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Abstract 

Background: There is a paucity of effective therapies for recurrent/aggressive meningiomas. Establishment of 
improved in vitro and in vivo meningioma models will facilitate development and testing of novel therapeutic 
approaches.

Methods: A primary meningioma cell line was generated from a patient with an olfactory groove meningioma. The 
cell line was extensively characterized by performing analysis of growth kinetics, immunocytochemistry, telomerase 
activity, karyotype, and comparative genomic hybridization. Xenograft models using immunocompromised SCID 
mice were also developed.

Results: Histopathology of the patient tumor was consistent with a WHO grade I typical meningioma composed of 
meningothelial cells, whorls, and occasional psammoma bodies. The original tumor and the early passage primary 
cells shared the standard immunohistochemical profile consistent with low‑grade, good prognosis meningioma. Low 
passage KCI‑MENG1 cells were composed of two cell types with spindle and round morphologies, showed linear 
growth curve, had very low telomerase activity, and were composed of two distinct unrelated clones on cytogenetic 
analysis. In contrast, high passage cells were homogeneously round, rapidly growing, had high telomerase activity, 
and were composed of a single clone with a near triploid karyotype containing 64–66 chromosomes with numerous 
aberrations. Following subcutaneous and orthotopic transplantation of low passage cells into SCID mice, firm tumors 
positive for vimentin and progesterone receptor (PR) formed, while subcutaneous implant of high passage cells 
yielded vimentin‑positive, PR‑negative tumors, concordant with a high‑grade meningioma.

Conclusions: Although derived from a benign meningioma specimen, the newly‑established spontaneously 
immortal KCI‑MENG1 meningioma cell line can be utilized to generate xenograft tumor models with either low‑ or 
high‑grade features, dependent on the cell passage number (likely due to the relative abundance of the round, near‑
triploid cells). These human meningioma mouse xenograft models will provide biologically relevant platforms from 
which to investigate differences in low‑ vs. high‑grade meningioma tumor biology and disease progression as well as 
to develop novel therapies to improve treatment options for poor prognosis or recurrent meningiomas.
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Background
Meningiomas are the most common primary tumors 
of the central nervous system accounting for approxi-
mately 35.5% of all primary brain tumors [1]. The age-
adjusted annual incidence rate is 7.22 per 100,000 
individuals with a nearly 2.3-fold higher incidence in 
women. Over 100,000 cases were reported in United 
States between 2005 and 2009 [1]. Meningiomas are 
composed of neoplastic meningothelial cells derived 
from arachnoid cap cells [2]. The World Health Organi-
zation (WHO) classifies them into three main histo-
logic subtypes: benign (grade I), atypical (grade II); and 
malignant (anaplastic) meningiomas (grade III) [3]. 
Current therapies involve surgery, fractionated radia-
tion therapy, and stereotactic radiosurgery. There is an 
important group of patients with inoperable or incom-
pletely resected low-grade meningiomas, in addition to 
the high-grade tumors, who develop recurrent disease 
following surgery and radiation therapy. Effective treat-
ment options for these patients are exceedingly limited 
at present [4, 5].

Progress in the development of new treatments for 
meningioma is limited by a paucity of in  vitro cell line 
models effectively limiting the availability of suitable 
in vivo models. Most of the well-characterized cell lines 
were isolated from malignant meningiomas [6–9]. Those 
from benign [10–12] or atypical [13] meningiomas have 
been genetically modified to generate stable, immortal 
cell lines. Of these artificially-immortalized benign men-
ingioma cell lines, the most common method employed 
was viral transduction of cells to generate expression of 
the telomerase catalytic subunit (hTERT). The endog-
enous expression of hTERT is found in 30–50% of all 
benign and nearly 100% of high-grade meningiomas [14, 
15]. Expression of hTERT in recurrent meningioma has 
also been observed [14]. Therefore, hTERT expression is 
a logical choice to manipulate the tumor cell biology to 
allow for continued in vitro cell growth. However, despite 
the careful characterizations described by the authors of 
those studies [10–13], it is difficult to know what aspects 
of the tumor cell biology may also have been altered 
that would confound the use of these cells as meningi-
oma models. Moreover, two cell lines, MENII-1 [12] and 
Me3TSC [10], in addition to the hTERT, co-expression 
with human papillomavirus E6/E7 oncogenes and SV40 
large T antigen, respectively, was required in order to 
attain immortalization, although these viral genes have 
not been associated with meningioma in  vivo. Also of 
note, syngeneic mouse models of meningioma have been 
genetically engineered by conditional knockout of tumor 
suppressors such as neurofibromatosis 2 (NF2) [16, 17], 
however, as gene expression and regulation are consider-
ably divergent between mouse and human [18], human 

tumor models may be more suitable for translational 
research purposes [19].

Meningiomas were among the first CNS solid tumors 
found to have consistent cytogenetic aberrations [20–22], 
The most well explored observation is the loss of het-
erozygosity due to a loss of one copy of the long arm of 
chromosome 22 [23, 24], and this is usually the only chro-
mosomal loss associated with benign meningioma [25]. 
Atypical and malignant meningiomas also have losses of 
the short arm of 1 and the long arm of 14q [26], and gains 
of the long arms of chromosomes 1, 9, 12, 15, 17, and 20 
[25, 27]. These striking chromosomal abnormalities may 
be related to the hTERT expression and telomerase activ-
ity [28] found in some benign and almost all high-grade 
meningiomas [14, 15].

