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Abstract 

Aberrant metabolism is the root cause of several serious health issues, creating a huge burden to health and lead-
ing to diminished life expectancy. A dysregulated metabolism induces the secretion of several molecules which in 
turn trigger the inflammatory pathway. Inflammation is the natural reaction of the immune system to a variety of 
stimuli, such as pathogens, damaged cells, and harmful substances. Metabolically triggered inflammation, also called 
metaflammation or low-grade chronic inflammation, is the consequence of a synergic interaction between the host 
and the exposome—a combination of environmental drivers, including diet, lifestyle, pollutants and other factors 
throughout the life span of an individual. Various levels of chronic inflammation are associated with several lifestyle-
related diseases such as diabetes, obesity, metabolic associated fatty liver disease (MAFLD), cancers, cardiovascular dis-
orders (CVDs), autoimmune diseases, and chronic lung diseases. Chronic diseases are a growing concern worldwide, 
placing a heavy burden on individuals, families, governments, and health-care systems. New strategies are needed to 
empower communities worldwide to prevent and treat these diseases. Precision medicine provides a model for the 
next generation of lifestyle modification. This will capitalize on the dynamic interaction between an individual’s biol-
ogy, lifestyle, behavior, and environment. The aim of precision medicine is to design and improve diagnosis, thera-
peutics and prognostication through the use of large complex datasets that incorporate individual gene, function, 
and environmental variations. The implementation of high-performance computing (HPC) and artificial intelligence 
(AI) can predict risks with greater accuracy based on available multidimensional clinical and biological datasets. AI-
powered precision medicine provides clinicians with an opportunity to specifically tailor early interventions to each 
individual. In this article, we discuss the strengths and limitations of existing and evolving recent, data-driven tech-
nologies, such as AI, in preventing, treating and reversing lifestyle-related diseases.
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Introduction
The average lifespan of humans has more than doubled in 
the last two hundred years, largely due to modern medi-
cine and public health initiatives. However, an extended 
lifespan is associated with increases in various types 
of diseases among which noncommunicable diseases 
(NCDs), also commonly referred to as chronic diseases. 
Recent evidence indicates that chronic inflammatory 
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diseases are the most significant cause of death world-
wide, with over 50% of all deaths due to inflammatory 
conditions. For this review, we collectively refer to the 
following as chronic diseases: type 2 diabetes, obesity, 
cardiovascular disease (CVD), metabolic associated fatty 
liver disease (MAFLD), cancer, chronic lung and kidney 
disease, autoimmune and neurodegenerative diseases [1]. 
Today, our genes function in a world that is completely 
different from the one they were designed for and mod-
ern humans are subjected to an environment that has 
changed tremendously over the past century. The genetic 
predisposition to various diseases differs, from person 
to person and non-genetic factors pose high attributable 
risks, often assessed between 80 and 90% of the total risk 
[2, 3]. The Global Burden of Disease (GBD) study, which 
measured the disease burden of behavioral, environmen-
tal and occupational, and metabolic risks or clusters of 
risks from 1990 to 2016 in 195 countries concluded that 
the modifiable risk factors lead to nearly 60% of deaths 
worldwide [4]. Lifestyle-associated chronic diseases tend 
to have two common characteristics: one is homeosta-
sis disturbance and the second is metaflammation or 
chronic metabolic inflammation. Therefore, the patho-
physiology of chronic diseases points to the physiological 
rationale that connects inflammation with homeostasis 
[5]. It is now widely recognized that pathogenesis of dis-
ease is often the result of interactions between various 
genetic and environmental factors. The sum of environ-
mental exposures (non-genetic) from conception until 
old age, throughout the lifespan is known as the “expo-
some”. The term "exposome" is used to demonstrate the 
complexity and extent of exposures to toxic substances, 
nutrition, psychosocial stressors and physical impacts 
and their associated biological responses. Exposomics is 
the study of the exposome, based on the use of internal 
and external assessment methods [3, 6].

