
Cao et al. J Transl Med          (2021) 19:354  
https://doi.org/10.1186/s12967-021-03024-9

RESEARCH

Different modulation effects of 1 Hz 
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of the periaqueductal gray in patients 
with migraine
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Abstract 

Background: A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) 
may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to 
investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients 
with migraine.

Methods: Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, 
functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one 
for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied 
using the ventrolateral periaqueductal gray (PAG) as the region of interest.

Results: Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase 
in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left mid-
dle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity 
increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A 
significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and 
the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS.

Conclusions: Our findings suggest that taVNS with different frequencies may produce different modulation effects 
on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS 
treatment.
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Background
The vagus nerve consists of a complex system that may 
regulate pain, mood, and the neuro-endocrine-immune 
axis [1–7]. Thus, stimulating the vagus nerve to modulate 
the function of the nerve and related organs has drawn 
the attention of clinicians and investigators for a long 
time. Anatomical studies found peripheral branches of 
the vagus nerve distributed on the ear [8, 9], and accord-
ing to the bottom-up mechanism of the central nervous 
system, the propagation of electrical stimuli may follow 
an afferent path from the peripheral nerves towards the 
brain stem and central structures [10, 11]. Thus, direct 
stimulation of the nerve fibers on the ear may produce 
an effect similar to classic vagus nerve stimulation. This 
plausibility has led to the development of transcutane-
ous auricular vagus nerve stimulation (taVNS), a non-
invasive, low-cost, and easily implementable alternative 
to classic vagus nerve stimulation [12–15]. A growing 
body of evidence suggests that taVNS can induce antino-
ciception, which may affect peripheral and central nocic-
eption, inflammatory responses, autonomic activity, and 
pain-related behavior [1, 16–18].

While taVNS has demonstrated its potentials, the opti-
mal parameters for taVNS, such as frequency, remain 
unclear [12]. Accumulating evidence suggests differ-
ent frequencies may be associated with different physi-
ological and treatment effects. For instance, investigators 
compared the effect of 2, 10, and 20  Hz stimulation on 
heart rate in healthy subjects, and they found that both 
10 and 20  Hz could decrease heart rate [19]. Further-
more, studies suggest that the optimal taVNS frequency 
may vary across different disorders. For example, a recent 
clinical research study on taVNS treatment of drug-
resistant epilepsy showed a significant reduction in sei-
zure frequency in patients of the 25 Hz group compared 
to the 1 Hz group [20]. However, in another clinical study 
of migraine patients, investigators found that although 
both 1 Hz and 25 Hz taVNS improved clinical outcomes 
in patients with chronic migraine, 1 Hz taVNS produced 
greater improvement [21]. Nevertheless, the underly-
ing mechanism of different taVNS frequencies remains 
unclear.

Recently, brain imaging has been widely used to inves-
tigate the central mechanism of taVNS, and these stud-
ies demonstrate that intermittent taVNS can modulate 
activity of certain brain regions consistent with the vagus 
nerve central projections [22–28]. For instance, investiga-
tors have assessed brainstem fMRI response to 2, 10, 25, 

and 100 Hz taVNS in healthy individuals, and found that 
the strongest brainstem response was evoked by 100 Hz 
stimulation [29]. In recent studies, we also applied the 
resting-state functional connectivity method to inves-
tigate the functional connectivity alteration during “the 
continuous taVNS” (20  Hz) and found that taVNS can 
modulate the functional connectivity of the ventral stria-
tum and hypothalamus [30, 31].

Nevertheless, the neural substrates underlying fre-
quency have rarely been investigated in a patient pop-
ulation such as migraine; elucidating how different 
frequencies can modulate pathways associated with 
migraine may further facilitate the development of this 
promising neuromodulation method.

Recently, the role of descending pain modulatory sys-
tem (DPMS) in pain modulation and the physiopathology 
of chronic pain has drawn more and more attention [32–
34]. Yet, investigating the functional status of the DPMS 
in humans remains a challenge. In an earlier study [35], 
we investigated the resting state functional connectivity 
(rsFC) of the periaqueductal grey (PAG), a key region in 
the DPMS in healthy subjects and found significant rsFC 
between the PAG and central regions of the DPMS, such 
as the anterior cingulate cortex (ACC), rostroventral 
medulla (RVM) and anterior insula, demonstrating the 
feasibility of using functional connectivity methods to 
non-invasively investigate the DPMS in humans.

