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Abstract

Liver metastasis is a frequent occurrence in patients with breast cancer; however, the available treatments are
limited and ineffective. While liver-specific homing of breast cancer cells is an important feature of metastasis, the
formation of liver metastases is not random. Indeed, breast cancer cell factors contribute to the liver microenvironment.
Major breakthroughs have been achieved recently in understanding breast cancer liver metastasis (BCLM). The process
of liver metastasis consists of multiple steps and involves various factors from breast cancer cells and the liver
microenvironment. A further understanding of the roles of breast cancer cells and the liver microenvironment is crucial
to guide future work in clinical treatments. In this review we discuss the contribution of breast cancer cells and the liver
microenvironment to liver metastasis, with the aim to improve therapeutic efficacy for patients with BCLM.
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Introduction
Breast cancer is the leading cause of cancer-related
deaths in female patients worldwide [1]. Breast cancer
has been divided into at least five subtypes, as follows:
luminal A, luminal B, human epithelial growth receptor
type 2 (HER-2), basal-like, and claudin-low [2]. It has
been reported that the 5-year survival rate for primary
breast cancer is 99%. Nevertheless, approximately one-third
of breast cancer patients will present with distant non-
nodal metastases, and the 5-year survival rate decreases to
23% once distant metastases have developed [3]. Breast
cancer mainly metastasizes to the bony skeleton, lungs,
liver, and brain via the circulation; the liver is a common
metastatic site for solid cancers and represents the third
most common site for breast cancer [4]. If breast cancer
liver metastasis (BCLM) is left untreated, the survival time
is only 4–8 months [5]. Current treatments for BCLM
are based on a strategy of systemic chemotherapy,
endocrine- or HER2-targeted therapy (depending on
estrogen receptor [ER], progesterone receptor [PR], and
HER-2 status), and palliative therapy, such as radiation
[6,7]. Nevertheless, it is important to note that some
patients exhibit de novo resistance or eventually become
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resistant to endocrine therapy [8]. Moreover, a poor
response to chemotherapy accounts for much of the high
mortality in patients with BCLM [9].
The formation and growth of breast cancer cells in the

liver is a complex process. The most widely accepted
model for metastasis is the “seed and soil” hypothesis,
which was postulated by Stephen Paget in 1889 [10].
Paget speculated that organ metastases form merely
when the seed (disseminated tumor cells) and soil
(secondary organ) are compatible [10,11]. Semenza
separated the process of blood vessel metastasis of
breast cancer into the following steps: intravasation,
circulation, margination, extravasation, and colonization
[12]. The molecular mechanisms underlying breast
cancer metastasis have been reported for breast cancer
dissemination to the lungs and bone [13-20]; however, the
molecular mechanisms for liver metastasis have not
been completely described [21]. Moreover, the hepatic
microenvironment and liver sinusoidal structure is crucial
for the initial arrest of breast cancer and progression within
the liver. Thus, exploring the mechanisms underlying liver
metastasis in breast cancer patients is essential for
developing more effective therapies. A further understand-
ing of the roles of breast cancer cells and the liver
microenvironment in early breast cancer metastasis is
crucial for the development of effective BCLM therapies
[10,22]. Therefore, this review will discuss the molecular
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mechanisms underlying liver metastasis of breast cancer
to guide future work in clinical treatments.

Factors associated with breast cancer cell
metastasis to the liver
Inflammatory factors
Several studies have shown that the inflammatory
response correlates with the liver metastatic potential of
some tumors [23,24]. The inflammatory factor, TNF-α,
can trigger the expression of E-selectin in endothelial
cells, including liver sinusoidal endothelium cells [25,26].
It has been reported that breast cancer cells have the ability
to initiate an inflammatory cascade, which increases adhe-
siveness to liver sinusoidal endothelium cells, similar to
that induced by colorectal and lung cancers [27]. Although
the process of tumor cell attachment to the endothelium
during metastasis is multifactorial, the production of
TNF-α-induced endothelial E-selectin in tumor cells
appears to be a key step in the BCLM process [28].
Asgeirsson et al. [29] reported that induction of IL-6
decreased cell adhesion in three breast cancer cell lines,
and was associated with reduced E-cadherin expression.
Moreover, patients with breast cancer liver metastases had
significantly higher IL-6 levels. Therefore, it appears that
breast cancer cells create a pro-inflammatory microenvir-
onment which triggers adhesion and invasion of tumor
cells into the liver by secreting a number of cytokines.