Precision medicine is an emerging field in therapeu-
tics based on an understanding of the genetic make-up, 
personal lifestyle, gene, and surrounding environment 
of an individual. We can use precision medicine to cus-
tomize prevention and treatment strategies for an indi-
vidual by identifying the factors that predispose this 
individual to a specific disease and defining the under-
lying molecular mechanisms that induce the disorder. 
The use of “OMICS” or “EXPOsOMICS” along with 
wearable sensors as measurement/assessment meth-
ods have the potential to generate large amounts of data 
(big-data), thus requiring new digital approaches and 
resources for analyzing, integrating, and interpreting 
the massive amounts of data [7, 8]. Artificial intelligence 
(AI): an emerging field in which computer algorithms 
are equipped to carry out tasks independently of human 
guidance. To create an efficient AI algorithm, computer 

systems are initially fed data that is usually organized, 
indicating each data point has an algorithm-recognizable 
label or annotation. After sufficient sets of data points 
and their labels are presented to the algorithm, output 
is evaluated to ensure accuracy. Such AI algorithms are 
capable of observing, analyzing vast data and identifying 
patterns with incredible efficiency [9]. Artificial Intelli-
gence that we consider in this context includes machine 
learning (ML), deep learning (DL), and artificial neural 
networks (ANN). When AI is combined with high per-
formance computing approaches, AI allows us to estab-
lish and predict disease risk based on individual’s data 
[10]. Translating such enormous data into clinical knowl-
edge is now in the hands of ML/AI platforms. Promising 
results in predicting disease risk with greater accuracy 
have been shown on these platforms [11–14]. As AI 
enters the world of precision medicine, it can help organ-
izations to capitalize on precision medicine in many ways 
and help deepen our knowledge of the origins and course 
of chronic diseases.

This review article discusses the potential contribu-
tion of lifestyle factors and biological factors -genetic, 
epigenetics and the microbiome to the development and 
progression of chronic inflammation. We will also high-
light the recent findings on the implementation of ML/
AI algorithms in personalized medicine to better manage 
and prevent chronic diseases.

Inflammation—a natural response
In recent years, there has been a substantial improvement 
in our understanding of the inflammatory mechanism 
and its contribution to health and diseases. Inflammation 
is the natural response of the body to harmful pathogens 
and stimuli in an effort to eliminate threat and/or repair 
damaged tissue [5]. However, in the early 1990′s a dif-
ferent type of inflammation was associated with over-
weight and obesity was identified as a persistent and 
maladaptive inflammatory response that had significant 
variations compared to classical inflammation [15]. Such 
systemic inflammation characterized as ‘low-grade’ was 
associated with elevated levels of inflammatory media-
tors and increased immune cell infiltration in peripheral 
tissues without altering the primary function of the tis-
sue [16, 17]. Human exposome can be categorized into 
external and internal. An increasing number of inves-
tigations have been addressing the human exposome, 
and the external exposome factors were well described 
in the recent articles [3, 6]. These factors were classified 
into four categories: (1) Lifestyle factors, such as diet, 
physical activity, sleep, smoking and alcohol; (2) Physi-
cal and chemical factors, such as temperature, pollution, 
pesticides, food contaminants etc.; (3) Ecosystem fac-
tors, such as food systems, climate, global warming, built 
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environment, dense population etc.; (4) Social factors, 
such as socioeconomic status, stress, social networks, 
cultural standards etc. [3]. (Fig. 1). An example of envi-
ronmental chemicals inducing inflammation was shown 
in a recent study: chemicals such as linuron (an herbi-
cide used in agriculture) and methyl carbamate (a com-
pound used in the fabric, polymer, and pharmaceutical 
industries), were shown to enhance astrocyte inflamma-
tion and neurological inflammation [18]. Accumulating 

evidences linked air pollution to inflammation and to 
further number of chronic diseases [19–21]. Likewise, 
the built environment is linked to the dynamics of infec-
tious diseases such as SARS CoV2, especially in contact-
borne diseases (aerosols or droplets), and climate change 
to vector-borne diseases [22, 23]. The internal exposome 
that includes, (1) molecules generated endogenously 
from metabolic reactions, such as oxidative stress and 
lipid peroxidation, (2) infections, (3) gut microbiome, 

Adverse health
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Physical & Chemical factors

Social factors
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food contaminants etc.,
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Fig. 1 Exposome—internal factors and external environmental factors role in health and disease. The totality of exposure from conception 
throughout the life course leads to multiple physiological changes in every individual. Internal exposures such as lipid peroxidation, oxidative stress, 
DNA damage, alterations in gut microbiome, and inflammation collectively plays a major role in health and chronic diseases
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and (4) other natural reactions that affects DNA and pro-
teins within the body (Fig.  1). In addition, social stress, 
phycological stress, and socioeconomic status were all 
linked to inflammation and disease risk [24–26]. Over 
the past decades, extensive efforts have been made and 
continue to be made in pursuit of identifying the risk fac-
tors for chronic diseases [27–29]. The etiology of chronic 
diseases has now been convincingly linked to systemic 
chronic inflammation (SCI). An overwhelming body of 
evidences and a recent critical review have highlighted 
the importance of SCI and its correlation with health and 
chronic diseases [30].