Following the study, the PAG functional connectiv-
ity has been applied to investigate the physiopathology 
of chronic pain disorders including migraine [35–43], 
menstrual pain [44–46], postherpetic neuralgia [47], 
fibromyalgia [48], myofascial pain [49], visceral pain [50], 
low back pain [36], and neck pain [51]. Further, studies 
have also shown that effective treatment can significantly 
modulate the PAG functional connectivity in patients 
with migraine [41], chronic low back pain [52], and knee 
osteoarthritis [53]. We also found that continuous elec-
troacupuncture stimulation alters PAG functional con-
nectivity [54]. Taken together, these findings demonstrate 
the important role of PAG functional connectivity in pain 
research.

Thus, in this study, we investigate how continuous 
taVNS at 1  Hz versus 20  Hz (a relatively low frequency 
versus a moderate frequency) that are widely applied in 
taVNS studies [12] can modulate the PAG functional 
connectivity in patients with migraine without aura, 
using a cross-over design. We hypothesize that taVNS at 
1 Hz versus 20 Hz may produce greater PAG functional 
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connectivity changes due to its greater improvement in 
patients with migraine [21].

Methods
The study was conducted in accordance with the Decla-
ration of Helsinki, and the protocol was approved by the 
Ethics Committee of the Second Affiliated Hospital of 
Guangzhou University of Chinese Medicine (Z2016-079-
01). All participants provided written informed consent 
before starting the study.

Participants
Twenty-four episodic migraineurs without aura were 
recruited in the present study from outpatient neurology 
clinics of the Second Affiliated Hospital of Guangzhou 
University of Chinese Medicine. Similar to our previous 
studies [55, 56], the diagnosis of migraine was based on 
the International Classification of Headache Disorders, 
2nd Edition (ICHD-II), as diagnosed by a specialist work-
ing at the neurology outpatient service.

Patients were eligible for participation if they: (1) 
were 18 to 45 years of age, (2) self-reported being right-
handed, (3) have at least 6 months of migraine duration, 
(4) have at least one headache attack per month, (5) have 
not taken any prophylactic headache medications dur-
ing the past 4 weeks, (6) have not taken any psychoactive 
or vasoactive drugs during the past 3  months. Patients 

were excluded if there was a/an: (1) headache induced by 
other diseases, (2) headache attack within 48  h prior to 
the experiment or during the experiment, (3) pregnant 
or lactating, (4) any other chronic pain conditions, (5) 
severe head deformity or intracranial lesions, (6) score on 
the Self-Rating Depression Scale [57] or Self-Rating Anx-
iety Scale [58] > 50, and (7) inability to provide informed 
consent for oneself.

Study design
A single-blind, crossover functional magnetic resonance 
imaging (fMRI) trial design was applied in the present 
study to investigate the modulation effects of 1  Hz and 
20  Hz taVNS in patients with migraine without aura. 
Specifically, each participant attended two taVNS fMRI 
scan sessions with identical parameters, one for 1 Hz and 
another for 20  Hz taVNS in a random order (Fig.  1A). 
Each session was separated by at least 7  days to avoid 
sensitization to the stimuli. All scans were applied during 
an interictal period when the participants were free from 
headache symptoms.

Interventions
In the current study, we applied taVNS on the partici-
pant’s left concha (cymba and cavum, Fig. 1B, Additional 
file  1: Fig. S1) [59]. The electrical stimulation was per-
formed using the Electronic Acupuncture Treatment 

Fig. 1 Overview of study procedure and taVNS sites. A Study procedure. B taVNS sites



Page 4 of 11Cao et al. J Transl Med          (2021) 19:354 

Instrument (SDZ IIB, Huatuo, Suzhou, China) with the 
self-made MRI compatible electrode to deliver electric 
current at 1 Hz or 20 Hz with a continuous wave (width: 
~ 0.2  ms). The 1  Hz/20  Hz taVNS stimulation lasted 
about 8 min. Similar to our previous studies, stimulation 
current intensity was adjusted to the strongest nonpain-
ful sensation that participants could tolerate (approxi-
mately 4 mA) [31, 55, 60–62].