While there have been numerous studies examining the 
genetic alterations characteristic of meningiomas, these 
have yielded little in the way of efficacious treatment 
alternatives. As such, there is a critical need for develop-
ment of pre-clinical tumor models to improve the under-
standing of the underlying pathobiology of meningiomas 
and for the development and testing of novel therapeu-
tic approaches. Human cell culture systems represent an 
essential experimental tool. However, most studies use 
primary, early passage human meningioma cell lines that 
typically senesce after a few passages. Here, we report the 
isolation and characterization of a novel, spontaneously-
immortalized cell line, which we have designated as 
KCI-MENG1, derived from a WHO grade I benign men-
ingioma and used to develop mouse xenograft models.

Methods
Original tumor specimen
A 46-year-old woman with an olfactory groove WHO 
grade I meningioma underwent surgical resection. 
Tumor samples were obtained immediately following sur-
gical resection after adequate material was reserved for 
histopathological diagnosis. The specimen was divided 
into multiple pieces. One piece was frozen on dry ice and 
subsequently stored at −80°C, and another was dissoci-
ated for in vitro cultures. The study was approved by the 
Wayne State University Institutional Review Board and 
written informed consent was obtained from the patient.

Isolation and culture of primary human meningioma cells
The tumor sample was washed in phosphate-buffered 
saline (PBS) with 2 mM ethylenediaminetetraacetic acid 
(EDTA) to remove blood and then chopped into frag-
ments (<1  mm) using a sterile single-edge razor blade. 
The fragments were washed in PBS without EDTA and 
digested with collagenase type IV (0.5  mg/ml in PBS; 
Sigma-Aldrich, St. Louis, MO, USA) for 30–60  min at 
37°C with occasional mixing. A single cell suspension was 
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prepared by trituration with a 5  ml pipet. KCI-MENG1 
cells were cultured in DMEM/F12 supplemented with 2× 
non-essential amino acids, 10 µg/ml gentamicin (Sigma-
Aldrich) and fetal bovine serum (10% v/v; Life Technolo-
gies, Carlsbad, CA, USA), in a humidified atmosphere of 
5% CO2/air. Culture media was changed 2–3 times per 
week. Cell growth was monitored by inspection with an 
inverted microscope.

Growth kinetics
The doubling times of both low passage (P6 and P9) and 
high passage (P72) KCI-MENG1 cells were determined 
by counting cells at multiple time points after culture 
seeding. On Day 0, 1,000 viable cells/well were seeded in 
96-well plates and fed with the above culture medium. 
Cultured cells were harvested with Accumax (Innovative 
Cell Technologies, San Diego, CA, USA) and counted 
with a Beckman Coulter counter (Beckman Coulter, Inc., 
Indianapolis, IN, USA) at several time points (ranging 
from 18 to 96 h) after plating (n = 3 wells at each time 
point). The growth curves were plotted and doubling 
times calculated with GraphPad Prism v6.04 (GraphPad 
Software, Inc., La Jolla, CA, USA) using the exponen-
tial growth equation and one-way ANOVA with Tukey’s 
multiple comparisons test.

Immunohistochemistry of primary tumor and xenograft 
mouse tumor
The original tumor was processed for the usual mark-
ers used for clinical diagnosis of meningioma. Tissue 
sections (5  µm) were cut from the selected formalin-
fixed paraffin-embedded tumor block and mounted 
on charged slides and used for immunohistochemistry 
(IHC) analysis using specific antibodies for epithelial 
membrane antigen (EMA), progesterone receptor (PR), 
Ki-67, E-cadherin, N-cadherin, and vimentin. Standard 
IHC protocols using avidin–biotin complex were used 
as previously described [29, 30]. A standard protocol 
for diagnostic hematoxylin and eosin (H&E) staining 
was also performed. The IHC protocol was optimized 
for antigen retrieval and antibody dilution and incuba-
tion conditions. Briefly, after deparaffinizing and hydrat-
ing with PBS (pH 7.4), the sections were pretreated with 
hydrogen peroxide (3%) for 10  min to remove endog-
enous peroxidase activity, followed by antigen retrieval 
via steam bath for 20  min in EDTA. Primary antibody 
was applied, followed by washing and incubation with 
the biotinylated secondary antibody for 30 min at room 
temperature. After another set of washes, avidin-peroxi-
dase was added allowing for detection of antibody bind-
ing using the substrate diaminobenzidine. Sections were 
counterstained with Mayer hematoxylin, dehydrated, 
and mounted for microscopic examination.

The xenograft mouse tumor tissue sections underwent 
similar staining protocols except antigen retrieval was 
not performed, and sections stained with mouse-derived 
primary antibodies were stained with the Mouse-on-
Mouse™ Immunodetection Kit (Vector Labs, Burlingame, 
CA, USA) using the manufacturer’s protocol except that 
the secondary antibody solution was prepared with only 
1 µl of secondary antibody instead of 10 µl.

