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Abstract 

Background: Nucleotide mutations in the ABO gene may reduce the activity of glycosyltransferase, resulting in lower 
levels of A or B antigen expression in red blood cells. Six known splice sites have been identified according to the 
database of red cell immunogenetics and the blood group terminology of the International Society of Blood Transfu-
sion. Here, we describe six distinct splice site variants in individuals with ABO subtypes.

Methods: The ABO phenotype was examined using a conventional serological method. A polymerase chain reaction 
sequence-based typing method was used to examine the whole coding sequence of the ABO gene. The ABO gene 
haplotypes were studied using allele-specific primer amplification or cloning technology. In silico analytic tools were 
used to assess the functional effect of splice site variations.

Results: Six distinct variants in the ABO gene splice sites were identified in nine individuals with ABO sub-
types, including c.28 + 1_2delGT, c.28 + 5G > A, c.28 + 5G > C, c.155 + 5G > A, c.204-1G > A and c.374 + 5G > A. 
c.28 + 1_2delGT was detected in an  Aw individual, while c.28 + 5G > A, c.28 + 5G > C, and c.204-1G > A were detected 
in  Bel individuals. c.155 + 5G > A was detected in one  B3 and two  AB3 individuals, whereas c.374 + 5G > A was identi-
fied in two  Ael individuals. Three novel splice site variants (c.28 + 1_2delGT, c.28 + 5G > A and c.28 + 5G > C) in the ABO 
gene were discovered, all of which resulted in low antigen expression. In silico analysis revealed that all variants had 
the potential to alter splice transcripts.

Conclusions: Three novel splice site variations in the ABO gene were identified in Chinese individuals, resulting in 
decreased A or B antigen expression and the formation of ABO subtypes.
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Background
Karl Landsteiner discovered the ABO blood group sys-
tem in 1900, and it was of great clinical significance in 
blood transfusion and organ transplantation [1]; addi-
tionally, it is important for studying the development 
of numerous human diseases [2–4]. Incompatibility in 
the ABO blood group may result in severe haemolytic 

reactions during transfusion and neonatal haemolytic 
disease [5, 6].

The ABO gene is located on chromosome 9; its full-
length sequence is approximately 24.9 kb, and the coding 
region is organized into seven exons with 28, 70, 57, 48, 
36, 135, and 691 nucleotide base pairs [7, 8]. Five ABO 
blood group alleles, including ABO*A1.01, ABO*A1.02, 
ABO*B.01, ABO*O.01.01, and ABO*O.01.02, are com-
mon in the Chinese Han population [9]. The ABO gene 
encodes glycosyltransferase A (GTA) or glycosyltrans-
ferase B (GTB), which catalyse the formation of A or B 
antigens on red blood cells, respectively [8]. However, 
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there are only seven nucleotide changes between the 
ABO*A1.01 and ABO*B.01 alleles in the coding sequence 
(CDS) region, resulting in four amino acid alterations 
between GTA and GTB [8, 10].

Although the ABO blood group system is composed of 
four phenotypes, including A, B, O, and AB, the distri-
bution of ABO phenotypes varies across populations and 
regions [9]. Additionally, some subtypes of ABO pheno-
types have been identified in populations, which often 
exhibit differences in forward and reverse ABO typing 
due to reduced antigen and/or antibody expression [9, 
11, 12]. Variations in the ABO gene may affect the activ-
ity and/or specificity of glycosyltransferases, resulting in 
the formation of ABO subtypes. According to the data-
base of names for ABO blood group alleles (v1.1) by the 
red cell immunogenetics and blood group terminology 
of international society of Blood Transfusion (ISBT), five 
splice sites with Aweak or Ael and one splice site with B3 
were found in populations from around the world. In this 
study, we described six different splice site variants of the 
ABO gene in individuals with ABO subtypes.

Materials and methods
Study specimens
Individuals with ABO subtypes were either blood donors 
or patients. All specimens were obtained after the indi-
viduals provided informed consent. This study was 
approved by the ethics committee of the Blood Center of 
Zhejiang Province, China. The difference in these speci-
mens was discovered during routine ABO blood group 
typing. The specimens placed in tubes with or without 
EDTA anticoagulant were sent to the immunohaematol-
ogy reference laboratory in the Blood Center of Zhejiang 
Province for further analysis.

Serological tests
A, B, and H antigens, as well as anti-A and anti-B anti-
bodies, were detected using a conventional serological 
method [13, 14]. Anti-A, anti-A1, anti-B, anti-AB, and 
anti-H antibody reagents were used (Shanghai Blood Bio-
technology Co., Ltd., Shanghai, China). Red blood cells 
(RBCs) in groups A, B, and O were prepared in the labo-
ratory using fresh blood from three donors of the same 
type at random.

