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Abstract 

Background: Previous researches has depicted that the performance of the recommended glomerular filtration rate 
(GFR)-estimating equations in the type 2 diabetic population is inferior to that in the non-diabetic population. We 
attempted to develop new GFR-predicting models for use in Chinese patients with type 2 diabetes in this study.

Methods: We enrolled 519 type 2 diabetic patients including a development data-set (n = 276), an internal valida-
tion data-set (n = 138) and an external validation data-set (n = 105) to establish new GFR-predicting models. 99mTc-
DTPA-GFR revised by the dual sample method was referred to as the gold GFR standard.

Results: Based on sex, age, serum creatinine and new predictor variables [body mass index (BMI), hemoglobinA1C, 
and urinary albumin creatinine ratio], eight new regression models and eight artificial neural network (ANN) models 
were developed. In the external validation group, only ANN3 was superior in both precision and accuracy over the 
original CKD-EPI equation (precision, 20.5 vs. 24.2 mL/min/1.73 m2, P < 0.001; 30 % accuracy, 88.6 vs. 80.6 %, P = 0.02).

Conclusions: ANN3 based on sex, age, serum creatinine and BMI is the optimal model for GFR estimation in Chinese 
patients with type 2 diabetes.
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Background
An accurate assessment of glomerular filtration rate 
(GFR) is crucial for correct drug dosing, as well as for 
detecting, managing, and predicting the prognosis of 
chronic kidney disease (CKD) in diabetes [1]. However, 
analysis has indicated that the Cockcroft–Gault (CG) 
equation [2], the modification of diet in renal disease 
(MDRD) equation [3] and the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation [4], 
which were recommended for the estimation of GFR, are 
inaccurate in diabetic populations [5–7]. In accordance 
with the above studies [5–7], our previous result demon-
strated that the accuracy of the CKD-EPI equation could 
be influenced by diabetic status [8].

There are several explanations for the discrepancy 
between diabetic and non diabetic population. To our 
knowledge, the establishment of traditional equations 
was dependent on the regression model in a sizable 
number of participants without consideration of physi-
ology, thus the performance of traditional equations can 
be poor when they are applied in a significantly differ-
ent population. Only a very small percentage of diabetic 
patients were involved in establishing the CG and MDRD 
equations, and only 27  % of the subjects in the CKD-
EPI equation were diabetic. Further, attention should be 
paid to the special physiology of type 2 diabetic patients. 
For example, in the early stage of diabetic nephropathy, 
owing to hyperfiltration, diabetic patients often repre-
sent with high values of GFR [9]. It is well recognized that 
GFR can be increased by acute hyperglycemia in type 2 
diabetes with normal renal function. A study involving 
193 diabetic patients by Rigalleau [10] showed that the 
relationship also existed in more advanced stages of renal 
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impairment, and that a reduction in glycosylated hemo-
globin (HbA1c) was related to a reduction in GFR after 
treatment for several months. Moreover, most individuals 
with type 2 diabetes were overweight or obese. The fact 
that the obese people tented to have a higher proportion 
of fat and a lower content of muscle mass compared to 
the non-obese people has impacts on GFR [11]. In addi-
tion, several studies implied that the level of serum cre-
atinine was remarkably lower in diabetes due to the lower 
muscle mass volume [9, 12]. Special attention should be 
paid to albuminuria in diabetes. The appearance of albu-
minuria initiates the loss of GFR [13] and several reports 
have identified that the level of albuminuria correlates 
with the level of the loss of renal function in people with 
diabetes and obvious renal diseases [14–16]. Babazono 
[17] stressed that higher levels of urine albumin-to-cre-
atinine ratio (UACR) are associated with a greater rate 
of decline in eGFR in Japanese diabetic patients. In the 
supplementary appendix of a study by Lesley, the perfor-
mance of the CKD-EPI equation varied in different pro-
teinuria subgroups [18].

