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Abstract 

Background: This study aimed to evaluate the utility of radiomics‑based machine learning analysis with multipara‑
metric DWI and to compare the diagnostic performance of radiomics features and mean diffusion metrics in the 
characterization of breast lesions.

Methods: This retrospective study included 542 lesions from February 2018 to November 2018. One hundred 
radiomics features were computed from mono‑exponential (ME), biexponential (BE), stretched exponential (SE), and 
diffusion‑kurtosis imaging (DKI). Radiomics‑based analysis was performed by comparing four classifiers, including 
random forest (RF), principal component analysis (PCA), L1 regularization (L1R), and support vector machine (SVM). 
These four classifiers were trained on a training set with 271 patients via ten‑fold cross‑validation and tested on an 
independent testing set with 271 patients. The diagnostic performance of the mean diffusion metrics of ME  (mADCall 

b,  mADC0–1000), BE (mD,  mD*, mf ), SE (mDDC, mα), and DKI (mK, mD) were also calculated for comparison. The area 
under the receiver operating characteristic curve (AUC) was used to compare the diagnostic performance.

Results: RF attained higher AUCs than L1R, PCA and SVM. The AUCs of radiomics features for the differential diag‑
nosis of breast lesions ranged from 0.80 (BE_D*) to 0.85 (BE_D). The AUCs of the mean diffusion metrics ranged from 
0.54 (BE_mf ) to 0.79  (ME_mADC0–1000). There were significant differences in the AUCs between the mean values of all 
diffusion metrics and radiomics features of AUCs (all P < 0.001) for the differentiation of benign and malignant breast 
lesions. Of the radiomics features computed, the most important sequence was BE_D (AUC: 0.85), and the most 
important feature was FO‑10 percentile (Feature Importance: 0.04).

Conclusions: The radiomics‑based analysis of multiparametric DWI by RF enables better differentiation of benign 
and malignant breast lesions than the mean diffusion metrics.
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Background
Breast MRI is widely used for breast cancer diagnosis and 
treatment evaluation [1]. Dynamic contrast-enhanced 
(DCE) sequences with the use of a contrast agent can 
provide both morphological and hemodynamic cues for 
lesion diagnosis. However, a higher false-positive rate 
and background parenchymal enhancement limit the 
diagnostic specificity of DCE [2, 3].
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Diffusion-weighted imaging (DWI), a noninvasive con-
trast agent-free method, has been established for breast 
MR imaging and could improve the diagnostic specific-
ity of lesions suspicious for breast cancer [4, 5]. Con-
ventional DWI (mono-exponential model) with 2 to 3 
b-values for the measurement of the apparent diffusion 
coefficient (ADC) is the most commonly used diffusion 
fitting model for the characterization of breast lesions 
[6]. Furthermore, several studies have suggested that 
biexponential (BE), stretched-exponential (SE), or diffu-
sion kurtosis imaging (DKI), fitting with multi-b-value 
sequences, could provide more accurate information 
about water diffusion [7–10]. Le Bihan et al. [11, 12] pro-
posed the intravoxel incoherent motion (IVIM) model, 
a kind of BE fitting, to separately calculate fast and slow 
diffusion components. The SE model was introduced by 
Bennett et  al. [13] to depict the heterogeneity of intra-
voxel diffusion rates and the distributed diffusion effect. 
The DKI model was proposed by Jensen et  al. [14] to 
reflect the complexity of the microenvironment. Since 
DWI with different fitting models may demonstrate dif-
ferent aspects of tissue properties [7, 15, 16], informative 
radiomics features could be derived from these models to 
better characterize breast lesions.

Radiomics-based analysis profiles lesions with exten-
sive morphological and textural features for latter clas-
sification models to attain better differential diagnosis, 
prognosis prediction, and tumor subtype diagnosis, etc. 
[17–20]. Previous radiomics studies [21–23] of breast 
lesions focused more on the modalities of T2WI and 
DCE. Fewer studies [17, 24, 25] have considered the value 
of multiparametric DWI. However, to our knowledge, no 
study comparing the radiomics features of these differ-
ent diffusion imaging approaches in the differentiation of 
breast lesions has been conducted. Further study of mul-
tiparametric DWI using more effective machine learning 
methods is needed to better understand their predictive 
value in breast cancer diagnosis.

