WBC white blood cell (K/μL,  103 cells/μL), NE Neutrophil, LY lymphocyte, MO 
monocyte, EO eosinophil, BA basophil, RBC red blood cell (M/μL,  106 cells/μL), Hb 
hemoglobin, PLT platelet, MPV mean platelet volume (mean ± S.D., n = 3)

Normal 
range

Vehicle Free MTX MTX NPs

WBC (K/μL) 1.8–10.7 4.38 ± 1.81 5.27 ± 0.39 4.65 ± 1.59

NE (K/μL) 0.1–2.4 0.47 ± 0.23 0.79 ± 0.07 0.62 ± 0.06

LY (K/μL) 0.9–9.3 3.72 ± 1.47 4.29 ± 0.37 3.79 ± 1.4

MO (K/μL) 0.0–0.4 0.16 ± 0.09 0.16 ± 0.02 0.22 ± 0.14

EO (K/μL) 0.0–0.2 0.023 ± 0.015 0.017 ± 0.006 0.017 ± 0.015

BA (K/μL) 0.0–0.2 0.003 ± 0.006 0 ± 0 0.003 ± 0.006

NE (%) 6.6–38.9 10.51 ± 0.82 15.12 ± 0.73 14.03 ± 3.49

LY (%) 55.8–91.6 85.37 ± 1.71 81.39 ± 1.09 81.01 ± 3.37

MO (%) 0.0–7.5 3.55 ± 0.7 3.14 ± 0.73 4.55 ± 1.67

EO (%) 0.0–3.9 0.48 ± 0.23 0.3 ± 0.07 0.34 ± 0.21

BA (%) 0.0–2.0 0.08 ± 0.02 0.63 ± 0.01 0.077 ± 0.09

RBC (M/μL) 6.36–9.42 7.47 ± 0.57 7.67 ± 0.7 7.21 ± 0.33

Hb (g/dL) 11.0–15.1 12.17 ± 0.64 12.2 ± 0.89 12.17 ± 0.65

PLT (K/μL) 592–2972 776 ± 307 757.3 ± 223 792.7 ± 87.51

MPV (fL) 5.0–20.0 3.73 ± 0.06 3.77 ± 0.06 3.8 ± 0.17

(See figure on next page.)
Fig. 2 MTX‑NPs ameliorated the severity of collagen‑induced arthritis. a A graphic scheme of CIA induction and vehicle, free MTX or MTX‑NPs 
administration. Beginning 3 weeks after the first immunization with type II collagen (CII), mice were injected subcutaneously with vehicle, free 
MTX, or MTX‑NPs twice per week for 7 weeks (n = 5/group). b Arthritis score and incidence are shown for each group. c At 70 days after the first CII 
immunization, tissue sections from the paw and ankle joints of mice were stained with hematoxylin and eosin (original magnification × 40). Lower 
panels show enlarged view of the region within a box in the upper panels in each group. Asterisk: inflammatory cell infiltration. Representative 
histological features are shown. Graphs present quantified levels of inflammation, bone damage, and cartilage damage. Values are means ± SEM. *, 
P < 0.05, **, P < 0.01, and ***, P < 0.001 vs. control group. Data are representative of two independent experiments
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Fig. 2 (See legend on previous page.)
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Discussion
We investigated the therapeutic potential of MTX-NPs 
administered subcutaneously in a murine model of auto-
immune arthritis. MTX-NPs significantly reduced the 
clinical and histologic severity of experimental model 
of arthritis. MTX-NPs reduced the number of TNF-α– 
and VEGF–positive cells and reciprocally regulated the 
number of Th17 and Treg cells in the spleen from MTX-
NP-treated CIA mice. Moreover, injection of MTX-NPs 
showed a tendency to increase the number of regulatory 
B cells in ex vivo splenocytes of CIA mice.

Synovial inflammation in RA involves infiltration of 
inflammatory cells, including monocytes/macrophages, 
B cells, and T cells, which are sources of chemokines 
and inflammatory cytokines [25]. T cells are a key 
player in the inflamed joints of patients with RA [26]. 
Although most subsets of CD4 + T cells are involved in 
RA pathogenesis, Th17 cells in particular positively cor-
relate with disease activity in RA [27]. In CIA mice, defi-
ciency of IL-17 suppressed the development of arthritis 
and reduced the production of type II collagen-specific 

immunoglobulin [28]. Moreover, blockade of IL-17 ame-
liorated the severity of arthritis and prevented synovial 
inflammation and joint destruction in CIA mice [29]. 
MTX exerts a potent therapeutic effect by modulating 
humoral and cellular immune responses in RA manage-
ment [14, 30]. MTX increases the sensitivity of T cells to 
apoptosis [16] and inhibits NF-κB activation in T cells via 
tetrahydrobiopterin 4 depletion and JNK activation [31]. 
MTX suppresses the expression of IL-6 and IL-6–driven 
proliferation of fibroblast-like synoviocytes from patients 
with RA [32]. Thomas et al. demonstrated that MTX sup-
pressed the JAK/STAT pathway in the Drosophila system 
and human macrophage lines [33], but the effect of MTX 
on JAK/STAT signaling and Th17 and Treg frequen-
cies in the CIA model are unclear. The number of Th17 
cells in the spleen of CIA mice decreased by injection of 
free MTX, and the effect was increased by injection of 
MTX-NPs.