Equations currently estimate GFR on the basis of GFR 
determinants as well as non-GFR determinants. GFR 
determinants are referred to as GFR filtration markers, 
whereas non-GFR determinants include demographic 
and clinical variables which influence GFR determi-
nants. The combination of novel filtration markers and 
non-GFR determinants can contribute to the improve-
ment in performance by reducing the bias caused by 
non-GFR determinants [1]. Besides, advances in statisti-
cal techniques and the development of novel strategies 
can benefit GFR estimation. An artificial neural network 
(ANN) as a common mathematical modeling method 
has been employed extensively in engineering prediction 
and the application of ANN in medicine and biology is 
also encouraging. Our previous study, which consisted of 
1230 patients with chronic kidney disease, verified that 
the performance of ANN was equal to traditional regres-
sion [19].

Taking the above into account, we aim to develop an 
optimal GFR-predicting model for Chinese type 2 dia-
betic patients by applying the traditional regression 
method as well as an ANN with the addition of new 
variables [including body mass index (BMI), HbA1c and 
UACR] as non-GFR determinants.

Methods
Subjects and study design
The study recruited consecutive patients who had known 
type 2 diabetes for whom complete clinical data were 
available in the Third Affiliated Hospital of Sun Yat-
sen University, China. Exclusion criteria were: (1) age 
less than 18  years old; (2) having acute kidney function 

deterioration (the level of serum creatinine on the day of 
undergoing GFR measurement differed more than 15  % 
compared with that on the day of admission), skeletal 
muscle atrophy, edema, pleural effusion or ascites, mal-
nutrition, amputation, heart failure, or ketoacidosis; (3) 
being treated with dialysis at the time of the study; (4) 
taking cimetidine, trimethoprim and injection of albumin 
or diuretics intravenously before the measurement of 
GFR. Finally 519 type 2 diabetic patients were enrolled. 
Patients treated from January 2005 through December 
2012 were randomly divided into the development data-
set (n =  276) and the internal data-set (n =  138). Data 
obtained from January 2013 to June 2013 were used 
as the external validation data-set (n  =  105). Written 
informed consent was obtained from all subjects. The 
study was approved by the institutional review board at 
the Third Affiliated Hospital of Sun Yat-sen University.

Laboratory measurements
The measurement of GFR was obtained by a techne-
tium 99  m diethylene-triaminepentaacetic acid (99mTc-
DTPA) renal dynamic imaging method (modified Gate’s 
method), using a Millennium TMMPR SPECT with the 
General Electric Medical System (Discovery VH, GE 
Healthcare, Little Chalfont, UK). The details have been 
described previously [20]. The measured GFR (mGFR) 
was calibrated to equal the dual plasma sample 99mTc-
DTPA GFR. Applying Open Epi software (Version 2), 
the minimum sample size was calculated as 36 [21] 
(95  % confidence level and 80  % power). The calibrated 
GFR measurement was referred to as the standard GFR 
(sGFR) in our study. Two and four hours after the injec-
tion of 99mTc-DTPA into the opposite forearm, blood 
samples were drawn intravenously and collected in hep-
arinized tubes. Radioactivity in the separated plasma 
was recorded by a multi-function well counter (ZD-
6000 multi-function instrument from Zhida Technol-
ogy Company, Xian, China). Serum creatinine analysis 
was performed by a Hitachi 7180 autoanalyzer (Hitachi, 
Tokyo, Japan; reagents from Roche Diagnostics, Man-
nheim, Germany) using the enzymatic method, and after 
the year 2010 serum creatinine was traceable by isotope 
dilution mass spectrometry. HbA1c was detected by high 
performance liquid chromatography, while UACR was 
determined by the immuneturbidimetric assay.