We hypothesized that the diagnostic accuracy of breast 
lesions using multi-b-value sequences combined with 
ME, BE, SE and DKI can be improved by radiomics-
based analysis. The purpose of this study is to compare 
radiomics features and the mean values of diffusion met-
rics in the assessment of breast lesions with four machine 
learning methods, i.e., random forest (RF), L1 regulariza-
tion combined with linear regression (L1R-LR), princi-
pal component analysis combined with linear regression 
(PCA-LR), and support vector machine (SVM).

Methods
Study design and patient selection
This retrospective study was performed with a pro-
spectively acquired data set with institutional and 

governmental review board approval. The local Institu-
tional Review Board (IRB) approved this study. Written 
informed consent was obtained from each participant. 
From February 2018 to November 2018, 622 women with 
lesions suspicious for breast cancer on mammography or 
ultrasonography (i.e., BI-RADS category 4 or 5) under-
went MRI examinations with multi-b DWI. The exclu-
sion criteria included the following: patients previously 
treated for a malignancy (N = 13), patients without his-
topathological results (N = 27), and patients with motion 
artifacts (N = 5), lesions that were not seen in DWI map-
pings (N = 25), and the mean value of the goodness-of-fit 
of the diffusion fitting model was less than 0.8 (N = 10). 
Ultimately, a total of 542 women (mean age, 51 years; age 
range, 24–84  years), with 542 lesions were enrolled in 
this study.

MR imaging
All breast MRI examinations were performed on a 1.5 T 
MR scanner (MAGNETOM Aera, Siemens Healthcare, 
Erlangen, Germany) with a dedicated 18-channel phased-
array breast coil. The breast MR examinations included 
fat-suppressed T2-weighted fast spin-echo imaging, 
T1-weighted imaging (T1WI), DWI, and DCE T1WI. All 
MR imaging examinations were performed before biopsy. 
The parameters of the above sequences are shown in 
Additional file 1: Appendix S1.

Image postprocessing and lesion segmentation
After data acquisition, all images were transferred to 
N4ITK for the data normalization. Then, all these data 
were assessed by KS and WC (with 8 years and 12 years 
of experience in breast imaging) to identify all lesions by 
using the DWI source images with b values of 1000  s/
mm2, T2-weighted images, and the first phase of post-
contrast T1-weighted images. Clinical information and 
the X-ray and US images were provided to the radiolo-
gists. The lesions were manually segmented in the DW 
images  (b1000) on all visible sections, resulting in a three-
dimensional image of the lesion. Lesions were segmented 
by using the inner border of the lesion to minimize par-
tial volume effects. All volumes of interest (VOIs) were 
manually segmented and labeled via a free open-source 
software package (ITK-SNAP, version 3.4.0, http:// www. 
itksn ap. org). An overview of our workflow is illustrated 
in Fig. 1.

Diffusion data analysis and processing
All diffusion parameter maps were generated using an 
in-house MATLAB software (MathWorks, Natick, MA, 
USA). The software first applied a Gaussian filter with a 
full width at a half maximum of 3 mm to suppress noise 

http://www.itksnap.org
http://www.itksnap.org
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in the diffusion images before the pixel-by-pixel fitting 
process. Four diffusion models are described as follows:

1. ME model

 ADC maps were generated according to the follow-
ing equation:

where Sb represents signal intensity in the presence 
of diffusion sensitization, and S0 represents signal 
intensity in the absence of diffusion sensitization. The 
 ADC_all-b maps were generated by using all 13 b val-
ues. The  ADC0–1000 maps were generated by using b 
values of 0 and 1000.

2. BE_IVIM model
 The IVIM parameters were fitted using the following 

IVIM model (proposed by Le Bihan et al. [11, 12]:

where D is the true diffusion as reflected by the pure 
molecular diffusion, f is the fractional perfusion 
related to microcirculation, and D* is the pseudo-
diffusion coefficient that represents perfusion-related 
diffusion or incoherent microcirculation.