ABO gene full exon sequencing analysis
According to our previous reports, we used the polymer-
ase chain reaction sequence-based typing (PCR-SBT) 
technique to analyse the entire CDS of the ABO gene 
[9, 13, 14]. Three sets of primers were used to amplify 
all exons of the ABO gene. The amplicons were purified, 
followed by sequencing and analysis using an ABI 3730 
sequencer (Applied Biosystems, Foster City, CA, USA). 

SeqScape v2.5 software (Applied Biosystems) was used 
to evaluate the sequencing data. The ABO gene refer-
ence sequence was obtained from GenBank (ID num-
ber NG_006669.2), and the ABO genotype was assigned 
based on nucleotide polymorphism. The ABO allele was 
nominated in accordance with the ISBT guidelines for 
red cell immunogenetics and blood group terminology 
[15].

ABO gene sequence analysis using NGS
Sequences from the start codon to the stop codon of the 
ABO gene were analysed using next-generation sequenc-
ing (NGS). First, the ABO gene sequence was amplified 
using two pairs of primers. In the first pair, the forward 
and reverse primer sequences were 5’GCG CCG TCC CTT 
CCT AGC AG 3’ and 5’AGC CAC CAA CTT CCC CTA GT3’. 
The primer sequences in the second pair were 5’TAC 
TCA CCT ATT ATT GGC CTT TGG TT3’ and 5’TAG GCT 
TCA GTT ACT CAC AAC AGG AC3’. The expected lengths 
of the amplicons were approximately 12,763 and 7250 bp, 
respectively. The total volume for each PCR amplification 
reaction was 25 μL, which included 5 × GLX PCR buffer 
5 μL (Takara Bio Company, Dalian, China), 200 μmol/L 
dNTP concentration, 0.2  μmol/L primer concentra-
tion, 0.625 U GLX Taq enzyme (Takara Bio Company) 
and 2.5 μL DNA sample. Amplification was performed 
on an ABI PCR 9700 instrument (Applied Biosystems). 
The following conditions were used for PCR amplifica-
tion: predenaturation at 94 ℃ for 1  min, denaturation 
at 98℃ for 10 s, annealing at 68℃ for 10 min, 30 cycles, 
and extension at 68℃ for 10  min. The amplicons were 
digested with Tn5 transposase, and the index was added 
to construct the library using the Trans NGS Tn5 DNA 
library prep kit for Illumina (Transgene, Beijing, China). 
All procedures were carried out strictly according to the 
manufacturer’s instructions. Following the qualification 
of the library’s quality, the sequences were detected on an 
Illumina MiSeq Sequencer using the MiSeq sequencing 
reagent kit (V2, 300 cycles, Illumina Inc., San Diego, CA, 
USA). The sequencing data were analysed using the ABO 
reference sequence (GenBank ID number NG_006669.2 
for genomic, NM_020469.2 for transcript) and CLC main 
workbench 12.0 software (Qiagen company, Hilden, Ger-
many), and all polymorphism nucleotides were recorded 
and analysed.

Analysis of the ABO gene haplotype
Allele-specific primer amplification sequencing or clon-
ing technology was used to haplotype the ABO gene [9, 
13]. For allele-specific primer amplification (specimen 
ID numbers 4 to 9), specific primers for the A, B, and O 
alleles were used to amplify the corresponding alleles, 
and the amplicons were then sequenced and analysed as 
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previously reported [9, 13]. For cloning technology (spec-
imen ID numbers 1 to 3), the PCR-SBT amplicon was 
ligated with the  pCR4@TOPO plasmid vector according 
to the manufacturer’s instructions and transfected into 
competent cells to grow. As previously described, plas-
mid DNA was extracted as a template for sequencing 
analysis [9, 13].

In silico splicing transcript analysis
Alamut® software v2.10 was used in conjunction with 
four splice site prediction tools, SpliceSite Finder-like, 
MaxEntScan, NNSPLICE, and GeneSplicer, to pre-
dict the effects of these splice site variations (www. inter 
active- bioso ftware. com/ doc/ alamut- visual/ 2.6/ splic ing. 
html) [16–18]. The Berkeley Drosophila Genome Pro-
ject Searches Splice Site Prediction software and Net-
Gene2-2.42 software were also used to predict potential 
splicing transcripts [19, 20]. A splice site score calculator 
was used to assess the strength of the constitutive and 
cryptic acceptor splicing sites. A ≥ 10% change in the 
splice site signal in at least two algorithms was consid-
ered to have an effect on splicing [21].