Metrics for the development of the new regression models
The development of the new regression models was 
based on both the development and internal validation 
data sets. The predictor variables involved in the estab-
lishment were age, sex, serum creatinine, BMI, HbA1c, 
and UACR. Age, sex, and serum creatinine were included 
in all new models, with BMI, HbA1c, and UACR added 
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separately or in combination. In the development of the 
new equations, sGFR and serum creatinine were trans-
formed to a log scale, while BMI, HbA1c, and UACR 
were on the natural scale. Least squares linear regression 
was adopted to relate sGFR to the predictor variables. 
As the method mentioned in the establishment of the 
CKD-EPI equation, a nonparametric smoothing spline 
was used to configure the shape of the relationship of log 
standard GFR with log creatinine, and the nonlinearity 
relationship represented in the smoothing splines was 
characterized by means of piecewise linear splines.

Metrics for the development of the new ANN models
The new ANN models were programmed by MATLAB 
2011A (The MathWorks Inc, Natick, MA, USA). A three-
layer back-propagation (BP) network consisting of an 
input layer, a hidden layer and an output layer was estab-
lished. The predictor variables, the same as the descrip-
tion above, were the input variables with standard GFR 
as the output variable. Each neuron in the hidden layer 
took the S function as an exciting function and with dif-
ferent numbers of neurons in the hidden layer (1–11), 
several networks were programmed. After the random 
initialization, all net works were trained in the develop-
ment data-set by learning the rule of back propagation. 
Their performance in the internal validation data-set 
determined the optimal network. Performance was 
assessed by mean square error in the internal validation 
data-set and the smallest mean square error meant the 
best performance. With thresholds and weights specified 
after training, the output of the network was calculated 
by the weighted summation of each neuron to approxi-
mate sGFR. The introduction of the genetic algorithm 
into the BP network (GABP network) enabled optimized 
initialization of the weights and thresholds, leading to 
improvement of performance of the ANN models. In the 
GABP network, encoded as a chromosome, all weights 
and thresholds of one network evolved from one genera-
tion to another through the progression of mutation and 
crossing. The initial weights and thresholds were cho-
sen for the next generation if the network demonstrated 
better performance in the internal validation data-set. 
Superior initial weights and thresholds were eventually 
applied in the initialization of the network. Details of the 
construction of the new ANN model are presented in the 
Additional file 1.

Determination of the optimal models
All the new models were compared with the new Japa-
nese equations and the CKD-EPI equation in the external 
validation data set. The performance was defined by bias, 
precision and accuracy.

Expression of the equations
CKD-EPI equation [4]

 κ is 0.7 for female and 0.9 for male, α is 0.329 for female 
and 0.411 for male, min indicates the minimum of SC/κ 
or 1, and max indicates the maximum of SC/κ or 1Japa-
nese equation 1 [22]

Japanese equation 2 [9]

Statistical analyses
Results are expressed as mean ± SD or as median. Bias 
was assessed as the median of the difference between 
sGFR and eGFR, and precision was defined as the inter-
quartile range (IQR) of the difference. Accuracy was 
measured as the percentage of eGFRs within 30 % of the 
sGFR. The 95 % confidence intervals were calculated by 
the bootstrap method (2000 bootstraps). The quantitative 
variables between two data-sets were compared using the 
independent samples t test or the Mann–Whitney test. 
Differences and accuracy within the data-set were com-
pared by Wilcoxon signed rank test and McNemar test. 
All analyses were conducted using SPSS software (ver-
sion 13.0 SPSS), R (R i386 3.0.2) and MATLAB software 
(version 2011b).

Results
Calibration of GFR
To calibrate our measured GFR to the dual plasma sam-
ples method, 36 type 2 diabetic subjects [mean age 
was 63.3  ±  12.3 y (range 38–82) with a mean mGFR 
of 66.9  ±  30.1  ml/min/1.73  m2 (range 16.7–145.6  ml/
min/1.73 m2)] were selected randomly. The dual plasma 
samples method 99mTc-DTPA clearance was per-
formed simultaneously with renal dynamic imaging. 
The 99mTc-DTPA renal dynamic imaging GFR value 
can be calibrated equally to the dual plasma sam-
ples 99mTc-DTPA clearance, using a linear regression 
equation: dual plasma sample 99mTc-DTPA-GFR (ml/
min/1.73  m2)  =  3.706  +  1.039  ×  99mTc-DTPA renal 
dynamic imaging-GFR (ml/min/1.73  m2) (R2  =  0.879, 
P < 0.001).