Sb/S0 = exp (−b · ADC),

Sb/S0 =
(

1− f
)

· exp(−b · D)+ f · exp
(

−b · D∗
)

,

3. SE model
 The SE model was used to obtain the molecular water 

diffusion heterogeneity index (α) and the distributed 
diffusion coefficient (DDC) through the following 
equation:

where α is related to the intravoxel molecular water 
diffusion heterogeneity, which ranges from 0 to 1. A 
numerically high α value represents low intravoxel 
diffusion heterogeneity (approaching mono-expo-
nential decay). DDC represents the mean intravoxel 
diffusion rate.

4. DKI model
 Calculation of DKI parameters was performed by fit-

ting the following nonlinear equation:

where K is a unitless parameter that quantifies the 
deviation of water motion from the Gaussian distri-
bution. K is zero for a perfect Gaussian diffusion, and 
a large K indicates considerable deviation of diffusion 
from a perfect Gaussian behaviour. D is a corrected 
ADC by removing non-Gaussian bias.

Sb/S0 = exp
[

− (b · DDC)α
]

,

Sb/S0 = exp
(

−b · D + 1/6 · b2 · D2
· K

)

,

Fig. 1 Workflow of image processing. a MRI data of multi‑b value sequences and quantitative maps from ME, BE, SE and DKI models. b 3D 
segmentations of lesions shown as surface shaded 3D renderings. c Extraction of radiomics features, i.e., First‑order, Shape, GLCM, GLSZM and 
GLDM. d Radiomics analysis using four models (RF, SVM, PCA‑LR, and L1R‑LR), and e ROC curve analysis. ROC curves are used for the comparison of 
four methods, and diagnostic performance of radiomics features and mean diffusion metrics
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Feature extraction
Radiomics features were calculated using the PyRadi-
omics Python package (version 2.1.2), and the recom-
mended default settings were used for the analysis [26]. 
Each map extracted 100 features comprising 18 first-
order (FO) features, 14 shape features, 22  Gy level co-
occurrence matrix (GLCM) features, 16  Gy level run 
length matrix (GLRLM) features, 16  Gy level size zone 
matrix (GLSZM) features, and 14  Gy level dependence 
matrix (GLDM) features. Details of the extracted features 
are shown in Additional file 1: Appendix S2. In total, 900 
features were extracted. The interclass correlation coeffi-
cients (ICCs) were used to determine the interobserver 
reproducibility of the radiomics features [27].

The mean diffusion metrics of ME  (mADCall-b, 
 mADC0–1000), BE (mD, mD*, mf), SE (mDDC, mα), and 
DKI (mK, mD) were extracted from the radiomics set for 
separate analysis. Feature importance (FI) was calculated 
by using random forest. Feature importance was deter-
mined as the mean decrease in the impurity of the ran-
dom forest as previously described [28].

RF, L1R, PCA, and SVM
The 542 subjects were randomly and equally divided into 
a training set containing 271 subjects and an independ-
ent testing set containing the remaining 271 subjects. The 
ratios of malignant and benign subjects in the training set 
and the testing set were equal to the ratio in the whole 
dataset. The RF, SVM, PCA-LR, and L1R-LR algorithms 
were all based on the most widely used machine learn-
ing Python package, i.e., Scikit-learn [29]. For RF, the 
parameters were set as the default values, the number of 
trees was 100, and the maximum depth of the tree was 
3. For L1 regularization (L1R), the features were selected 
implicitly by the L1 regularization of the linear classi-
fier. L1R enforced the coefficients of the linear model to 
be sparse, thus making a small subset of radiomics fea-
tures contribute to the final results. For PCA, 100 fea-
tures were selected based on their power to differentiate 
benign from malignant lesions in the training set by sort-
ing the lowest P values. Then, the first 10 principal com-
ponents were chosen for the linear model for prediction. 
The parameter settings of both PCA and L1R followed 
the widely-used strategies in other MRI-based radiom-
ics studies for breast cancer [23]. For SVM, we used the 
radial basis function (RBF) kernel. The parameters were 
optimized with respect to the training set. The hyperpa-
rameters of the above four methods are shown in Addi-
tional file  1: Appendix S3. The classifiers were trained 
using the repeated tenfold cross-validation (CV) method 
(100 times) in the training cohort, and their prognostic 
performance was then evaluated in the validation cohort 
using the area under the receiver operating characteristic 

(ROC) curve. A more detailed description of the frequen-
cies of the features of RF during 100 times of tenfold CV 
is shown in Additional file 1: Appendix S4.