Immunocytochemistry of primary tumor cells 
and xenograft mouse tumor cells
KCI-MENG1 cells or KCI-MENG1-LPSX cells (disso-
ciated cells from second generation xenograft mouse 
tumor) were seeded onto Millicell® EZ slides (EMD 
Millipore, Billerica, MA, USA) and fixed with 4% para-
formaldehyde before proceeding with immunostain-
ing procedures using either the mouse or rabbit 
VECTASTAIN® Elite ABC kit (Vector Labs) following 
the manufacturer’s protocol. Primary antibodies used 
targeted the following proteins: EMA (cat.#247M-94), 
PR (cat.#323R-14), Ki-67 (cat.#275R-14), vimentin 
(cat.#347R-14; all from CellMarque, Rocklin, CA, USA), 
and N-cadherin (cat.#NBP1-48309, Novus Biologicals, 
Littleton, CO, USA). All primary antibodies were used 
at a 1:100 dilution. The peroxidase substrate used was 
Vector ImmPACT® DAB solution (cat.#SK-4105, Vec-
tor Labs) and sections were mounted with VectaMount™ 
(cat.#H-500, Vector Labs).

Telomerase activity
Telomerase activity was measured using the TRAPeze® 
RT Telomerase Detection Kit (EMD Millipore, Billerica, 
MA, USA) as described by the manufacturer. Protein 
concentrations of lysed cells samples were measured by 
the bicinchoninic acid protein assay using bovine serum 
albumin as a standard (Thermo Scientific, Wilmington, 
DE, USA). Real-time PCR was performed with a Ste-
pOnePlus™ Real-Time PCR System (Life Technologies, 
Grand Island, NY, USA). A standard curve was generated 
with DNA standards of known abundance. Controls for 
the DNA polymerase activity and a positive control cell 
line known to have high telomerase activity were also 
included. Only samples falling within the linear range of 
detection were included in the data analysis, and all sam-
ples were normalized to the amount of protein included 
in the reaction. All samples were assayed in triplicate. 
ANOVA with Tukey’s multiple comparisons test was 
performed.

Cytogenetic analysis
Cultured cells were used to prepare chromosomes for 
karyotyping per a previously described method [31]. 
Briefly, using aseptic techniques, cells were incubated 
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with 10 µg/ml colcemid in media at 37°C for 45 min. Cells 
were harvested and centrifuged. The supernatant was 
removed and resuspended cells were treated with pre-
warmed 0.075  M KCI, added slowly with agitation, and 
incubated at 37°C water bath for 12–20 min. Fixative was 
added to the tube which was mixed by gentle inversion 
and centrifuged. The supernatant was removed and the 
pellet resuspended and fresh fixative was slowly added to 
a total volume of 10 ml. The cell suspension was mixed 
and incubated at −20°C for 1 h. At the end of the incu-
bation period, 2–3 drops of cell suspension were placed 
on a microscope slide and allowed to dry at room tem-
perature. The quality of the cell preparation was checked 
under phase contrast microscopy before slides were ana-
lyzed for G-banding with Giemsa dye. At least 20 meta-
phases were analyzed for each cell passage sample. All 
chromosomal abnormalities are reported in accordance 
with the current international standard nomenclature 
[32].

Genomic analysis
DNA was extracted from a fresh-frozen piece of the origi-
nal tumor (23 mg wet weight) and from KCI-MENG1-LP 
(P6) and KCI-MENG1-HP (P86) cells using resin-based 
purification techniques. DNA samples were quantified 
by NanoDrop (Thermo Scientific). Array comparative 
genomic hybridizations (aCGH) were performed with 
Agilent SurePrint G3 ISCA CGH+SNP 180K microarrays 
(Agilent Technologies, Santa Clara, CA, USA) using a 
commercially-available, genetically-normal female DNA 
standard. DNA samples were labeled with the SureTag 
Labeling Kit (Agilent). Bioinformatics analysis was per-
formed using Agilent CytoGenomics Edition 2.5.8.1 with 
the significance threshold set at 10; log2 ratio cutoffs ≥0.3 
and ≤0.37 according to the laboratory validated repro-
ducibility measures. Data were further processed by fil-
tering against the Cancer Gene Census (Wellcome Trust 
Sanger Institute, Genome Research Limited, Hinxton, 
UK) [33] to identify genes with well-characterized roles 
in cancer.