Clinical characteristics of the development, internal 
validation data‑sets and external validation data‑set
Mean sGFR of the development and internal validation 
data-sets was 80.9  ±  29.0  mL/min/1.73  m2. The mean 

GFR = 141×min(Scr/κ , 1)α ×max(Scr/κ , 1)−1.209

× 0.993Age × 1.018 (if female)× 1.159 (if black)

GFR = 194 × Scr−1.094
× Age−0.287

× 0.739 (if female)

GFR = 194 × Scr−1.094
× Age−0.287

× 0.739(if female)/

(0.428+ 0.0085×HbA1c)
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age, mean BMI, mean sGFR, and the distribution of 
HbA1C of the external validation data set were similar to 
the development and internal validation data-sets. Clini-
cal characteristics of the diabetic patients in each data-
set are provided in Table 1.

Development of new regression equations and artificial 
neural network in patients with diabetes
Variables included in the new regression models for esti-
mating log GFR are log serum creatinine, and sex, age, 
BMI, HbA1C, and UACR on the natural scale. The rela-
tionship between log GFR and log serum creatinine was 
modeled as a two-slope linear spline with sex-specific 
knots at 0.7  mg/dL in women and 0.8  mg/dL in men. 
Applying multiple regression, eight new regression mod-
els were developed based on the variable above (Addi-
tional file 2: Tables S1, S2). Variables included in artificial 

neural network models for estimating GFR were the same 
as in the regression models (Table  2;  Additional file  2: 
Table S3).

Determination of the optimal model
In the external validation group, biases between new 
GFR estimating models and the CKD-EPI equation 
were not significant except for the Japanese equations 
(Japanese equation 1 vs. CKD-EPI, −20.48 vs. 6.00 mL/
min/1.73 m2, P < 0.001; Japanese eqution 2 vs. CKD-EPI, 
−30.67 vs. 6.00  mL/min/1.73  m2, P  <  0.001). All mod-
els had improve precision (P  <  0.001) in comparison to 
the CKD-EPI equation except ANN6 (P  <  0.001). Only 
ANN3 had higher accuracy than the CKD-EPI equation 
(30 % accuracy, 88.6 vs. 80.0 %, P = 0.02). The Japanese 
equations demonstrated much lower accuracy compared 
with the CKD-EPI equation (Japanese equation  1 vs. 

Table 1 Clinical characteristic of the development, internal validation data sets and external validation data set

SD standard deviation, IQR interquartile range, BSA body surface area, BMI body mass index, UACR urine albumin creatinine ratio, sGFR standard glomerular filtration 
rate

Development and internal validation External validation P

N 414 105

Male/female (%) 54.3/45.7 58.1/41.9 0.49

Age (y) mean ± SD 59.8 ± 13.1 60.2 ± 10.6 0.76

 <40 n (%) 29 (7.0) 3 (2.9) 0.26

 40–65 n (%) 231 (55.8) 67 (63.8)

 >65 n (%) 154 (37.2) 35 (33.3)

Diabetes duration (y) median (IQR) 7.0 (8.0) 9.0 (9.0) 0.01

Weight (kg) mean ± SD 66.5 ± 12.3 68.2 ± 12.1 0.22

Height (cm) mean ± SD 162.8 ± 8.6 162.6 ± 7.9 0.81

BSA (m2) mean ± SD 1.7 ± 0.2 1.7 ± 0.2 0.40

BMI (kg/m2) mean ± SD 25.0 ± 3.5 25.7 ± 3.4 0.07

 <20 n (%) 23 (5.6) 1 (1.0) 0.01

 20–25 n (%) 189 (45.7) 52 (49.5)

 25–30 n (%) 171 (41.5) 36 (34.3)

 >30 n (%) 30 (7.2) 16 (15.2)