Statistical analysis
A goodness-of fit evaluation was performed for fitting of 
the BE, SE and DKI models by using MATLAB (Math-
Works). The  R2 value was calculated [9]. ROC curves 
were generated for the mean diffusion metrics (ME-
mADCall b, ME-mADC0–1000, BE-mD, BE-mD*, BE-mf, 
SE_mDDC, SE_mα, DKI-mK, and DKI-mD), and the 
ROC curves of all the 9 DWI image sets of the RF, L1R, 
PCA, and SVM models were calculated for compari-
son. The ROC curves of the 9 diffusion-related image 
sets were calculated from the results obtained by the 
CV models in the independent testing set. To compare 
the AUCs of the mean diffusion metrics and radiom-
ics features, the McNemar test was used for the paired 
cases. All these comparisons were run 100 times, and we 
obtained the mean P values. Bonferroni adjustment was 
performed to control for α error inflation [29]. A P value 
less than 0.05/23 (0.00217) was regarded as a significant 
difference. All statistical evaluations were performed by 
using software developed either with the Python pro-
gramming language [30] or with MATLAB software.

Results
Image quality of multi‑b diffusion weighted imaging
The mean  R2 value for the BE model fit was 0.90 ± 0.06. 
The mean  R2 value for the SE model fit was 0.95 ± 0.03. 
The mean  R2 value for the DKI model fit was 0.99 ± 0.01.

The signal intensity of malignant lesions on the map of 
 b2500 was 113. 25 ± 31.53. The signal intensity of benign 
lesions on the map of  b2500 was 36.83 ± 10.73. The signal 
to noise ratio (SNR) of  b2500 was 30.01 ± 10.16. The con-
trast noise ratio (CNR) of  b2500 was 2.25 ± 0.67. The lesion 
contrast on the map of  b2500 was 3.20 ± 1.04. A case of 23 
datasets is shown in Additional file 1: Appendix S5.

Patient demographic characteristics
There was significant difference in demographic char-
acteristics between patients with malignant lesions and 
patients with benign lesions (55.0 ± 12.2 vs. 50.3 ± 11.6, 
P < 0.001).

Pathological features
Of the 542 lesions, 333 were malignant, and 209 were 
benign. The malignant lesions included ductal carcinoma 
in  situ (N = 28), lobular carcinoma in  situ (N = 1), inva-
sive carcinoma (N = 274), invasive lobular carcinoma 
(N = 1), invasive solid papillary carcinoma (N = 9), malig-
nant phyllodes tumors (N = 3), mucinous carcinoma 
(N = 8), metaplastic cancer (N = 1), diffuse large B-cell 
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lymphoma (N = 2), encapsulated papillary carcinoma 
(N = 3), and invasive micropapillary carcinoma (N = 3). 
Benign lesions included fibroadenoma (N = 101), benign 
phyllodes tumors (N = 3), fibrocystic change (N = 4), cyst 
combined chronic infection (N = 6), papilloma (N = 54), 
usual ductal hyperplasia (N = 16), fat necrosis (N = 1), 
and adenosis (N = 24).

Comparison of RF, L1R‑LR, PCA‑LR, and SVM 
in the diagnosis of breast lesions with multi‑b 
diffusion‑weighted imaging
The AUCs of RF in the differential diagnosis of breast 
lesions ranged from 0.80 (BE_D*) to 0.85 (BE_D), whereas 
the AUCs of PCA-LR ranged from 0.53 (SE_DDC) to 0.78 

(BE_D*). The AUCs of L1R-LR and SVM ranged from 
0.53 (SE_DDC) to 0.83  (ME_ADC0–1000) and from 0.51 
(SE_DDC) to 0.81  (ME_ADC0–1000), respectively.