Generation of mouse xenograft meningioma tumors
All animal experimental protocols were approved by 
the Wayne State University Institutional Animal Care 
and Use Committee. Low passage KCI-MENG1-LP 
cells were cultured as described above. When cultures 
reached confluence, P9 cells were harvested for injection 
into ICR SCID mice (spontaneous mutant T- and B cell 
deficient mice; Taconic, Hudson, NY, USA). Cells were 
washed and resuspended in PBS and injected subcuta-
neously into the mouse flank bilaterally (2 ×  107  cells/
injection). After ~4 weeks, the xenograft tumor reached 
an estimated mass of 1  g. Animals were sacrificed and 

the harvested tumor tissue was cut into ~30–40 mg frag-
ments and implanted bilaterally into naïve SCID mice. 
After ~6  weeks, these second generation tumors (KCI-
MENG1-LPSX) had each grown to an estimated mass of 
1.4–1.6 g. After sacrifice, a third generation of mice (M3; 
SCID/NCr (BALB/C background) from the NIH-Freder-
ick Cancer Research, Frederick, MD, USA) was implanted 
with tumor fragments, and the remaining tumor tissue 
was divided into pieces. The tumor pieces were: (1) flash-
frozen and stored at −80°C; (2) fixed with 4% paraformal-
dehyde or 10% formalin; and (3) dissociated into a single 
cell suspension using the gentleMACS Dissociator™ and 
Human Tumor Dissociation Kit (Miltenyi Biotech, San 
Diego, CA, USA) following the manufacturer’s protocols. 
These dissociated cells, termed KCI-MENG1-LPSX-CL, 
were cultured and analyzed as described above. In addi-
tion, we also performed subcutaneous injections with 
high passage (P72) KCI-MENG1-HP cells into the SCID/
NCr mice (3  ×  106 cells/injection with BD Matrigel™ 
Basement Membrane Matrix, BD Biosciences, San Jose, 
CA, USA) and completed the same procedures as above 
with the resulting tumor tissues and the resulting cell line 
termed KCI-MENG1-HPSX-CL.

For the orthotopic mouse model, stereotactic brain 
injections were performed with the Just For Mice™ 
Stereotaxic Instrument and the Nanomite Programma-
ble Syringe Pump (Harvard Apparatus, Holliston, MA, 
USA). The cranium was exposed and a burr hole was 
drilled 1 mm anterior of bregma and 1 mm lateral from 
midline using a #3 ball mill tip with the Micro-Drill Sys-
tem (Harvard Apparatus, Holliston, MA, USA). KCI-
MENG1-LPSX-CL cells were suspended in RPMI media 
(1 × 106 cells/10 µl). Either 5 or 10 µl of the cell suspen-
sion were injected 0.5  mm subdural. Post-operatively, 
mice were monitored for overall health 2–3 times per 
week. Magnetic resonance imaging (MRI) with gadolin-
ium contrast was performed 4 weeks post-injection. Mice 
were euthanized and brain and tumor tissues collected. 
IHC was performed as described above.

Figure  1 outlines the workflow for the generation of 
various cell lines and xenograft mouse models.

Results
Neuroimaging and histopathological findings of original 
tumor
High-resolution 3T MRI of the patient’s brain revealed 
a well-circumscribed avidly-enhancing extraaxial ante-
rior cranial fossa mass consistent with an olfactory 
groove meningioma (Figure  2a–f). The mass measured 
3.7 × 3.7 × 2.6 cm in size and was associated with sig-
nificant peritumoral vasogenic edema. The patient 
underwent a gross total resection of the tumor (Simpson 
grade I). Histopathological analysis of the firm tumor 
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was consistent with a WHO grade I typical meningioma 
composed of moderately cellular meningothelial cells 
with several whorls and occasional psammoma bod-
ies (Figure  2g). The tumor cells showed moderate and 
patchy immunoreactivity for EMA; strong and diffuse 
immunostaining for PR; and a Ki-67 proliferative index 
of 2–3%. Furthermore, mesenchymal markers were also 
detected. Strong staining for the cytoskeletal protein 
vimentin and moderate staining for the cell adhesion 
molecule N-cadherin were observed (Figure 3, top row), 
with absent staining for E-cadherin (Figure 4).

KCI‑MENG1 morphologic, growth, 
and immunocytochemical characteristics
KCI-MENG1-LP cells have two prominent cell morphol-
ogies, spindle and round, whereas the KCI-MENG1-HP 
are homogeneously round (Figure  3, middle and bot-
tom rows, Figure  5a–c; summarized in Table  1). At P6, 
the majority of cells are spindle-shaped, while at P9, the 
round cells are predominant with relatively few spin-
dle cells. This alteration in the relative abundance of the 
two cell morphologies as the cells were passaged was 
also reflected in the cell growth rates. The P6 cells have 
a linear and shallow growth curve that was maintained 

for 96 h after cultures were seeded. P9 and P75 cells both 
demonstrated biphasic growth curves, with the shift in 
slope becoming apparent after 72 h (Figure 5d).

To further characterize the KCI-MENG1-LP vs. KCI-
MENG1-HP cells, the telomerase activity was meas-
ured with a highly sensitive real-time PCR assay. As 
shown in Figure 5e, P5 cells had very little telomerase 
activity, whereas the telomerase activity in both P12 
and P90 cells was highly robust. Immunostaining of the 
low- and high passage cells (Figure 3, middle and bot-
tom rows) revealed that the in vitro cultured cells main-
tained expression of EMA, N-cadherin, and vimentin, 
and also were negative for E-cadherin (Figure 4) as was 
the original tumor (Figure 3, top row). Closer examina-
tion of the EMA panel for the low passage cells suggests 
that the positive EMA staining is found predominantly 
in the round cells and only weakly in the spindle cells, 
which is congruent with the moderate immunostain-
ing observed in the original tumor. PR expression in the 
cultured cells is dramatically reduced compared to the 
original tumor. The Ki-67 labeling, which is indicative 
of the cells’ proliferative activity, is found in a relatively 
small number of cells in the original tumor and in the 
low passage culture, however, the Ki-67 staining in the 

Figure 1 Flowchart describing the generation of in vitro and in vivo models from the KCI‑MENG1 patient tumor.
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high passage cells is very intense in virtually all the cells 
assayed.