Serum creatinine (mg/dl) median (IQR) 0.8 (0.6) 0.9 (0.7) 0.34

HbA1C (%) median (IQR) 8.5 (3.4) 8.3 (3.9) 0.83

 <6 % n (%) 40 (9.7) 9 (8.6) 0.76

 6–8 % n (%) 146 (35.3) 41 (39)

 >8 % n (%) 228 (55.1) 55 (52.4)

UACR (mg/g) median (IQR) 42.6 (219.0) 62.9 (166.2) 0.01

 <30 mg/g n (%) 162 (39.1) 19 (18.1) <0.001

 30–300 mg/g n (%) 144 (34.8) 60 (57.1)

 >300 mg/g n (%) 108 (26.1) 26 (24.8)

sGFR (ml/min/1.73 m2) 80.9 ± 29.0 83.7 ± 25.9 0.40

 <15 n (%) 0 (0) 0 (0) 0.43

 15–29 n (%) 16 (3.9) 1 (1.0)

 30–59 n (%) 85 (20.5) 19 (18.1)

 60–90 n (%) 154 (37.2) 43 (41.0)

 >90 n (%) 159 (38.4) 42 (40.0)



Page 5 of 7Chen et al. J Transl Med  (2015) 13:317 

CKD-EPI, 54.3 vs. 80 %, P < 0.001; Japanese equation 2 
vs. CKD-EPI, 29.5 vs. 80  mL/min/1.73  m2, P  <  0.001) 
(Table 3). To facilitate its clinical use, a detailed equation 
(Additional file  1) was developed to calculate eGFR by 
ANN3. A simple EXCEL software program was also cre-
ated (Additional file 3).

Discussion
The number of people with diabetes is increasing glob-
ally, with 387 million in 2014 [23], up from 153 million 
in 1980 [24]. Based on a national survey carried out in 

2010, the prevalence of diabetes in China was estimated 
to be 11.6  %, counting for 113.9 million Chinese adults 
with diabetes [25]. In all developed and many develop-
ing countries, diabetes has become the leading cause of 
chronic kidney disease [26]. It is therefore essential to 
accurately assess GFR in diabetic patients. Our analy-
sis indicated ANN3 based on sex, age, serum creatinine 
and BMI (topological structure as 4-6-1) was the opti-
mal model for GFR estimation in Chinese type 2 diabetic 
patients. In an investigation by Tsuda and colleagues, a 
new equation including HbA1c as a new variable was 
developed. However, the sample size was very small (40 
cases) and the new equation had not been externally vali-
dated [9]. Further, it showed poor performance in our 
study.

There are two possible reasons for the superiority of 
ANN3 over other models. One possible reason is the 
introduction of BMI as a new variable, which has been 
explained before [9, 11, 12]. Additionally, Hsu found 
that BMI was related to the risk for end-stage renal dis-
ease, and GFR started to decrease when BMI ≥22.0 kg/
m2 [27]. Kawamoto also mentioned the estimated GFR 
in upper normal body weight (BMI 22.0–24.9  kg/m2), 
overweight or obese subjects (BMI ≥25 kg/m2) was lower 
than that in lower normal body weight individuals (BMI, 
18.5–21.9  kg/m2) [28]. Another reason is the applica-
tion of ANN. A multiple regression model is based on a 

Table 2 The variables included in each equation and artifi-
cial neural network model

ANN artificial neural network, BSA body surface area, BMI body mass index, UACR 
urine albumin creatinine ratio, Scr serum creatinine

New regression equations ANN models Variables

New equation 1 ANN1 Age, Sex, Scr

New equation 2 ANN2 Age, Sex, Scr, HbA1c

New equation 3 ANN3 Age, Sex, Scr, BMI

New equation 4 ANN4 Age, Sex, Scr, UACR

New equation 5 ANN5 Age, Sex, Scr, HbA1c, BMI

New equation 6 ANN6 Age, Sex, Scr, HbA1c, UACR

New equation 7 ANN7 Age, Sex, Scr, BMI, UACR

New equation 8 ANN8 Age, Sex, Scr, HbA1c, UACR, 
BMI

Table 3 Performance of the new regression equations and ANN models in the external validation data set