Results
The ABO subtypes’ phenotypes
Nine Chinese individuals with ABO blood group typing 
inconsistencies were studied. Four were blood donors, 
while the rest were patients. Table  1 shows the aggluti-
nation reaction states of these individuals’ RBCs with 
anti-A, anti-A1, anti-B, anti-AB, anti-H, and serum 
containing known A, B, O group RBCs. All individual 
RBCs exhibited 3 + or 4 + strength agglutination with 
anti-H. In the absorption and elution test, B antigen was 
expressed in ID numbers 2, 3, and 7 specimens, whereas 
A antigen was positive in ID numbers 8 and 9 specimens. 
Individuals with ID numbers 4, 5, and 6 had mixed-field 

agglutination. These individuals were classified as ABO 
subtypes based on serological characteristics (Table  1), 
with 3 individuals belonging to subtype A and 6 individu-
als belonging to subtype B.

Analysis of the ABO gene’s CDS region
All nucleotides for full exons of the ABO gene in nine 
individuals were sequenced, but no variation was 
observed in the CDS regions. Table  1 shows the ABO 
genotypes of the individuals based on the sequences of 
all exons. Further sequence analysis of exon and intron 
splicing acceptor/donor sites in the nine individuals 
showed six distinct heterozygotes at positions c.28 + 1_2, 
c.28 + 5, c.155 + 5, c.204–1, and c.374 + 5 (Additional 
file 1: Figure S1).

ABO gene sequence analysis using NGS
Additional file 2: Table S1 lists 166 polymorphic nucleo-
tides of these ABO subtypes (ID numbers 3 to 8) com-
pared to ABO gene sequences in the GenBank database 
(NG_006669.2 for genomic, NM_020469.2 for transcript) 
(sequence between start codon and stop codon in the 
ABO gene). The ID numbers 1, 2, and 9 specimens were 
not analysed using the NGS method. Except for the splic-
ing acceptor/donor sites, which were consistent with the 
PCR-SBT, no variation was observed in the NGS method.

The ABO gene’s haplotype
The haplotyping analysis revealed six distinct splice site 
variants in the ABO subtypes, including c.28 + 1_2delGT, 
c.28 + 5G > A, c.28 + 5G > C, c.155 + 5G > A, c.204-
1G > A, and c.374 + 5G > A (Additional file  1: Figure 
S2). c.155 + 5G > A was identified in three ABO sub-
type individuals, c.374 + 5G > A in two individuals, and 
c.28 + 1_2delGT, c.28 + 5G > A, c.28 + 5G > C, c.204-
1G > A variants in one individual. The sequences for all 

Table 1 Serological and genotype results in the samples with ABO subtypes

# ABO*B3.03 was ABO*B.01 with c.155 + 5G > A; ABO*AEL.new was ABO*A1.02 with c.374 + 5G > A. Ac A cells, Bc B cells, Oc O cells. 1 + to 4 +  = agglutination of 
increasing strength; mf = mixed-field agglutination; 0 = no agglutination. Nucleotide position 1 is identical to the first nucleotide of the coding sequence

ID Phenotype Genotype# Forward typing Reverse typing

Anti-A Anti-B Anti-AB Anti-A1 Anti-H Ac Bc Oc

1 Aw ABO*A1.02/ABO*O.01.01 with c.28. +  1-2delGT 1 + 0 1 + 0 4 + 1 + 4 + 0

2 Bel ABO*B.01/ABO*O.01.02 with c.28 + 5G > A 0 0 0 0 4 + 4 + 0 0

3 Bel ABO*B.01/ABO*O.01.02 with c.28 + 5G > C 0 0 0 0 4 + 4 + 0 0

4 B3 ABO*B3.03/ABO*O.01.01 0 mf 2 + 0 3 + 2 + 0 0

5 AB3 ABO*A1.02/ABO*B3.03 4 + 1 + mf 4 + 4 + 3 + 0 0 0

6 AB3 ABO*A1.02/ABO*B3.03 4 + 3 + mf 4 + 3 + 4 + 0 0 0

7 Bel ABO*B.01/ABO*O.01.02 with c.204-1G > A 0 0 0 0 4 + 4 + 1 + 0

8 Ael ABO*AEL.new/ABO*O.01.02 0 0 0 0 4 +  ± 3 + 0

9 Ael ABO*AEL.new/ABO*O.01.01 0 0 0 0 4 + 1 + 4 + 0

http://www.interactive-biosoftware.com/doc/alamut-visual/2.6/splicing.html
http://www.interactive-biosoftware.com/doc/alamut-visual/2.6/splicing.html
http://www.interactive-biosoftware.com/doc/alamut-visual/2.6/splicing.html
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variants were submitted to the GenBank Database, with 
the nucleotide sequence and accession numbers listed in 
Table 2.