Cytogenetic analysis
G-banded karyotyping can detect microscopic genomic 
abnormalities such as chromosomal inversions, dupli-
cations, deletions, balanced and unbalanced transloca-
tions, as well as more general aneuploidies [35]. In our 
study, G-banded karyotyping of 20 metaphases from 
KCI-MENG1-LP at P4 revealed an abnormal female 
karyotype in ten metaphases. The other ten metaphases 
were normal. The abnormal metaphases had two distinct 
unrelated clones. Clone 1, found in six metaphases, had 
a near triploid karyotype containing 64–66 chromo-
somes with numerous structural and numerical chromo-
somal aberrations as listed in the karyotype (Figure 6). In 
clone 2, four metaphases had t(2;13)(q37;q22) and t(4;7)
(q21;p13) [4] translocations. Chromosome analysis of 
KCI-MENG1-HP (P86) revealed that all 20 metaphases 
examined had the clone 1 near triploid karyotype con-
taining 64–66 chromosomes with numerous structural 
and numerical chromosomal aberrations as observed in 
P4 cells. Similarly, KCI-MENG1-LPSX-CL cells derived 
from the second generation mouse xenograft tumor also 
demonstrated this near-triploid clone 1 karyotype in 20 
out of 20 metaphases examined. Neither of these clones 
demonstrated a loss of part or all of chromosome 22.

Genomic analysis
To assess the submicroscopic genomic abnormalities, 
aCGH was performed on a fresh frozen piece of the origi-
nal KCI-MENG1 tumor specimen, KCI-MENG1-LP, and 
KCI-MENG1-HP cells. Data generated from the aCGH 
was filtered using the Sanger Cancer Gene Census (listed 
in Additional file 1: Table S1) to focus our attention on only 
those genes with a clearly established role in any cancer 
type. Using this filter, we found no amplified or lost genes 
from the original tumor specimen. Therefore, this tumor 
had no loss of the NF2 tumor suppressor gene. For both 
the low- and high passage cells, many gene amplifications 
were identified, though very few deletions. Genes found 
to be amplified at the level of 0.5 or higher in the KCI-
MENG1-LP cells are shown for both passages in Table 2, 
with the complete aCGH dataset available in Additional 
file 2: Table S2. Comparing the two cell passages, there is 
approximately a doubling of all the amplifications in the 
KCI-MENG1-HP cells. Likewise, the gene deletion shown 
at the bottom of Table 2 shows a more robust loss in the 
KCI-MENG1-HP cells. Moreover, in the high passage 
cells, many of the gene amplifications are congruent with 
long arm gains of chromosomes 1, 9, 12, 15, 17, and 20. 

Figure 2 Neuroimaging and histopathological findings of original 
KCI‑MENG1 tumor. MRI showed a well‑circumscribed (a) homo‑
geneously‑enhancing (b, e, f) 3.7 × 3.7 × 2.6 cm olfactory groove 
meningioma with significant peritumoral vasogenic edema (c, d). 
H&E staining revealed neoplastic proliferation of moderately cellular 
meningothelial cells with several whorls and occasional psammoma 
bodies (g) consistent with a WHO grade I benign meningioma. Scale 
bar 50 µm.
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Tumorigenicity in SCID mice: morphological, 
immunohistochemical, and cytogenetic analysis
ICR SCID mice, which are both T- and B-cell deficient, 
were used for this experiment. One of the mice implanted 
with the second generation KCI-MENG1-LPSX is shown 
in Figure  7a. After sacrifice, tumors were dissected and 
the tissue was processed and the derivative cell line KCI-
MENG1-LPSX-CL was generated (Figure  7c). In addi-
tion to H&E staining (Figure  7b), immunostaining for 
the usual meningioma diagnostic markers, as well as 

the mesenchymal markers, was performed on both the 
mouse tumor tissue and KCI-MENG1-LPSX-CL cells 
(Figure 7d). The H&E staining of the mouse tumor tissue 
revealed a pattern of moderately cellular meningothelial 
cells similar to the original tumor (Figure 2g). The EMA, 
PR, and N-cadherin IHC of the KCI-MENG1-LPSX 
tumor strongly resembled the original patient-derived 
KCI-MENG1 tumor. The vimentin- and Ki-67-stained 
cells in the mouse KCI-MENG1-LPSX tissue were mark-
edly more abundant and more intensely stained than in 

Figure 3 Immunostaining of original tumor, low passage, and high passage KCI‑MENG1 cells. The original patient‑derived tumor (top row) showed 
moderate and patchy immunoreactivity for epithelial membrane antigen (EMA); strong and diffuse immunostaining for progesterone receptor (PR); 
and a Ki‑67 proliferative index of 2–3%. There was also strong immunostaining for N‑cadherin and vimentin. KCI‑MENG1‑LP cells (middle row) and 
KCI‑MENG1‑HP cells (bottom row) maintained expression of EMA, N‑cadherin, and vimentin but had significantly reduced PR expression compared 
to the original tumor. Whereas Ki‑67 labeling was found in only a small number of cells in the original tumor and low passage cells, it was positive in 
virtually all P84 cells. Scale bar 50 µm.