The top image image sets with the highest AUCs by the 
RF were BE_D (0.85),  ME_ADCall b (0.84), DKI_K (0.84), 
 ME_ADC0–1000 (0.83) and DKI_D (0.83). The results of 
all AUCs by RF are shown in Table 1. The top five image 
sets with the highest mean AUCs were  ME_ADC0–1000 
(0.81), BE_D (0.81),  ME_ADCall b (0.81), DKI_D (0.80), 
and DKI_K (0.80).

Details on the top five image sets with the highest mean 
AUCs by RF, SVM, L1R-LR, and PCA-LR are shown in 
Table  2. The comparisons between RF and L1R, and 
between PCA and SVM are shown in Additional file  1: 
Appendix S6.

RF achieved the highest frequency of the highest AUCs 
compared with L1R-LR, PCA-LR, and SVM (8/9 vs. 1/9 
vs. 0/9 vs. 0/9, P < 0.001). The mean AUCs of the nine 
image sets by RF, L1R-LR, PCA-LR and SVM were 0.82, 
0.78, 0.73, and 0.76, respectively.

Diagnostic performance comparison of radiomics features 
by RF and the mean values of diffusion metrics
The interobserver reproducibility of radiomics feature 
extraction was satisfactory, with ICCs greater than 0.80 
for all extracted features. The AUCs of the radiomics 
features for the differential diagnosis of breast lesions 
ranged from 0.80 (BE_D*) to 0.85 (BE_D), with a sensi-
tivity of 83% to 88%, and a specificity of 74% to 82%. The 
AUCs of the mean diffusion metrics ranged from 0.54 
(BE_mf) to 0.79  (ME_mADC0–1000), with a sensitivity of 
74% to 88%, and a specificity of 41% to 71%. The AUCs 
of the radiomics features for the differential diagnosis of 
breast lesions were higher than those of the correspond-
ing mean diffusion metrics, and there were significant 
differences in the AUCs between the mean values of the 
diffusion metrics  (ME_mADCall-b,  ME_mADC0–1000, 
BE_mD,  BE_mD*, BE_mf, SE_mα, and DKI_mK) and the 
corresponding radiomics features of AUCs (all P < 0.002) 

Table 1 Comparisons between radiomics and mean diffusion 
metrics

ME: mono-exponential model;  mADC0–1000: mean value of  ADC0–1000;  mADCall 

b: mean value of  ADCall b; BE-IVIM: biexponential intravoxel incoherent motion 
model; mD: mean value of true diffusion coefficient; mD*: mean value of 
pseudo-diffusion coefficient; mf: mean value of fractional perfusion; SE: 
stretched exponential model; mDDC: mean value of distributed diffusion 
coefficient; mα: mean value of low intravoxel diffusion heterogeneity; DKI: 
diffusion kurtosis imaging; mD: mean value of diffusivity coefficient; mK: mean 
value of kurtosis coefficient

Maps AUC of mean metrics AUC of Radiomics P value

ME

  mADC0–1000 0.79 (0.76–0.83) 0.83 (0.80–0.87) 0.002

  mADCall‑b 0.77 (0.73–0.81) 0.84 (0.80–0.88) 0.001

BE_IVIM

 mD 0.75 (0.72–0.79) 0.85 (0.81–0.89) < 0.001

 mD* 0.67 (0.63–0.71) 0.80 (0.74–0.83) < 0.001

 mf 0.54 (0.50–0.58) 0.82 (0.77–0.86) < 0.001

SE

 mDDC 0.77 (0.74–0.81) 0.81 (0.77–0.85) 0.030

 mα 0.62 (0.58–0.66) 0.80 (0.77–0.84) < 0.001

DKI

 mD 0.78 (0.73–0.80) 0.83 (0.80–0.88) 0.005

 mK 0.75 (0.71–0.80) 0.84 (0.80–0.88) 0.001

Table 2 Diagnostic performance of  ME_ADC0–1000, BE_IVIM_D,  ME_ADCall b, DKI‑D and DKI‑K by using RF, L1R‑LR, PCA‑LR, and SVM, 
respectively

RF: random forest; SVM: support vector machine; PCA: principal component analysis; L1R: L1 regularization; LR: linear regression; mAUC: mean values of AUCs of RF, 
L1R-LR, PCA-LR and SVM

Maps AUC (95% CI)