Searches for these variants identified in 
the subtypes in the gnomAD v2.1.1 and 
dbSNP databases revealed that c.155 + 5G > A 
(NC_000009.11:g.136136716C > T, GRCh37), c.204-
1G > A (NC_000009.11:g.136133523C > A) and 
c.374 + 5G > A (NC_000009.11:g.136132791C > T) existed 
in these databases with frequencies of 0.0009%, 0.0008%, 
and 0.0004%, respectively. However, c.28 + 1_2delGT 
(NC_000009.11: g.136150576_77delCA), c.28 + 5G > A 
(NC_000009.11: g.136150573C > T), and c.28 + 5G > C 
(NC_000009.11: g.136150573C > G) were identified for 
the first time in the ABO subtypes (Table 2).

In silico predictions to assess the functional implications 
of splice site variations
Table 2 shows the changes in the splice site signal of the 
variants using the SpliceSite Finder-like, MaxEntScan, 
NNSPLICE, and GeneSplicer tools. All variants had a 
probability of affecting the splice transcripts (probabil-
ity over 0.99). The Berkeley Drosophila Genome Project 
Searches Splice Site Prediction software identified over 
40 new donor sites in the c.28 + 1_2delGT, c.28 + 5G > C, 
and c.28 + 5G > A variants. This program identified two 
donor sites closest to exon 1 at positions c.28 + 168 
(cgggcagGTgggctc) and c.28 + 267 (ggtcctgGTgagagc), 
with scores of 0.40 and 0.93, respectively. NetGene2-2.42 
software predicted c.28 + 267 (ggtcctgGTgagagc) as a 
donor site but not c.28 + 168.

In the in silico analysis using the Berkeley Drosophila 
Genome Project Searches Splice Site Prediction soft-
ware, several new splice sites were predicted in the 
c.155 + 5G > A, c.204-1G > A, and c.374 + 5G > A vari-
ants. Some new donor sites were predicted at c.155 + 507 
(acataagGTaggagg) with a score of 0.95 and c.374 + 840 
(ctccttaGTaagagg) with a score of 0.51. One of the 
new acceptor sites was predicted to be located at posi-
tion c.204–224 (ctcttgccAGtttgtaag) with a score of 
0.84. However, some additional spliceosomes resulting 
from variations in the splice sites might generate par-
tial functional transferases as a result of the RBCs of the 
probands.

Discussion
The common ABO subtypes are  A3,  Ax,  Ael,  B3,  Bx,  Bel, 
 Bm, B(A), cisAB, etc. Seltsam A et  al. reported that the 
 BW phenotype is caused by variations in the CCAAT-
binding factor/NF-Y enhancer region of the ABO gene 
[22]. Sano R demonstrated for the first time that dele-
tion of the ABO gene’s erythroid cell-specific regulatory 
element could downregulate transcription in the B(m) 

allele [23]. Numerous ABO variations have been identi-
fied in individuals with ABO subtypes to date [24–29]. 
These variants of the ABO gene are located in the CDS 
region, intron 1 erythroid-specific regulatory element 
region, splice site, promoter, cis- or trans-regulatory 
element, etc. Kronstein-Wiedemann R et  al. found that 
miR-331-3p and miR-1908-5p directly target the mRNA 
of GTA and GTB and that overexpression of these miR-
NAs in haematopoietic stem cells may result in a signifi-
cant reduction in the expression of A antigens [30]. Some 
variations in the splice sites of the ABO gene are associ-
ated with some ABO subtypes. Chen DP et al. reported 
c.155 + 5G > A (IVS3 + 5G > A) in a B3 individual and 
c.374 + 5G > A (IVS6 + 5G > A) in an Ael individual31, 
32. In theory, changes in the ABO gene splice site result 
in the formation of new RNA splice sites and therefore 
novel versions of ABO mRNA.

The Chinese population has a high prevalence of ABO 
subtypes [13, 14]. In our research, we routinely analysed 
the ABO gene’s full CDS and the sequence of the eryth-
roid cell-specific regulatory element region for ABO 
subtypes using the PCR-SBT technique. We discovered 
over 50 novel alleles from ABO subtypes [9, 13, 33]. In 
this study, six distinct splicing site variants in the ABO 
gene were identified in nine individuals with ABO sub-
types. Between 2015 and 2019, our laboratory screened 
and obtained specimens from 369 individuals with sus-
pected ABO subtypes using a combination of serological 
and molecular methods.