Lifestyle factors: chronic inflammation axis
The April 2002 issue of Science discussed “The puzzle 
of complex diseases” where diet and lifestyle were iden-
tified to be important contributors for major chronic 
diseases [31, 32]. Since then, numerous landmark epi-
demiological and biological studies have recognized 
that lifestyle related choices and behaviors have contrib-
uted significantly to the incidence of chronic diseases. 
Several studies have linked being overweight and obese 
with increased risk of chronic diseases, cancers, includ-
ing breast cancer (in post-menopausal women), endome-
trium, esophagus, pancreas, liver, colorectum and kidney, 
and others [33, 34]. A principal lifestyle factor influenc-
ing the onset of such diseases is the diet and nutrition of 
each individual [35, 36]. Evidences from preclinical inves-
tigations as well as observational and interventional tri-
als indicated that Western-type diet (WD) is a key driver 
of chronic, low-grade metabolic inflammation [37, 38]. 
The consumption of calorie-rich foods: highly processed, 
ultra-processed (formulations of many ingredients), in 
addition to sugar sweetened beverages, fructose-contain-
ing sugars, trans fats and saturated fats, salt, and other 
food additives have been proven to influence inflamma-
tion and lead to chronic diseases [39–43]. In addition, 
WD and other popular diets have been shown to alter 
intestinal microbiome, which in turn helps shape inte-
grated immune responses. Prolonged consumption of 
such diets leads to disruption of the gut-barrier integrity, 
allowing harmful secretion of microbial products that 
can cause inflammation [44–47]. A recent study indicated 
that the consumption of high-fat ketogenic diets can alter 
the microbiome and also reduce the number of intestinal 
pro-inflammatory Th17 cells which are critical for act-
ing against infectious disease [46]. The consumption of 
fructose-rich diet has emerged as a major contributor to 
dyslipidemia, NALFD, insulin resistance, and diabetes. A 
recent elegant study has revealed that intestinal micro-
biota plays a major role in converting the dietary fructose 
to acetate, which in turn activates the hepatic lipogenesis 
[48, 49]. Numerous other dietary factors have also been 

shown to induce inflammation and lead to SCI. These 
include the consumption of highly processed foods that 
lack essential vitamins and micronutrients and the defi-
ciencies in minerals such as calcium, phosphorus, zinc, 
and magnesium [50–54]. Noteworthy, the recent Lancet 
Commission report on the global syndemic investigated 
how the human-driven methods of food production, food 
supply, consumption and its consequences impacting the 
environment and climate change. In order to counter the 
global syndemic of obesity, undernutrition and climate 
change the commission is urging the governments to 
reconsider the food supply chains, and business models 
[55].

Other lifestyle variables such as physical inactivity, 
lack of sleep, and tobacco smoking, can also activate 
multiple immune-inflammatory pathways leading to 
chronic inflammatory conditions [56]. Inadequate physi-
cal activity is a leading risk factor for chronic diseases 
and mortality. Globally, the age-standardized prevalence 
of insufficient physical activity was 27.5% in 2016 [57]. 
In addition, over 80% of the world’s adolescents are not 
physically active enough. Several studies have linked 
insufficient physical activity with inflammatory condi-
tions; even moderate physical activity has demonstrated 
to possess anti-inflammatory effects, further reducing 
the risk of chronic diseases and improving age-related 
multi-morbidity by strengthening the immune function 
[58, 59]. Tobacco-related morbidity and mortality is sig-
nificant worldwide since smoking increases the risk of 
developing a number of serious inflammatory conditions 
[60]. It has been well established that the nicotine present 
in the tobacco stimulates neutrophils, with subsequent 
release of certain molecules that promote inflammation 
increasing in turn the risk of chronic diseases [61, 62]. 
Excessive alcohol use damages not only gut and liver 
functions, but also multi-organ interactions, contribut-
ing to chronic inflammation and eventually, increasing 
the risk of chronic liver diseases and certain cancers [63]. 
Accumulating evidence suggests that the pathogenesis of 
psychological disorders, such as depression and anxiety, 
are also associated with chronic stress and neuroinflam-
mation [64]. Given the clear linkage of lifestyle factors 
with chronic diseases, their prominence in preventing 
diseases cannot be over-emphasized.