RF L1R‑LR PCA‑LR SVM mAUC 

ME‑ADC0–1000 0.83 (0.80–0.87) 0.83 (0.79–0.87) 0.76 (0.70–0.81) 0.81 (0.76–0.85) 0.81

BE‑IVIM‑D 0.85 (0.81–0.89) 0.83 (0.78–0.87) 0.75 (0.70–0.82) 0.80 (0.75–0.85) 0.81

ME‑ADCall b 0.84 (0.80–0.87) 0.82 (0.79–0.87) 0.77 (0.70–0.83) 0.79 (0.74–0.85) 0.81

DKI‑D 0.83 (0.80–0.86) 0.83 (0.78–0.86) 0.75 (0.74–0.82) 0.80 (0.77–0.84) 0.80

DKI‑K 0.84 (0.81–0.89) 0.83 (0.78–0.87) 0.74 (0.70–0.80) 0.79 (0.75–0.85) 0.80
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for the differentiation of benign and malignant breast 
lesions. Details of the comparison are shown in Table 3.

Importance of diffusion‑related radiomics features
Details of all radiomics feature importance were shown 
in Additional file 1: Appendix S7. Regarding the radiom-
ics features computed from nine image sets, the top five 
important features were FO-10 percentile (FI = 0.043), FO-
Median (FI = 0.030), Shape-Sphericity (FI = 0.030), FO-
Skewness (FI = 0.029), and Shape-Flatness (FI = 0.026).

Of the radiomics features computed from the map of 
BE_IVIM_D, which had the highest AUC (0.85), the 
top five most important features were FO-10 percen-
tile (FI = 0.07), FO-Skewness (FI = 0.06), FO-Minimum 
(FI = 0.04), GLCM-Cluster Shade (FI = 0.04), and FO-
Median (FI = 0.02). Details of the top 20 important fea-
tures of BE_IVIM_D are shown in Fig. 2. The ROC curve 
of BE_IVIM_D is shown in Fig. 3.

Discussion
Based on experimental results of this study, the BE_
IVIM_D map (with the highest AUC by RF), and the 
FO-10 percentile feature (with the highest FI by RF) 
from the radiomics-based analysis of multiparametric 
DWI are recommended in the characterization of breast 
lesions. Furthermore, we also found that the diagnostic 
performance of multiparametric DWI-derived radiom-
ics was superior to that of the mean diffusion metrics 
in differentiating between benign and malignant breast 
lesions. This finding suggests that the radiomics-based 
analysis for multiparametric DWI has a potentially-
improved performance in the classifications of breast 
lesions.

The majority of radiomics-based analyses in breast 
MRI research utilize T2WI, contrast T1WI, and conven-
tional DWI [17, 18, 31, 32]. To the best of our knowledge, 
this is the first study that extensively explored radiom-
ics from multi-b-value maps and its commonly used fit-
ting models (ME, BE, SE, and DKI), which could reflect 
more details of both Gaussian and non-Gaussian water 
diffusion distributions in tumors. Bickelhaupt et  al. [17] 
demonstrated that the radiomics features of DKI can 
help differentiate malignant breast lesions from benign 
lesions. However, they only used the fitting model of 
DKI, and their scan sequences contained both the sin-
gle-shot echo planar imaging (ss-EPI) in 95 patients and 
readout-segmented echo-planar imaging (rs-EPI) in 
127 patients. We used four clinically used diffusion fit-
ting models, and we also enlarged the sample size (542 
lesions) in our study. Moreover, all the patients in our 
study were scanned with rs-EPI, which has significantly 
higher image quality and lesion conspicuity than ss-EPI, 
as suggested by previous studies [33, 34].