Clinical assessments
Migraine duration, migraine attacks during the past 
4  weeks, and average migraine intensity of the past 
4  weeks on the 0 (“not at all”) to 100 (“extremely”) vis-
ual analog scale (VAS) were assessed preceding the first 
MRI scan session. Participants were also asked to com-
plete the Migraine Specific Quality-of Life Questionnaire 
[63] to measure the impact of migraine on health‐related 
quality of life.

MRI data acquisition
All imaging data was acquired at the Second Affiliated 
Hospital of Guangzhou University of Chinese Medicine 
using a 3  T MRI System (Siemens MAGNETOM Verio 
3.0  T, Erlangen, Germany) with a 24-channel phased-
array head coil. Each scan session included a pre-taVNS 
resting-state fMRI (8  min), the 1  Hz or 20  Hz continu-
ous taVNS (8 min) fMRI, and a post-taVNS resting-state 
fMRI (8 min).

fMRI scans were acquired with the following param-
eters: time repetition = 2000 ms, time echo = 30 ms, flip 
angle = 90°, field of view = 224  mm × 224  mm, matrix 
size = 64 × 64, slice thickness = 3.5  mm with 0.7  mm 
inter-slice gap, 31 axial slices paralleled and 240 time 
points. During the fMRI scans in resting-state and con-
tinuous taVNS, participants were asked to stay awake, 
keep their heads still, eyes closed, and ears plugged and 
to not think about any particular thing. A T1-weighted 
structural image was acquired by an isotropic multi-
echo magnetization-prepared rapid gradient-echo pulse 
sequence for anatomic localization of significant signal 
changes: time repetition = 1900 ms, time echo = 2.27 ms, 
flip angle = 9°, field of view = 256  mm × 256  mm, data 
matrix = 256 × 256, and slice thickness = 1.0 mm.

Functional connectivity analysis
Data and calculations of functional connectivity were 
conducted using the CONN toolbox version 18.b (http:// 
www. nitrc. org/ proje cts/ conn) [64]. We used the default 
preprocessing pipeline for seed-to-voxel functional 
connectivity analysis. The specific steps were as fol-
lows: functional realignment and unwarping, slice tim-
ing correction, head motion correction, co-registration 
of the anatomical image to the mean functional image, 

segmentation of the anatomical gray matter, white mat-
ter, and CSF, normalization to Montreal Neurological 
Institute (MNI) 152 standard template and smoothing 
with a 6-mm full width at half maximum (FWHM) ker-
nel. A default frequency window of 0.008 to 0.09 Hz was 
used for band-pass filtering.

To eliminate correlations caused by head motion and 
artifacts, we identified outlier time points in the motion 
parameters and global signal intensity using ART (http:// 
www. nitrc. org/ proje cts/ artif act_ detect). Images whose 
composite movement exceeded 0.5 mm or whose global 
mean intensity was greater than three standard devia-
tions from the mean image intensity were treated as 
outliers. The time series of the head motion matrix of 
outliers was also entered as first-level covariates.

Similar to our previous studies [35, 36, 41], we selected 
the right ventrolateral periaqueductal gray (vlPAG) with 
a 2 mm radius sphere (MNI coordinates x = 4, y = − 26, 
z = − 14) as the region of interest (ROI). In addition, we 
also chose seeds with a 2 mm radius in the fourth ventri-
cle (MNI coordinates: x = 4, y = 10, z = 12; x = − 4, y = 10, 
z = 12) as a control. Seeds were created using the SPM 
Wake Forest University Pickatlas toolbox (http:// fmri. 
wfubmc. edu/ softw are/ picka tlas) [65].

In the first-level analysis, we produced a correlation 
map for each participant by extracting the blood oxy-
genation level dependent time course separately from the 
vlPAG and the control seeds and computing Pearson’s 
correlation coefficients between the time course in the 
vlPAG/control seeds and every voxel of the whole brain. 
Correlation coefficients were Fisher transformed into “z” 
scores to increase normality.

In seed-to-voxel functional connectivity analyses, we 
first used a pairwise t-test to compare the vlPAG-based 
functional connectivity between the pre-taVNS resting-
state and during continuous taVNS (1  Hz and 20  Hz 
taVNS, respectively). Next, we compared the difference 
of vlPAG-based functional connectivity change (dur-
ing continuous taVNS minus pre-taVNS resting-state) 
between 1 and 20  Hz taVNS. Finally, we compared the 
vlPAG-based functional connectivity difference between 
the pre-taVNS and post-taVNS resting-state between the 
1 Hz and 20 Hz taVNS.