CKD-EPI equation Chronic Kidney Disease Epidemiology Collaboration, ANN Artificial neural network

* P < 0.001, ‡ P < 0.05 comparing with the CKD-EPI equation

Bias (ml/min/1.73 m2) Precision (ml/min/1.73 m2) Accuracy (%)

CKD-EPI −6.00 24.20 80.0

Japanese equation 1 −20.48* 22.43* 54.3*

Japanese equation 2 −30.67* 23.55* 29.5*

New equation 1 −2.49 22.50* 84.8

ANN1 −2.70 21.37* 87.6

New equation 2 −2.88 22.07* 84.8

ANN2 −4.87 20.70* 83.8

New equation 3 −3.97 21.22* 80.0

ANN3 −5.97 20.49* 88.6‡

New equation 4 −2.23 21.11* 84.8

ANN4 −3.08 19.96* 84.8

New equation 5 −3.97 21.46* 80.0

ANN5 −6.81 22.93* 85.7

New equation 6 −3.19 21.64* 83.8

ANN6 −5.31 25.87* 88.6

New equation 7 −2.91 21.35* 81.9

ANN7 −5.97 22.51* 87.6

New equation 8 −4.48 21.89* 81.9

ANN8 −5.73 22.30* 87.6
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large number of samples, and its predictive performance 
is restricted by the size and characteristic of the samples. 
ANN can simulate a relationship accurately between var-
iables even in a small number of samples. Furthermore, 
multiple regression models fail to solve the high multi-
collinearity between variables, whereas ANN is designed 
to address this problem and is flexible in modeling non-
linear problems.

Two factors were assumed to influence the perfor-
mance of the CKD-EPI equation in the external valida-
tion data-set. On the one hand, the development data-set 
of the CKD-EPI equation was quite different from that 
in our study. Diabetes only accounted for 29  % of the 
whole population in the CKD-EPI equation, while all 
subjects in this study were diagnosed with type 2 dia-
betes. There were also differences in the clinical charac-
teristics of the two development and internal validation 
data-sets. The subjects of the development and internal 
validation data-set in our study were older than that 
in the CKD-EPI equation  (60 ±  13 vs. 47 ±  15 y). The 
BMI of the development and internal validation data-
set in our study were also lower than those in the CKD-
EPI equation (25 ± 4 vs. 28 ± 6 kg/m2). The subjects of 
the development and internal validation data-set in our 
study had a higher sGFR than that in the CKD-EPI equa-
tion (81 ± 29 vs. 68 ± 40 mL/min/1.73 m2). On the other 
hand, the gold standard of our study was the 99mTc-DTPA 
renal dynamic imaging GFR calibrated to the dual plasma 
sample method while the sGFR of the CKD-EPI equation 
was urinary clearance of 125I-Iothalamate. This difference 
in the gold standards could result in systematic bias.

Several limitations in our study should be pointed out. 
One of them is the relatively small number of samples 
in both the development and validation data-sets and 
the fact that subjects were restricted to a single center. 
Another difference is our use of 99mTc-DTPA renal 
dynamic imaging GFR calibrated to the dual plasma sam-
ple method as the gold standard of GFR instead of inulin 
clearance.

Conclusions
A new GFR estimating model (ANN3) based on sex, age, 
serum creatinine and BMI was selected as the optimal 
model for GFR estimation in Chinese patients with type 
2 diabetes. However, ANN3 proved its superiority only 
in the external validation data-set (n  =  105 patients). 
Additional external investigations are still required. With 
a larger sample size, addition of new filtration markers 
(Cystatin C, β2-microglobulin and β trace protein), the 
change of GFR gold standard to inulin clearance, and 
the perfection of modeling machine learning methods 
including ANN, the predictive performance of the new 
models may be further improved.
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