Many radiomics-based machine learning methods can 
be used for lesion classification [17, 18, 35, 36]. In this 
study, we extensively explored four promising algorithms 
of RF, L1R-LR, PCA-LR and SVM, which have been 
demonstrated to have high effectiveness in the previous 
radiomics studies [23, 37]. We found that the  ADC0–1000 
feature attained the highest mean AUC with all four 
algorithms, indicating that the mono-exponential model 
had already provided enough diagnostic information for 
breast cancer. Furthermore, RF had the highest probabil-
ity of achieving the highest AUCs (8/9). Accordingly, this 
finding further corroborates the robustness and strong 
generalization power of RF [28]. Thus, in our further 

Table 3 Diagnostic performance of multi‑b diffusion maps based on ME, BE, SE and DKI models

AUC  area under the receiver operating characteristic curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value

Maps AUC (95% CI) Sensitivity% (95% CI) Specificity% (95% CI) PPV% (95% CI) NPV% (95% CI)

ME

  ADC0–1000 0.83 (0.80–0.87) 88 (82–93) 79 (68–87) 87 (81–92) 80 (72–88)

  ADCall‑b 0.84 (0.80–0.88) 88 (82–93) 81 (71–90) 88 (82–94) 80 (72–88)

BE‑IVIM

 D 0.85 (0.81–0.89) 88 (81–93) 82 (73–90) 89 (83–93) 80 (72–89)

 D* 0.80 (0.74–0.83) 83 (76–88) 77 (66–86) 85 (77–91) 73 (65–81)

 f 0.82 (0.77–0.86) 85 (79–90) 79 (68–87) 86 (80–92) 77 (68–84)

SE

 DDC 0.81 (0.77–0.85) 85 (78–90) 77 (66–86) 85 (79–91) 76 (68–84)

 α 0.80 (0.77–0.84) 85 (79–89) 76 (67–86) 85 (80–91) 76 (69–82)

DKI

 D 0.83 (0.80–0.88) 87 (80–94) 79 (69–88) 87 (81–93) 80 (71–89)

 K 0.84 (0.80–0.88) 87 (80–92) 81 (72–89) 88 (83–93) 79 (72–86)
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Fig. 2 Top 20 radiomics features of BE_IVIM_D, ranked by the mean decrease in impurity of RF

Fig. 3 ROC curve analysis of BE_IVIM_D for radiomics‑based analysis with RF, L1R, PCA, and SVM, respectively
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analysis, both the calculation of feature importance and 
the comparison of AUCs were based on the results of RF.

The most predictive image set by RF (i.e., with the high-
est AUC, sensitivity and specificity) was BE_IVIM_D. Of 
note, BE_IVIM_D can remove the influence of perfusion 
and therefore reflects the true diffusion coefficient, better 
reflecting water movement in the living tissues. This may 
be the reason why the radiomics features computed from 
BE_IVIM_D provide more accurate information on water 
diffusion in breast cancer classification. Furthermore, 
the most important radiomics feature of BE_IVIM_D is 
the FO-10-percentile. Unlike that in previously reported 
studies [38–40], our experimental results did not sug-
gest that texture features can attain better performance 
than the FO features on BE_IVIM_D. Accordingly, the 
FO features may be more predictive of lesion malignancy. 
On the other hand, the FO-10-percentile was also shown 
to be the most important feature (FI = 0.043) for the dif-
ferentiation of benign and malignant breast lesions, indi-
cating that first-order features remain important cues 
in multiparametric DWI for the differential diagnosis of 
breast lesions.

Our study has several limitations. First, all lesions in 
this study were drawn manually, which was time-con-
suming. Thus, automated lesion segmentation will be 
implemented in our future study to improve the objec-
tiveness of lesion boundaries and to expedite preprocess-
ing. Second, our multi-b value sequences were acquired 
with a fixed protocol, whereas the choice of optimal 
b-values could vary across different institutions. Thus, 
there was a lack of an external independent verification 
dataset to verify the generalization ability of this study’s 
findings. Finally, this study employed all extracted diffu-
sion-related radiomics for breast cancer diagnosis. The 
feature selection strategy was not implemented in this 
study. In future studies, we will conduct feature selection 
to optimize the construction of radiomics models.

Conclusions
In conclusion, the BE_IVIM_D map, and of FO-10-per-
centile feature by RF enabled accurate differentiation 
between malignant and benign breast lesions. Radiom-
ics features computed from multiparametric DWI per-
formed better than the mean values in distinguishing 
benign and malignant breast lesions. Hence, our study 
may shed a light on the applicability of radiomics from 
the multiparametric DWI for the clinical diagnosis of 
breast lesions.
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