For whole brain analysis, a threshold of voxel-wise 
p < 0.005, and  pFDR < 0.05 at cluster level was applied. 
Also, given the important role of the anterior cingulate 
cortex (ACC), medial prefrontal cortex (mPFC), insula, 
amygdala, and thalamus in the DPMS [32, 36, 53, 66] and 
pathophysiology of migraine [41, 67–72], we pre-defined 
these areas as regions of interest (ROIs), and derived 
masks of each region from the Automated Anatomi-
cal Labeling brain atlas using the Wake Forest Univer-
sity Pickatlas toolbox as ROIs. A threshold of voxel-wise 

http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/artifact_detect
http://www.nitrc.org/projects/artifact_detect
http://fmri.wfubmc.edu/software/pickatlas
http://fmri.wfubmc.edu/software/pickatlas
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p < 0.005 was used in data analysis. Similar to previ-
ous studies [73–75], Monte Carlo simulations using the 
3dFWHMx and 3dClustSim (as part of the Analysis of 
Functional NeuroImages program [http:// afni. nimh. nih. 
gov] released in July 2017) were applied for the p value 
correction for pre-defined ROIs. For each region, the 
minimum voxel size required for p < 0.05 cluster level p 
value correction is indicated as the k value in the results 
presented below.

To explore the association between the initial clinical 
assessments and the vlPAG-based pre-taVNS resting-
state functional connectivity for 1 Hz and 20 Hz respec-
tively, we also selected significantly altered vlPAG-based 
connectivity clusters (during continuous taVNS minus 
pre-taVNS resting-state) and extracted the average 
z-score values of peak MNI of clusters above significance 
in vlPAG-based pre-taVNS resting-state. Correlation 
analyses were conducted using the R program in JASP 

open-source statistical software (Version 0.8.1, http:// 
www. jasp- stats. org), and p values were Bonferroni cor-
rected (see “Results” for details).

Results
Demographic and clinical assessments
Twenty-four participants completed the study and 
were included in the data analysis [21 females; age 
31.33 ± 1.55 years, mean ± standard error (SE)]. No par-
ticipant reported administration of acute migraine medi-
cation or having an attack 48 h prior to the MRI sessions. 
Detailed results for demographic and clinical assessments 
are shown in Table 1. All participants reported acceptable 
stimulation intensity underneath the electrodes during 
the continuous taVNS, with no adverse effects reported. 
The interval period of the two taVNS/fMRI scan sessions 
was 8.79 ± 0.74 (mean ± SE) days.

vlPAG‑based functional connectivity analysis results
Compared with pre-taVNS resting state, 1 Hz continuous 
taVNS (during) produced significant functional connec-
tivity increases between the vlPAG and the bilateral mid-
dle cingulate cortex (MCC), the right precuneus, the left 
middle frontal gyrus (MFG), and the left cuneus (Table 2, 
Fig. 2A). There was no significant finding detected when 
we applied the same analysis on the 20  Hz taVNS data 
set.

In addition, we compared the vlPAG-based connec-
tivity difference in 1  Hz vs. 20  Hz taVNS [(during 1  Hz 
taVNS minus 1  Hz pre-taVNS resting-state) vs. (during 
20  Hz taVNS minus 20  Hz pre-taVNS resting-state)], 
and found that compared to 20  Hz, 1  Hz taVNS pro-
duced greater vlPAG-based connectivity increases with 
the MCC, the right precuneus/posterior cingulate cortex 
(PCC), the left insula (k = 18), and the anterior cingulate 
cortex (ACC) (k = 41) (Table  3, Fig.  2C). No significant 

Table 1 Demographic and clinical assessments

Migraine attacks assessed attack times during the past 4 weeks. The VAS 
assessed the average migraine intensity of the 4 weeks preceding the first MRI 
scan. The MSQ, SDS, SAS were assessed preceding the first MRI scan

VAS visual analog scale, MSQ Migraine Specific Quality of Life, SDS Self-rating 
Depression Scale, SAS Self-rating Anxiety Scale