Biological factors: genetics and epigenetics
During recent years, there has been tremendous inter-
est in the discovery of genes that are responsible for 
chronic diseases. Genetic variation consists of differ-
ences in the DNA sequences of individuals manifesting 
as single nucleotide polymorphisms (SNPs), insertions 
and deletions, and other structural variations. Genome-
wide association studies (GWAS) that include analyses of 



Page 5 of 12Subramanian et al. J Transl Med          (2020) 18:472  

genetic variants across several human genomes in order 
to detect associations between genotype and phenotype. 
These have facilitated a remarkable range of discoveries 
in the biology of chronic diseases [65]. Several studies 
have found new genetic loci and genes that predispose an 
individual to a number of chronic diseases, such as type 
1 and type 2 diabetes, coronary heart disease, obesity, 
asthma, cancer, bipolar disorder, depression, rheumatoid 
arthritis, Crohn’s disease, and hypertension [66–73]. In 
addition, a recent large-scale GWAS conducted among 
the Japanese population has identified 320 independent 
signals in 276 genetic loci for 27 diseases among which 25 
novel loci, including certain loci specific to, the Japanese 
population [74]. Due to the diversity in genetic make-up 
and associated disease variants across populations, data 
obtained from one population may not be applicable to 
other populations [75]. However, understanding the vari-
ants, genes and mechanisms involved in specific diseases 
unlocks the possibilities for innovative treatments, diag-
nostic approaches and the efficient prevention of dis-
eases. Candidate gene and GWAS studies have identified 
numerous SNPs-genetic susceptibility loci across human 
genome which explain only a fraction of the inter-indi-
vidual variation for chronic diseases. To date, however, it 
has not been shown that solely defined genetic influences 
contribute to a large proportion of chronic disease inci-
dence at population level.

Beyond lifestyle factors and genetic susceptibility, 
another powerful determinant of the health outcome is 
epigenetics. Epigenetic alterations have emerged as sur-
rogate markers for environmental exposure. Recently, 
epigenetic mechanisms have been increasingly recog-
nized as a critical link between environmental exposure 
and disease risk [76]. Evidence indicates that maternally 
regulated environmental modulation of gene expression 
in offspring and gene-environment interactions are sig-
nificant determinants of disease risk in later life [77, 78]. 
In addition, using a unique cohort of more than 700 pairs 
of monozygotic and dizygotic twins, it was demonstrated 
that both genetics and environment-inherited epigenetic 
signatures plays major role in regulating gene expression 
in the offspring [79, 80]. Moreover, changes in epigenet-
ics are the core mechanisms by which early nutritional 
conditions can increase later-life susceptibility to obe-
sity and other chronic diseases [81]. Maternal malnutri-
tion influences altered epigenetic regulation in genes that 
control the metabolism of lipids and carbohydrates and 
those involved in the neural networks of central appetite-
energy homeostasis [82]. This suggests that early experi-
ence may lead to changes in the epigenome influencing 
metabolic and physiological pathways, possibly chang-
ing individual’s phenotypic development and thus hav-
ing critical effect on their health. As stated above, several 

studies have indicated that dietary components induces 
alterations in the genome and have linked SNPs interac-
tions with the consumption of particular food and die-
tary patterns [83–85]. Nutrients and other environmental 
factors, either directly or indirectly, can impact the levels 
and turnover of epigenetic signatures (DNA methylation, 
acetylation of histones) thereby regulating the expres-
sion of messenger RNAs and non-coding RNAs that have 
been implicated in multiple chronic diseases. In sum-
mary, epigenetic mechanisms have been shown to be 
associated with multiple lifestyle factors or environmen-
tal exposures, including overnutrition, undernutrition, 
physical activity, stress, pollutants, and obesity, which 
have in turn been linked to chronic diseases [86–89].