Figure 4 Immunostaining of original patient tumor, low and high passage KCI‑MENG1 cells, and subcutaneous xenograft tumor. The original 
patient‑derived tumor showed moderate immunoreactivity for E‑cadherin which was maintained in all in vitro and in vivo models. Scale bar 50 µm.
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the original KCI-MENG1 tumor. KCI-MENG1-LPSX-
CL cells displayed the same patterns of immunostaining 
as the KCI-MENG1-HP cells, including the loss of PR 
staining. Likewise, the KCI-MENG1-LPSX-CL cells had 
the same aberrant karyotype and at the same frequency 
as the KCI-MENG1-HP cells (shown in Figure 6). Simi-
larly, additional mice were implanted subcutaneously 
with 3 × 106 KCI-MENG1-HP cells. These mice reached 
an estimated tumor burden of 1.6 g and required sacrifice 
26  days post-implantation. In Figure  8, immunostaining 
of tumor tissue KCI-MENG1-HPSX and cells isolated 
from these tumors (KCI-MENG1-HPSX-CL) appeared 
equivalent to the staining of the low passage tumor tis-
sue and cells shown in Figure 7 with the exception of an 
apparent loss of PR in the high passage KCI-MENG1-
HPSX tumor.

Similarly, subdural implantation of KCI-
MENG1-LPSX-CL cells generated gadolinium-enhanc-
ing tumors (KCI-MENG1-LPOX), with a likely necrotic 
core. These orthotopic tumors were strongly positive for 
PR, vimentin, and Ki-67. In the adjacent brain, cells with 

this phenotype are found intermingled within the brain 
parenchyma (see Figure 9).

Discussion
Improved survival and reduced recurrence are expected 
following complete excision of the intracranial meningi-
omas [36, 37]. However, up to 5% of benign meningiomas 
[38] and 17–40% of atypical meningiomas recur at 5 years 
following complete resection [38, 39]. Not surprisingly, 
partial resection is associated with a significantly higher 
risk of tumor recurrence (87% for atypical meningi-
oma) [37, 39]. Generally, 5-year survival rate is 95 and 
61% after total and partial removal of the tumor, respec-
tively [36, 37, 39]. Furthermore, up to 29% of recurrent 
benign meningiomas [26, 40] were reported to progress 
into more aggressive higher grades. The currently avail-
able treatment options following partial resection or 
recurrence of the tumor are surgery and radiotherapy 
[41–43]. To date, there are limited effective chemothera-
peutic options for the treatment of refractory or recur-
rent benign or high-grade meningiomas [4, 5].

Figure 5 Morphology, growth characteristics, and telomerase activity of primary cell cultures. In P6 KCI‑MENG1‑LP cells, the spindle‑shaped cells 
account for the majority the cell population (a). In contrast, the round cells become more predominant at P9 with much fewer spindle cells (b). At 
higher passages (c), KCI‑MENG1‑HP cultures are composed of exclusively round‑shaped cells. This was also reflected in the growth curves of the 
low‑ vs. high passage cells (d). The P6 cells have a linear and shallow growth curve that was maintained for 96 h after cultures were seeded. P9 and 
P75 cells both demonstrated biphasic growth curves, with the shift in slope becoming apparent after 72 h (ANOVA p < 0.001). Likewise, the telom‑
erase activity in P5 cells was very low, whereas it was very high in both P12 and P90 cells (ANOVA p < 0.0001) (e). Scale bar 50 µm.
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One obstacle in the development of novel therapeu-
tic agents for meningioma treatments is a relative lack 
of suitable in vitro and in vivo model systems. Most cell 
lines originate from malignant meningiomas [6–9] or 
from benign [10–12] or atypical [13] meningiomas that 
have been genetically modified for immortalization (see 
Table  1). In this manuscript, we have described KCI-
MENG1, a native, apparently immortal cell line derived 
from a WHO grade I meningioma, and is the only such 
immortal cell line we have identified out of 58 primary 

cultures of benign meningiomas collected. KCI-MENG1-
LP is a heterogeneous cell population comprised of 
two cellular morphologies, while at high passage (KCI-
MENG1-HP), only one of the two cell types remains 
(likely due to selection during the culturing process). All 
cell lines derived from KCI-MENG1 retained the expres-
sion of the meningioma diagnostic markers EMA and 
vimentin, which were weakly and strongly stained in 
the patient tumor specimen, respectively. EMA expres-
sion varied between the two cell types (very strong in the 

Figure 6 G‑banded karyotype from KCI‑MENG1‑LP cell line showing numerous structural and numerical chromosomal aberrations. This near 
triploid karyotype was identified in 6 out of 20 metaphases examined at KCI‑MENG1‑LP cells. The identical karyotype was identified in 20 out of 20 
metaphases examined in KCI‑MENG1‑HP cells.