Demographic

 Participant count 24

 Sex (female/male) 21/ 3

 Age (mean ± SE, yrs) 31.33 ± 1.55

Clinical assessments

 Migraine duration (mean ± SE, yrs) 8.68 ± 1.47

 Migraine attacks (mean ± SE) 1.67 ± 0.25 
(ranging from 
1 to 5)

 VAS (mean ± SE) 38.60 ± 3.30

 MSQ (mean ± SE) 74.83 ± 1.90

 SDS (mean ± SE) 42.14 ± 1.82

 SAS (mean ± SE) 39.69 ± 1.85

Table 2 Comparisons of the vlPAG functional connectivity change in 1 Hz and 20 Hz taVNS

“Pre-resting” indicated pre-taVNS resting-state. Results were significant at cluster  pFDR < 0.05, corrected at the whole brain level

vlPAG ventrolateral periaqueductal gray, MCC middle cingulate cortex, PCu precuneus, MFG middle frontal gyrus

Comparisons Brain Regions Cluster size (voxel 
number)

Peak T MNI coordinates

x y z

1 Hz taVNS > pre-resting MCC 282 6.36 − 4 − 12 40

PCu 200 4.71 4 − 50 44

MFG 232 4.56 − 30 30 42

Cuneus 191 4.05 − 6 − 76 32

pre-resting > 1 Hz taVNS

20 Hz taVNS > pre-resting No regions survive the threshold

pre-resting > 20 Hz taVNS

http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
http://www.jasp-stats.org
http://www.jasp-stats.org
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decrease in vlPAG-based functional connectivity was 
detected.

With the threshold we set, no significant result has 
been found in the comparison of vlPAG-based pre- and 

post-taVNS resting-state functional connectivity differ-
ences between the 1 Hz and 20 Hz taVNS.

We found that 1  Hz taVNS increased vlPAG resting 
state functional connectivity with the MCC, precuneus, 

Fig. 2 vlPAG based connectivity results. A Compared to pre-taVNS resting-state, 1 Hz taVNS had significantly greater connectivity with the MCC, 
precuneus, Cuneus, and left MFG (not present in the figure). B Significant negative correlation was observed in migraine attacks and vlPAG-MCC 
connectivity in pre-taVNS resting-state preceding to the 1 Hz taVNS. Bonferroni correction was applied, and the significance threshold was adjusted 
to p < 0.0125 because four significant clusters were identified. C Compared to 20 Hz, 1 Hz taVNS had significant connectivity increases (stimulation 
minus pre-taVNS resting-state) with the MCC, precuneus, ACC, and left insula. FC functional connectivity, vlPAG ventrolateral periaqueductal gray, 
MCC middle cingulate cortex, PCu precuneus, MFG middle frontal gyrus, ACC  anterior cingulate cortex, INS insula

Table 3 Comparisons of vlPAG functional connectivity change produced by 1 Hz and 20 Hz taVNS

Change presented in continuous taVNS minus pre-taVNS resting-state. “*” identified results significant at cluster p < 0.05 after 3dFWHMx and 3dClustSim correction. 
Other results were significant at cluster  pFDR < 0.05 corrected at the whole brain level

vlPAG ventrolateral periaqueductal gray, MCC middle cingulate cortex, PCu precuneus, PCC posterior cingulate cortex, INS insula, ACC  anterior cingulate cortex

Comparisons Brain Regions Cluster size Peak T MNI coordinates

x y z

1 Hz > 20 Hz MCC 225 5.37 − 6 − 12 40

PCu/PCC 216 4.74 4 − 48 46

*INS 148 5.35 − 44 − 6 − 6

*ACC 45 3.50 − 4 42 18

20 Hz > 1 Hz No regions survive the threshold
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MFG and cuneus compared with the pre-taVNS resting 
state. To explore the potential clinical meaning of these 
functional connectivity increases, we performed correla-
tion analyses between the vlPAG resting-state functional 
connectivity with these regions during the pre-taVNS 
(1  Hz) and the clinical measures (migraine attacks in 
the past 4 weeks and VAS). Results showed a significant 
negative correlation between the number of preceding 
migraine attacks and the vlPAG-MCC functional connec-
tivity in the pre-taVNS resting-state preceding the 1 Hz 
taVNS (r = − 0.52, p = 0.01, significant after Bonferroni 
correction p < 0.05/4 = 0.0125 because four significant 
clusters were identified, please see Table  2 and Fig.  2B 
for details). No other significant vlPAG-based functional 
connectivity finding was detected.