Gut microbiome
Multiple studies have discovered that the microbiome 
impacts almost every aspect of human health, and that 
the microbial composition, which differs from indi-
vidual to individual, can be a key component in diverse 
manifestations ranging from gaining weight to develop-
ing stress and depression [90]. Some studies on human 
or mice microbiome have indicated that this variability 
begins with variations in host genetics [91, 92]. Several 
other parallel studies have found that the environment 
is dominant over host genetics in the development of 
human intestinal microbiota [93, 94]. A recent study, 
which looked into factors that influence the intestinal 
microbiome composition across nine different primate 
species and four human communities subject to vari-
ous subsistence habit, identified environmental factors 
as the main driver of intestinal microbiome composi-
tion when compared to host species phylogenies [95]. In 
addition, the intestinal bacteria in four Himalayan pop-
ulations (Tharu, Raute, Raji and the Chepang) differed 
according to their dietary lifestyles [96]. Such findings 
show that diet can dominate phylogenetic development 
of gut microbiome composition. Acute dietary changes 
(four days) was sufficient enough to bring about signifi-
cant alteration to the human gut microbiota composition 
[97]. In a recent study that investigated on Irish traveler’s 
intestinal microbiome shown that microbiota is consid-
erably different from that of a non-traveler settled popu-
lation. However, the non-travelers (settled) Irish contain 
microbiota similar to people lives in industrialized soci-
ety with a comparatively higher risk of chronic disease. 
Most travelers contain an ancient of microbiome that 
protects themselves from various chronic inflammatory 
conditions [98]. Moreover, microbiota-accessible carbo-
hydrates (MACs) serve as an energy source for gut bacte-
ria, resulting in the production of short chain fatty acids 
(SCFAs) which benefits the host. Further, these SCFAs 
including butyrate and propionate have multiple effects 



Page 6 of 12Subramanian et al. J Transl Med          (2020) 18:472 

on signaling pathways including energy homeostasis, 
carbohydrate and lipid metabolism, and inhibition of 
inflammatory signals [99, 100].

Moreover, evidence has shown that microbial coloni-
zation of the infant occurs at birth through the vaginal 
canal and also some by breastfeeding and skin-to-skin 
contact. Babies delivered by caesarean section lack some 
strains of gut bacteria [101]. Furthermore, environmental 
exposure early in life has a strong effect on a child’s intes-
tinal microbiome, and studies have linked environmental 
factors during infancy with a subsequent risk of develop-
ing allergies and asthma [102]

Precision medicine
In the last decade, strategies to advance precision medi-
cine have attracted considerable investment in develop-
ing new treatments, understanding more about disease 
mechanisms, and eventually preventing disease. Pre-
cision medicine focused on identifying the effective 
approaches and the tailored treatment based on an indi-
vidual’s genetic, environmental, and lifestyle factors. As 
explained above, we have undeniable evidence of human 
biological diversity in both health and disease, as shown 
by the findings of the Human Functional Genomics Pro-
ject (HFGP) focused on 500 healthy adult subjects [103]. 
A number of studies have illustrated this explicitly by 
analyzing immune cells (cytokine) as an endpoint, show-
ing that the cytokine types and levels vary depending 
on environmental factors (e.g., season driven), genetic 

history, and intestinal microbiome composition [104]. 
Furthermore, the latest study from the HFGP has shown 
that 11 different kinds of host factors together accounted 
for up to 67% of inter-individual variation in activated 
cytokine production in healthy subjects [105].

Overall, interpersonal variability in diet, lifestyle, sleep, 
stress, socioeconomic status, geography, early life expe-
riences and exercise habits combined with gut microbi-
ome, genetic background, metabolism, inflammatory 
status, are all critical factors in determining an individ-
ual’s heath and risk for disease (Fig.  2). In addition, the 
exposure of individual to environmental hazards is not 
constant and can change throughout their life, and also 
the effect of the exposures can vary depending on an 
individual’s life stage. Environment-wide association 
studies (EWAS) have been proposed to examine new 
environmental factors in disease risk [106]. Therefore, the 
need of every individual is complex and require in-depth 
assessment (deep phenotyping) before interventions can 
be confidently applied (Fig. 2).

Deep phenotyping and artificial intelligence
Precision oncology, AI can be used to develop a drug 
combination centered on a patient’s own biopsy and 
adopt N-of-1 medication recommendations [107]. Across 
multiple specializations, especially in radiology AI-based 
algorithms have already shown improvement in diagnos-
tic accuracy and performance [108–111]. The US Food 
and Drug Administration (FDA) has licensed many AI 

Fig. 2 Deep phenotyping and artificial intelligence for health promotion and chronic disease prevention. Deep phenotyping provides an entire 
molecular profile of an individual’s physiological status. When longitudinally tested, the pathways can be tracked to identify the transformation 
from a health to a disease. Various omics technologies along with other physiological measurements will be used to molecularly characterize 
an individual’s risk for disease. Further implementation of a systems approach to the big-data analysis and integration will provide a platform for 
machine learning and artificial intelligence in clinical decision-making for early disease risk identification and prevention
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systems to promote medical imaging evaluation, includ-
ing the detection of abnormal lesions that may progress 
to cancer [112]. A recent work highlights how AI and the 
advancement of technologies together are empowering 
the aim of personalized and precision medicine [113].