The importance of B cells in RA pathogenesis has been 
demonstrated. B-cell-deficient mice had impaired CIA 
development [34], and B-cell depletion by an anti-CD20 

Fig. 3 MTX‑NPs suppressed the levels of inflammatory mediators in vivo. Beginning 3 weeks after the first immunization with type II collagen 
(CII), mice were injected subcutaneously with vehicle, free MTX, or MTX‑NPs twice per week for 7 weeks (n = 5/group). At 70 days after the first 
immunization with CII, sections of joint tissues (n = 5/group) were stained with antibodies against interleukin (IL)‑1β, tumor necrosis factor (TNF)‑α, 
and VEGF. Graphs present numbers of antibody‑positive cells for each cytokine. Data are means ± SEM of two independent experiments. *P < 0.05 
vs. control group
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antibody delayed CIA development [35]. Immuniza-
tion with type II collagen induced the formation of ger-
minal centers in lymph nodes, which was necessary for 
CIA development [36]. Breg cells control autoimmune 
diseases by secreting anti-inflammatory cytokines (e.g., 
IL-10 and IL-35) and transforming growth factor-β [37, 
38]. Moreover, Breg cells suppress the differentiation of 
proinflammatory lymphocytes (e.g., Th1 and Th17 cells) 
and dendritic cells [39]. The frequency of Th17 cells and 
germinal center B cells decreased in ex vivo splenocytes 
of MTX-NP-treated CIA mice.

The elimination half-life of free MTX at the injection 
site in human is 0.16  h in case of subcutaneous injec-
tion [40]. Our NPs provided sustained release of MTX 
and increased the residence time. Although the release 
of MTX from NPs was faster than in prior reports, it 
affected the therapeutic results significantly. It is neces-
sary to test and optimize further the release pattern of 
MTX by changing NP size or composition. In addition, 

Fig. 4 MTX‑NPs regulate the number of Th17/Treg cells and expression of inflammatory cytokines in vivo. Beginning 3 weeks after the first 
immunization with type II collagen (CII), mice were injected subcutaneously with vehicle, free MTX or MTX‑NPs twice per week for 7 weeks (n = 5/
group). a–c At 70 days after the first immunization, spleen tissues were isolated and stained for CD4 + IL‑17 + (a), CD4 + p‑STAT3 (Y705) + (b), and 
CD4 + CD25 + Foxp3 + (c) cells. Cell subsets were analyzed in four independent quadrants by confocal laser microscopy. The distributions of the 
cell populations are shown. d At 70 days after the first immunization, ex vivo splenocytes were isolated and the mRNA levels of IL‑6, IL‑1β, and IL‑17 
were determined by real‑time PCR. Data are means ± SEM of two independent experiments. *P < 0.05 vs. control group

Fig. 5 MTX‑NPs increased the number of regulatory B cells 
in vivo. Beginning 3 weeks after the first immunization with type 
II collagen (CII), mice were injected subcutaneously with vehicle, 
free MTX, or MTX‑NPs twice per week for 7 weeks (n = 3/group). 
At 70 days after the first immunization, ex vivo splenocytes were 
isolated and the number of CD19 + B220 + GL‑7 + FAS + and 
CD19 + CD25 + Foxp3 + cells determined by flow cytometry. Values 
are percentages of positive cells
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MTX in NP could be taken up by T cells and B cells 
before release. This is because the NP surface was coated 
with PVA; we did not use polyethylene glycol groups to 
prevent fouling and unwanted uptake into immune cells. 
In addition, further modification with biological ligands 
will provide information for specific targeting of NPs to 
particular cell types.

Conclusion
In summary, our study showed a therapeutic efficacy of 
MTX-NPs in mice with CIA. Subcutaneous injection 
of MTX-NPs effectively alleviated the development of 
experimental model of arthritis and suppressed the infil-
tration of inflammatory factors-expressing cells in the 
joint from CIA mice. Moreover, the number of patho-
genic Th17 cells and inflammatory factors including 
TNF-α decreased while the number of regulatory T cells 
increased in the spleen of the MTX-NPs-injected group. 
These findings suggest that MTX-NPs have potential as 
a more advanced therapeutic strategy to overcome the 
limitations of MTX therapy.
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