We also performed the above analysis using bilateral 
seeds from the fourth ventricle. No result was found at 
the threshold we set in functional connectivity analysis.

Discussion
In the present study, we compared the vlPAG connectiv-
ity changes evoked by 1 Hz and 20 Hz taVNS in migraine 
patients. Results showed that compared to pre-taVNS 
resting-state, continuous 1 Hz taVNS produced increased 
connectivity in the MCC, MFG, precuneus and cuneus. 
Compared to 20 Hz, 1 Hz taVNS produced greater con-
nectivity increases in the MCC, ACC, precuneus and left 
insula. There is a significant negative association between 
migraine attacks in the past 4 weeks and the vlPAG-MCC 
connectivity during resting-state. Our findings suggest 
that taVNS with different stimulation frequencies may 
produce different modulation effects on the descending 
pain modulation system.

As a non-invasive and safe peripheral neuromodula-
tion method, taVNS has been applied in a wide range of 
disorders such as depression, epilepsy, tinnitus, migraine, 
as well as cognitive and behavioral disorders [12, 21, 76–
78]. Nevertheless, one challenge for the development of 
taVNS is to elucidate the modulation effect of taVNS with 
different parameters so that we can optimize its effects 
for different disorders.

As a key parameter of taNVS, frequency is a continu-
ous measurement. Thus, it is not possible to test/com-
pare the effects of different frequencies in one study. As 
a start of this line of work, we have chosen 1  Hz as a 
representative of low frequency. The 20  Hz frequency 
has been used to treat depression, and previous stud-
ies have found that 20  Hz taVNS can significantly 
modulate the multiple brain networks [27, 60–62], 
particularly the functional connectivity of the amyg-
dala [62], default mode network [60], hypothalamus 
[79], and ventral striatum [30], all of which are associ-
ated with pathophysiology of migraine [80, 81]. Further, 

investigators found that 20  Hz taVNS in healthy sub-
jects could decrease heart rate [19], and 20  Hz is also 
close to the higher frequency used in a previous study 
in which the authors have compared the treatment 
effect of 1 Hz and 25 Hz in [21]. Thus, we have chosen 
20 Hz to represent a moderate frequency in this study.

We found that continuous 1  Hz taVNS can signifi-
cantly increase vlPAG-MCC connectivity. In addition, 
the vlPAG-MCC connectivity during resting-state before 
1 Hz taVNS was negatively associated with participants’ 
migraine attacks. Literature suggests that the MCC is 
involved in the affective, cognitive, attention, and orient-
ing aspects of pain [82–84]. A previous study found that 
migraine is associated with decreased grey matter at the 
MCC [85] and increased activation during experimen-
tal heat pain (compared to healthy controls). The pain-
induced MCC activation is associated with migraine 
attacks in migraineurs [86]. Interestingly, we found that 
the vlPAG-MCC connectivity increased during 1  Hz 
taVNS, but not during 20  Hz taVNS, which may pro-
vide a neural mechanistic support to a previous clinical 
trial [21], in which researchers investigated the thera-
peutic effects of daily 1 Hz and 25 Hz taVNS on chronic 
migraineurs over 3 months, and demonstrated that 1 Hz 
taVNS was more prominent in migraine alleviation.

Furthermore, we observed that continuous 1 Hz taVNS 
can produce vlPAG-rACC connectivity increases com-
pared to 20 Hz. In addition, we also detected an increase 
in vlPAG-rACC connectivity (compared to resting-
state) at a less conservative threshold (p = 0.01, cluster 
size = 14). The rACC is a key region of the DPMS [35, 
36], and contains numerous opioid receptors [87]. Pre-
vious studies have suggested that the rACC plays an 
important role in the pathophysiology of migraine [88, 
89]. Findings from the current study are consistent with 
our prior study, in which migraine patients are associated 
with reduced connectivity of the PAG-rACC, compared 
to healthy subjects, and effective acupuncture treatment 
can normalize the decreased connectivity in PAG-rACC 
correspondingly [41]. Further, the study demonstrates 
that a DPMS abnormality might be an underlying patho-
logical mechanism of migraine, and such an abnormality 
can be normalized by effective treatment.