Machine learning is a key for multi omics data integra-
tion and there are several aspects in which data types are 
combined and their relationships are explored [114]. One 
of the large prospective cohort studies the UK Biobank 
project has collected deep genetic and phenotypic data 
including biological measurements, lifestyle markers, 
blood and urine biomarkers, and brain imaging from 
500,000 individuals. This project has provided research-
ers with opportunities to search for genetic associations 
with disease risk and has resulted in several publications 
[115]. In addition, a precision medicine screening study 
that introduced a platform of deep quantitative multi-
modal phenotyping including genomics, metagenomics, 
advanced imaging, metabolomics, clinical testing and 
family history, provided a comprehensive, predictive, 
and personalized assessment of individuals health and 
chronic disease risk [116].

Further to big data obtained from deep phenotyp-
ing, a recent study empowered its participants with an 
additional behavioral coach. The Pioneer 100 wellness 
project (P100) was an initial effort to obtain and analyze 
large omics data sets to correlate molecular networks 
in 108 healthy individual. This study performed whole 
genome sequencing, proteome, microbiome, metabo-
lome, recorded clinical data, daily physical activity, and 
sleep patterns for every three months over a nine months 
period. The investigators established personal, dense, 
dynamic data clouds for each participant and carried 
out an integrated analysis of six different data types. Fur-
ther, these data-driven insights combined with behavio-
ral coaching significantly improved the wellness of the 
participants with regard to nutrition, inflammation, dia-
betes and CVDs [117]. A similar study performed deep 
longitudinal omics profiling along with wearable moni-
toring for 109 individuals who were at increased risk for 
diabetes. They utilized multi-omics including genome, 
transcriptome, immunome, metabolome, proteome, and 
gut microbiome measured for up to eight years (median, 
2.8  years). Such a deep analysis for this long period of 
time allowed the recognition of 67 clinically action-
able health outcomes, including the cardiovascular dis-
ease risk [118]. Furthermore, in order to understand the 
molecular changes of the ageing process and associated 
disease risk, a recent study performed longitudinal and 
deep multi-omics profiling from 106 healthy individuals 
aged between 29 to 75  years and analyzed how diverse 
types of ‘omics’ results combined with clinical markers, 
correlated with age. This study identified various types 

of aging patterns called ’ageotypes,’ based on the types of 
molecular pathways that have evolved over time in a spe-
cific person. Such ageotypes provides new possibilities 
for the design of early diagnosis and treatment interven-
tions that may slow down the aging process depending 
on the particular biology of each individual [119].

Machine learning has been widely applied to the pre-
cision nutrition field to customize a personalized diet 
aimed to prevent or manage diet related diseases [120, 
121]. One landmark study has successfully used a preci-
sion nutrition approach and has created a personalized 
diet to predict blood glucose response by considering 
biochemical, anthropometrics, dietary intake, physical 
activity, and gut microbiota data in an integrated frame-
work. In this study, 800 healthy and prediabetic indi-
viduals were examined and their responses to the food 
were measured a total of 46,898 meals. The investigators 
adopted an ML/AI algorithm that precisely predicted 
postprandial glycemic responses (PPGRs) to meals. The 
ML/AI predictions were validated in an independent 
100-individual cohort. Finally, a blinded, randomized 
controlled intervention based on an algorithm predicted 
diet resulted in significantly lower PPGRs and consist-
ent changes in gut microbiota composition [122]. Recent 
independent similar studies using the personalized nutri-
tion strategy for PPGRs to diet was confirmed in healthy 
individuals in an American population [123, 124]. More-
over, ML/AI is transforming the electronic health record 
(EHR) field and over time EHRs powered with AI were 
shown to reveal more about diseases. The ML/AI, tools 
applied to the health records of patients in EHRs and 
accurately predicted their probability of acquiring or 
developing chronic diseases [125].