Table 2 Array comparative genomic hybridization (aCGH) data in low- and high-passage KCI-MENG1 cells

Chromosome CytoBand GeneID Gene name Amplification P6 Deletion P6 Amplification P86 Deletion P86

chr5 p15.33 ‑ p11 IL7R Interleukin 7 receptor 1.213931 2.050158

chr5 p15.33 ‑ p11 LIFR Leukemia inhibitory factor receptor 
alpha

1.213931 2.050158

chr11 q21 ‑ q22.2 BIRC3 Baculoviral IAP repeat containing 3 0.899188 1.654617

chr11 q14.3 ‑ q22.2 BIRC3 Baculoviral IAP repeat containing 3 0.709864 1.472601

chr11 q14.3 ‑ q22.2 MAML2 Mastermind‑like 2 (Drosophila) 0.709864 1.472601

chr11 q14.1 ‑ q14.2 PICALM Phosphatidylinositol binding clath‑
rin assembly protein

0.709864 1.233367

chr3 q26.1 ‑ q26.2 MECOM MDS1 and EVI1 complex locus 0.702415 1.47986

chr11 p11.2 ‑ p11.12 DDB2 Damage‑specific DNA binding 
protein 2, 48 kDa

0.675591 1.367689

chr10 q11.21 ‑ q22.2 KAT6B K(lysine) acetyltransferase 6B 0.499694 1.213813

chr10 q11.21 ‑ q22.2 NCOA4 Nuclear receptor coactivator 4 0.499694 1.213813

chr10 q11.21 ‑ q22.2 PRF1 Perforin 1 (pore forming protein) 0.499694 1.213813

chr10 q11.21 ‑ q22.2 TET1 Tet methylcytosine dioxygenase 1 0.499694 1.213813

chr19 p13.3 STK11 Serine/threonine kinase 11 −1.376387 −3.097343
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round cells, weak in the spindle cells) but both cell types 
were strongly stained for vimentin. The smaller, round 
cell phenotype has stronger Ki-67 staining, and main-
tains the expression of EMA and vimentin through a high 
number of passages. The difference in the growth kinet-
ics of the cells at low vs. high passages and the marked 

increase of telomerase activity seem to be congruent with 
the shift in population density reflecting the loss of the 
spindle-shaped cells. Furthermore, the higher proportion 
of cells with the aberrant karyotype and higher magni-
tude of amplification of cancer-related genes identified 
by aCGH, particularly in chromosomes 1, 9, 12, 15, 17, 

Figure 7 Human meningioma mouse xenograft model KCI‑MENG1‑LPSX generated with the spontaneously immortal cell line KCI‑MENG1‑LP. 
Tumors from immunocompromised SCID mice were dissected (a) and the derivative cell line KCI‑MENG1‑LPSX CL was generated. The H&E staining 
of the mouse tumor revealed a pattern of moderately cellular meningothelial cells similar to the original patient tumor (b). The KCI‑MENG1‑LPSX CL 
cells were composed of the round‑shaped cells similar to the high passage parent cell line KCI‑MENG1‑HP (c). The EMA, PR, and N‑cadherin IHC of 
the mouse tumor highly resembled the original patient‑derived tumor (d top row). The vimentin‑ and Ki‑67‑stained cells in the mouse tumor tissue 
were markedly more abundant and more intensely stained than in the original tumor (d top row). KCI‑MENG1‑LPSX CL cells displayed the same pat‑
terns of immunostaining as the high passage parent cell line KCI‑MENG1‑HP, including the loss of PR staining (d bottom row). Scale bar 50 µm.

Figure 8 KCI‑MENG1‑HPSX high passage mouse tumor and cell line (KCI‑MENG1‑HPSX CL). IHC revealed a similar staining pattern as compared to 
the KCI‑MENG1‑LPSX tumor and KCI‑MENG1‑LPSX cell line, with the exception of loss of PR in the HPSX tumor. Scale bar 50 µm.
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and 20 which are known chromosomal gains in atypical 
and malignant meningioma [25], suggest that, although 
initially a minor subclone in the original meningioma 
tumor, the round cells with the high proliferative activ-
ity (KCI-MENG1-HP) are likely to be the tumorigenic 
cells responsible for the tumor development and growth 
in the patient. This is also supported by our development 
of subcutaneous tumors from both KCI-MENG1-LP and 
KCI-MENG1-HP cells in immunocompromised mice, 
and the high proliferative activity of the tumors gener-
ated from subdural implantation. Previous studies of 
xenografts generated from the malignant meningioma 
cell lines IOMM-Lee and CH-157, and patient-derived 
cells demonstrated that meningioma cells with a complex 
karyotype, such as our KCI-MENG1-HP, more consist-
ently generated tumors after subcutaneous implantation 
than those with a simple karyotype [44]. This likely mani-
fested as an in vivo clonal selection and accounts for our 
finding that the KCI-MENG1-LPSX-CL cells isolated 
from the low passage subcutaneous tumor were a homo-
geneous population that resembled the KCI-MENG1-HP 
cells. Interestingly, absence of PR immunostaining in the 
more aggressive high passages cells is in keeping with the 
known association of loss of PR expression, cumulative 
karyotype abnormalities, and aggressive clinical behavior 
of progressive or recurrent meningiomas [45].