In addition, we found that 1  Hz taVNS can increase 
vlPAG connectivity with the precuneus and cuneus. The 
precuneus is a key region in the default mode network. 
Studies suggest that the default mode network (DMN) 
is a pivotal network affected by migraine [90–92]. We 
found that migraineurs showed decreased functional 
connectivity between the right frontoparietal network 
and precuneus compared with healthy controls, and the 
connectivity significantly increased after effective treat-
ment [93]. In a more recent study, we found abnormal 
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posterior thalamus (pulvinar nucleus) dynamic network 
functional connectivity with the precuneus, and the 
changes were significantly correlated with the headache 
frequency of migraine [79].

The cuneus is a key region of the visual network. In 
a recent longitudinal study on grey matter volume of 
migraineurs, researchers found that migraineurs devel-
oped a decreased grey matter volume of visual regions, 
including the cuneus. The decreased volume was associ-
ated with the level of migraine severity, in terms of dis-
ease duration, pain intensity, and attack frequency [94]. 
We found migraine is associated with altered posterior 
thalamus dynamic network functional connectivity with 
the visual cortex [79], and the abnormal functional con-
nectivity within the visual, default mode, sensorimotor, 
and frontal-parietal networks, which could discrimi-
nate migraineurs from healthy controls, with 93% sensi-
tivity and 89% specificity [95]. More recently, we found 
that 4-week taVNS at 1 Hz can decrease the connectiv-
ity between the  occipital cortex-related thalamus sub-
region and the  postcentral gyrus/precuneus [96]. Taken 
together, these studies demonstrate the important role of 
the precuneus and cuneus in the pathology of migraine. 
Our study further suggests that 1 Hz taVNS may modu-
late the connectivity between the descending pain modu-
lation system, the default mode network, and the visual 
network.

Nevertheless, the question whether the effective fre-
quency of taVNS that influences migraine is different 
from other diseases remains open [19, 20, 97]. Further 
studies are needed to determine the optimal frequency 
of taVNS for different diseases. Additionally, as a brain 
imaging study, the aim of this study was to investigate 
and compare if 1 Hz and 20 Hz taVNS can modulate the 
vlPAG functional connectivity in a migraine population 
rather than assessing the efficacy/clinical effects of 1 Hz 
and 20 Hz taVNS. In addition, we used seeds in the ven-
tricle as a control ROI, and the lack of significant results 
further validated our findings.

Potential limitations of this work include a rela-
tively small sample size of migraine participants with 
low-frequency migraine attacks. Future studies are 
needed to investigate if the findings can be replicated in 
migraineurs with high attack frequencies in a larger sam-
ple size. Also, there are only three male participants (of 
24 in total) included in this study. This ratio is partly con-
sistent with epidemiology studies showing the prevalence 
rate of female migraineurs is much higher than male 
migraineurs [98]. Nevertheless, we have applied a cross-
over design, which should have controlled the potential 
gender effects in this study. This study is not designed to 
answer the question of gender differences. A future study 

is needed to elucidate if male and female migraineurs are 
associated with same taVNS response.

Furthermore, our MRI scans were applied when par-
ticipants were migraine-free, so we could not assess the 
acute effects of taVNS on headache intensity. Also, clini-
cal trials on migraine usually assess the clinical improve-
ment (migraine attack time or pain intensity) in the past 
month, thus, we could not investigate/compare the clini-
cal improvement produced by single 1 Hz/20 Hz taVNS 
treatment, as well as the association between functional 
connectivity changes (evoked by 1 Hz and 20 Hz taVNS) 
and clinical improvement. Moreover, although still under 
investigation, some studies suggest that different stimula-
tion frequencies of taVNS may induce different changes 
in heart rate, which can be considered as a confounding 
factor of functional connectivity [19, 99]. Nevertheless, 
the heart rate changes evoked by taVNS are relatively 
small, and studies also show no significant change on 
blood pressure values after taVNS [100]. Future study 
should consider measuring this confounding factor and 
adjust for it during data analysis.

Conclusion
In summary, we found continuous 1 Hz taVNS can sig-
nificantly modulate functional connectivity between the 
vlPAG and key regions of the DPMS in patients with 
migraine. Our findings demonstrate the important role 
of stimulation parameters (particularly the frequency) in 
taVNS treatment of different disorders.
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