AI medical assistants
The management of chronic disease requires regular 
monitoring and recommendations. Virtual medical assis-
tants using AI have recently matured and are being used 
in various products. AI assistants for diabetes have been 
shown useful to control patient conditions. For example, 
Onduo is a company that provides a virtual coaching via 
text messages through a mobile app. It uses AI technol-
ogy for food recognition, glucose sensor and physical 
activities to provide recommendations. Other examples 
of startup companies are Virta, Wellpepper or Accolade. 
Another interesting solution is provided by DayTwo. It 
gives a personalized nutrition recommendation based on 
subject’s gut microbiome. The suggested meals are cho-
sen among a large database of more than 100,000 foods 
to keep the glycemic range under control [123].

For cardiac diseases, AI has shown major progress in 
the diagnosis of atrial fibrillation. The latter is a common 
problem represents a 20 to 30% lifetime risk. It can occur 
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without symptoms and increase the risk of stroke. Alive-
Cor developed a system based on deep learning, single-
lead ECG sensor and physical activity via accelerometer 
data [126]. The system is integrated with a smart watch 
and it is capable of predicting the occurrence of atrial 
fibrillation every 5 s. AI has also contributed in improv-
ing diagnoses based on cardiovascular imaging such 
as in echocardiography, MRI or ultrasound imaging. A 
comparative study of echocardiography interpretation 
of Ultromics system with cardiologist showed that more 
than 90 percent of the abnormalities found by board cer-
tified cardiologists overlapped with the ones found by the 
AI system [127].

Another example of the use of AI for chronic disease 
management is ResApp Health. The system uses the 
phone microphone to analyze the subject’s breathing. 
The AI algorithm is able to give an assessment of sev-
eral lung conditions with high accuracy such as chronic 
obstructive lung disease, pneumonia or chronic asthma 
[128].

Taken together, while high-throughput data genera-
tion strategies are becoming more advanced, quicker, 
and comparatively more affordable, researchers are 
increasingly gaining access to large amounts of molecular 
knowledge from human cohorts. The volume of poten-
tial data is enormous, and it has been estimated that 
personal lifestyle-based data sum up to 1100 terabytes 
over a lifespan, with genetics and clinical data compris-
ing 6.4 terabytes, which is less than 1% of the total. Omics 
technologies, GWAS, EWAS, smartphone-based digital 
phenotyping, sensors, EHRs, wearable devices to moni-
tor physical activity, geography location data and climate 
data combined with AI have improved the prospect of 
implementing prevention and management strategies 
for chronic diseases [129–132]. Therefore, the use of 
such large multidimensional data requires the establish-
ment of structured collection and big data analytics, as 
well as multidisciplinary integration of high-performance 
computational technologies and integration of ML/AI. 
Hence, AI is quickly becoming a crucial methodology 
in the advancement of precision/personalized medicine 
[133, 134].

Recent developments in the field
One of the first large-scale, population-based, prospec-
tive studies which intended to enable comprehensive 
analyses of the genetic and non-genetic causes of diseases 
for middle and old age was the UK biobank study [115, 
135]. In addition, the most ambitious longitudinal study 
in precision medicine so far, the “All of Us” Research Pro-
gram, which aims to focus research on the link between 
environment, lifestyle and biology in health and disease 
is ongoing [136]. The All of Us program intends to enroll 

one million people across America and plans to imple-
ment deep phenotyping by gathering genetic and health 
data (using EHRs, digital health data), geography, and 
biospecimens for biomarker review. Similarly, a project 
called “The Project Baseline Health Study (PBHS)” was 
initiated to map human health by deep phenotyping to 
at least 10,000 individuals. The PBHS study established a 
portal that incorporates and analyzes personalized, lon-
gitudinal, multidimensional data, with a greater focus on 
future than past. It further explore the biological hetero-
geneity of healthy individuals or individuals with chronic 
disease in detail for a longer period of time to create 
reference health status by integrating various aspects of 
health [137].

The Human Exposome Project, 2020 from the Euro-
pean Union is the largest network of research programs 
aiming to address the environmental exposure such as 
diet, lifestyle, occupational and other environmental 
factors impact on human health (https ://www.human 
expos ome.eu/). Such data-driven approach to expo-
some reduces the conventional decision-making method 
and it may better determine the influence of chemical 
exposures on particular physiological systems proven 
to be affected. Subsequently this would help to create 
novel chemicals with reduced impact on human health 
and the environment [138]. Over the last two decades, 
omics, wearables, sensors, digital medicine and emerging 
innovative technologies together with AI have all made 
incredible advancements in the field of precision/person-
alized medicine. Furthermore, AI is being implemented 
in precision oncology to help clinicians in decision mak-
ing, with the aim of improving patient outcomes [139]. 
AI-based healthcare practices are already being imple-
mented in high-income countries; for instance, the UK 
and Singapore have recently launched national strategies 
to tackle chronic disease burden using AI. Data driven, 
AI-powered health care has the potential to clarify the 
landscape of findings and enable clinical decisions to dig-
itally identify, treat, and manage chronic conditions.