In addition to vimentin, we found expression of N-cad-
herin in both round and spindle-shaped cell types of the 
low passage cells, both of which are considered markers 
of mesenchymal phenotype associated with the invasive 

properties of some cancer types [46]. N-cadherin expres-
sion was previously described in a subset of WHO grade 
I meningiomas [47] and co-expression of vimentin and 
N-cadherin was also found in drug-resistant lung cancer 
[48] and pancreatic carcinoma [49]. Diminished E-cad-
herin expression is commonly found in all grades of men-
ingioma [50], and in our study, the original patient tumor, 
mouse xenograft tumors, and all cell lines were negative 
for E-cadherin immunostaining (see Figure 4) despite the 
genomic amplification of the CDH1 gene (which encodes 
E-cadherin) identified in the cells (see Additional file  2: 
Table  S2), implying that the mesenchymal phenotype 
predominates.

The property that cells from all cancer types have in 
common is the ability to propagate indefinitely. Can-
cer cells typically achieve this by expressing telomer-
ase, which is absent in senescent, differentiated cells 
[51]. The telomerase activity and resulting telomere 
dysfunction contributes to genomic instability [52] 
and can lead to the generation of polyploid cells and 
enhance the tumorigenicity of those cells [28], which 
corresponds to our findings of the robust telomerase 
activity and near-triploid karyotype of the round phe-
notype KCI-MENG1-HP cells. In meningiomas, telom-
erase activity tends to correlate with WHO grade and 
is observed in up to 95% in anaplastic meningiomas 
[14, 53–55], though rarely found in benign meningi-
omas [15]. Telomerase inhibitors are currently under 
development, but not for meningiomas or other brain 
tumors [51].

Figure 9 Orthotopic mouse model of human meningioma generated by subdural implantation of KCI‑MENG1‑LPSX CL cells. Subdural implanta‑
tion of cells was performed and tumors were observed with gadolinium‑contrast on MRI (a 0.5 × 106 cells implanted; b 1.0 × 106 cells implanted). 
Harvested KCI‑MENG1‑LPOX tumor tissue strongly stained for PR (c), vimentin (d), and Ki‑67 (e). Tumor cells expressing PR (f), vimentin (g), and Ki‑67 
(h) are found intermingled in the adjacent brain tissue. Scale bar 50 µm.
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Collectively, despite KCI-MENG1 cells originating from a 
WHO grade I meningioma, our data suggest that these cells 
have a genomic complexity and a biological profile that is 
consistent with recurrent and/or high-grade meningiomas. 
In a cytogenetic study of recurrent, progressive meningi-
oma, Al-Mefty et al. described similar findings [26]. When 
they assayed meningioma specimens from the initial low-
grade tumors from patients that later developed high-grade 
tumors, they found cells with the aberrant high-grade kar-
yotype in the benign tumors. In a similar line of research, 
cytogenetic heterogeneity was identified in 33.4% of men-
ingiomas, and it was found that tumor progression and 
recurrence was predicted by the most advanced clone even 
if present in lesser abundance [56]. Although the patient 
from which KCI-MENG1 cells are derived currently has 
no clinical or radiographic evidence of tumor recurrence 
4 years following surgery, the isolation of the near-triploid 
cells, including a gain of chromosome 1q (known to corre-
late with shorter progression-free survival in atypical men-
ingioma [27] ), and with high telomerase activity (usually 
associated with high-grade meningioma [53–55] and dem-
onstrated in meningiomas undergoing malignant progres-
sion [57]) is worrisome and suggestive that this patient could 
be at high risk to have a progressive recurrence. This patient 
population is one we hope to serve with translational stud-
ies of meningioma tumor biology and disease progression 
utilizing our KCI-MENG1 in vitro and in vivo models, and 
as such will facilitate further development of novel therapies 
to improve treatment options for all grades of meningiomas.

Conclusions
Although derived from a typically good prognosis benign 
meningioma specimen, the newly-established spontane-
ously immortal KCI-MENG1 meningioma cell line can 
be utilized to generate xenograft tumor models with low- 
or high-grade features, dependent on the cell passage 
number (likely due to the relative abundance of the near-
triploid, likely poor prognosis, cells that were present as 
a small proportion in the original tumor). These human 
meningioma mouse xenograft models will provide bio-
logically relevant platforms from which to investigate 
differences in low- vs. high-grade meningioma tumor 
biology and disease progression as well as to develop 
novel therapies to improve treatment options for poor 
prognosis or recurrent meningiomas.

Additional files

Additional file 1: Table S1. Cancer Gene List used for aCGH data 
filtering.

Additional file 2: Table S2. aCGH data of Low‑ and High‑Passage KCI‑
MENG1 Cells.
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