Multiple ABO mRNA forms were detected in the nor-
mal ABO phenotype by RT–PCR, the majority of which 
lacked exon 6 [34, 35]. However, in some individuals 
with ABO subtypes, RNA splicing of the ABO gene was 
detected [31, 32, 36, 37]. An ABO* A1-like allele with a 
4 bp deletion (c.236-239delCGTG) in exon 5 and a 20 bp 
downstream deletion in intron 5 affected the donor splice 
site [36]. c.28G > A in exon 1 is associated with the weak 
B subtype via its effect on the ABO gene’s RNA splic-
ing [37]. Previously, c.155 + 5G > A was discovered in B3 
individuals [31]. At least 7 distinct types of splicing tran-
scripts were identified in B3 individuals [31]. While it is 
possible to generate a mRNA without the matching exon 
3 fragment, only one of 102 mRNA clones contained an 
exon 3 deletion splicing variant, suggesting that further 
variable splicing occurred [31]. The c.374 + 5G > A vari-
ant originally identified on the ABO*A1.01 allele in the 
Ael individual, currently referred to as the ABO*AEL.04 
allele, is predicted to generate transcripts without exon 6 
or exons 5 to 632. At least 10 distinct splicing transcript 
types were identified in the ABO*AEL.04 individual [31]. 
However, this study discovered a c.374 + 5G > A variant 
in the ABO*A1.02 allele.
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Hwang DY et  al. found that the IVS1 + 2  T > C in 
intron 1 of the CYP17A1 gene could result in cryptic 
splicing, with the splicing transcripts being included 
in exon 1 [38]. In this study, the c.28 + 1_2delGT, 
c.28 + 5G > A, and c.28 + 5G > C variants of the ABO 
gene were found to be located in the exon/intron 1 
boundary. We hypothesized that these variations would 
impair adjacent intron splicing and induce alternate 
activation of some cryptic splice donor sites within 
exon 1, resulting in aberrant mRNA splicing. One of 
the predicted splice sites closest to exon 1 can produce 
a protein with an additional 89 amino acids. Addition-
ally, Kominato Y et al. found alternative exon 1a in the 
upstream genomic sequence of the ABO gene [34]. 
As a result, alternative splicing transcripts may begin 
with exon 1a in individuals with the c.28 + 1_2delGT, 
c.28 + 5G > A, and c.28 + 5G > C variants. This pos-
sibility needs to be further confirmed in subsequent 
research.

Alternative 3′ or 5′ splice sites have been shown to be 
capable of skipping exons in the transcripts [39]. The 
c.155 + 5G > A, c.204-1G > A, and c.374 + 5G > A varia-
tions should generate new transcripts skipping exons 3, 
5, and 6, respectively, in the in silico prediction. Because 
of a lack of the corresponding exon sequence or the for-
mation of new spliceosomes, the amino acid sequence 
of the glycosyltransferase varies, affecting the catalytic 
activity. Splicing transcripts lacking exon 3 or exon 5 
are predicted to generate functional glycosyltransferases 
lacking 19 or 12 amino acids at the N-terminus, respec-
tively, whereas splicing transcripts lacking exon 6 could 
lead to a premature stop codon and form a new prema-
ture glycosyltransferase with only 79 amino acid residues. 
According to the serological findings for the probands, 
certain alternative spliceosomes would generate func-
tional transferases as a consequence of A or B antigen 
expression in the RBCs of the probands.

In this study, we predicted splicing transcripts for 
splice site variations in silico; however, various prediction 
results for splicing transcripts were discovered using dif-
ferent methods. The scores for the c.155 + 5G > A variant 
were 0.97 to 0.19 in the NNSPLICE tool and 9.02 to 2.59 
in the GeneSplicer tool, and the change ratios were differ-
ent. Therefore, multiple tools should be used in tandem 
to predict functional variations. In the normal pheno-
type, multiple ABO mRNA forms may be detected in 
peripheral blood leukocytes [35]. However, due to a lack 
of fresh blood samples, ABO mRNAs in individuals with 
these variations were not analysed, and their function 
in vitro was not examined in our study. Further research 
is needed in the future to determine the actual status of 
ABO mRNA transcription in the presence of splice site 
variants.

Conclusions
In this study, we identified six distinct ABO gene splice 
site variants in individuals with ABO subtypes, includ-
ing three novel variants, c.28 + 1_2delGT, c.28 + 5G > A 
and c.28 + 5G > C. Additionally, in silico analysis was 
used to estimate the potential splicing transcripts for 
the variants in splice sites. We found that splice site 
variations in the ABO gene affect splice transcripts, 
resulting in decreased A or B antigen expression and 
the formation of the ABO subtype.
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