Data protection and privacy
The frequent collection of personal health and environ-
mental data has been greatly improved through the use of 
decentralized sensors, measurement devices and mobile 
phones. A few decades ago, the measurement of blood 
pressure, glucose level, heart rate could only be done by 
medical experts. Nowadays such information can be con-
tinuously collected through mobile apps. The rapid intro-
duction of AI technology into the precision medicine is 
advantageous, as AI offers an opportunity to increase 
the efficiency of health care delivery and the quality of 
patient care. However, it is necessary to mitigate the ethi-
cal risks of the AI implementation, which could include 

https://www.humanexposome.eu/
https://www.humanexposome.eu/
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data privacy and confidentiality violations, informed 
consent, and patient autonomy. In the world of precision 
medicine, big data and AI, it is of paramount importance 
that data protection legislation is in place that properly 
ensures the privacy of individuals, particularly patients. 
The raise of privacy concerns related to the collection of 
health data has contributed in the significant progress 
on private AI methods such as Federated Learning or 
Differential Privacy in Machine Learning [140]. Coun-
tries around the world introducing laws to protect the 
privacy of their citizens. The Health Insurance Portabil-
ity and Accountability Act (HIPAA) in USA the primary 
federal law to protect the privacy of health data. How-
ever, HIPAA has major gaps in current world because 
it protects only relevant health information produced 
by "covered entities" or their "business associates” [141, 
142]. Whereas in Europe, The General Data Protection 
Regulation (GDPR) has been practical since May 25, 2018 
in all European Union (EU) member states and imple-
mented a new era of extensive data protection law within 
the EU [143, 144]. GDPR regulation has begun a sig-
nificant global shift in data protection, creating political 
campaigns that advocate more privacy for data subjects, 
stricter laws for private corporations and governments 
that control emerging and increasingly evolving technol-
ogy that pose a threat to data security.

Conclusion
Chronic diseases impose a substantial health and eco-
nomic burden worldwide, with nearly one in four adults 
suffering from one or more chronic health conditions. To 
date, the longitudinal cohort studies have set the stage 
for enhancing human health by identifying and defin-
ing the natural history of diseases, identifying their risk 
factors and finding novel biomarkers. Further, the use of 
biosensors and the advances in multi-omics have estab-
lished the foundation for better disease categorization, 
created targeted therapies, and have improved prognosis 
for many diseases. Most importantly, advances in digital 
medicine have helped to determine the underlying causes 
of diseases in individual patients.

Since most chronic diseases are the consequence of 
primary lifestyle factors, individuals can reduce the 
likelihood of developing chronic conditions by making 
healthier lifestyle decisions. Nutrition and lifestyle pref-
erences are affected by a wide variety of socio-economic 
factors including employment, education, geography, 
built environment, social networks, and a climate system. 
Combatting obesity and chronic diseases associated with 
diet needs careful examination of the social determinants 
of food systems, environment and climate change and 
specific public health strategies targeted at minimizing 
health disparities [55, 145, 146].

One aim of public health is promoting healthy life-
style and developing novel approaches to prevent, 
detect, and respond to diseases that commonly affect 
people. With the development of precision medicine 
and the advent of AI, it can be misconstrued that medi-
cine and health care is again drifting towards an indi-
vidualistic approach versus a community approach to 
controlling diseases [147]. On the contrary, precision 
medicine, AI, and our deep understanding of disease 
conditions offer a great opportunity to save resources 
for those countries that have practiced a one-size-fits all 
and a piecemeal approach in their public health think-
ing and programming and have not reaped adequate 
return for their investments. Chronic diseases, and 
their multifactorial nature, the advent of technological 
advancements in the form of AI, and the ‘precision’ in 
precision medicine have the potential to redefine and 
replace conventional public health approaches with 
a new holistic paradigm [148]. There remains a huge 
scope for introducing educational programmes, devel-
oping policies, and strengthening systems to capitalize 
on the rapid development in the field and customize 
activities for collectives (persons who share common 
traits and characteristics) rather than communities.
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