Chemokines and chemokine receptors
Breast cancer cells express several chemokine receptors
that initiate liver metastasis, of which C-X-C Chemokine
Receptor type 4 (CXCR4) is the most common. Moreover,
the ligand of CXCR4, stromal-derived factor 1-α (SDF-1,
CXCL12), is also highly expressed in the liver [30],
indicating that the CXCL12/CXCR4 interaction might
contribute to BCLM. It has also been reported that
CXCR4 plays an important role in modulating breast-
to-liver metastasis through integrin–adhesion-receptor
signaling [31]. The availability of chemokine receptors on
tumor cell surfaces, the presence of specific ligands within
the microenvironment of potential target organs, and the
suitability of the extracellular matrix (ECM) composition
appear to be required for successful extravasation of
breast cancer cells in the early metastatic process [32].
Furthermore, expression of CXCR4 increases the risk
of metastasis to the liver in patients with axillary
node-positive primary breast cancer [33]. In tumor-bearing
mice, CC chemokine ligand 2 (CCL2) neutralizing anti-
bodies inhibit the growth and liver metastases of primary
breast cancer by reducing cell proliferation, survival, and
tumor-associated macrophage (TAM) recruitment. These
results have also revealed that CCL2 can enhance primary
breast cancer liver metastasis in a TAM-dependent manner
[34]. Stormes et al. [35] strongly support the notion that
inhibition of tumor-derived CCL5 can inhibit the capability
of liver metastasis in breast cancer cells. Similar analyses
have shown that the release of CCL5 by cells of the tumor
microenvironment promotes the metastatic spread to the
liver of breast cancer cells [36]. Moreover, Mi et al. [37]
have demonstrated that induced mesenchymal stromal cells
(MSCs) produce CCL5, and significantly promote breast
cancer cell migration to the liver in vivo and in vitro. There-
fore, some chemokine receptors can enhance breast cancer
metastasis to the liver. Porter et al. [38] reported, however,
that many chemokines are lost in breast cancer, including
CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CXCL20,
CX3CL1, CCL2, and CCL7. Whether or not some of these
chemokines are involved in BCLM warrants further study.
Taken together, chemokines and their receptors are the
regulators involved in the process of BCLM.

Cell adhesion molecules
Cadherins
E-cadherin expression in liver metastatic sites is due
to loss of promoter methylation. Breast cancer cells
that re-express E-cadherin revert back to an epithelial
phenotype [39-42]. In primary cancer, the epithelial-to-
mesenchymal transition (EMT) of cancer cells contributes
to increased invasion and dissemination [43]. Once cancer
cells have seeded the metastatic site, a mesenchymal-to-
epithelial transition (MET) occurs, leading to the
colonization and growth of metastatic foci [44]. Expres-
sion of the cell adhesion molecule, E-cadherin, in breast
cancer cells can facilitate breast cancer cell adhesion to
hepatocytes for seeding in the liver [9,43]. Moreover, some
results have shown that breast cancer cells that express
E-cadherin are able to form liver metastases, while E-
cadherin-negative cancer cells merely form primary
tumors [45,46]. Intriguingly, Chao et al. [9] showed that
the liver microenvironment can induce breast cancer cells
to re-express E-cadherin and cause MET. This phenotypic
change has the potential to alter cell behavior, and thus
may be a critical step for cells to survive at metastatic sites
within the liver. Take together, these results suggest that
re-expression of E-cadherin, accompanied by a partial
MET in the liver, increases post-extravasation survival of
metastatic cancer cells and may help to elucidate why
chemotherapy commonly fails to treat BCLM.
Previous studies have shown that N-cadherin is up-

regulated in more invasive and less differentiated breast
cancer cell lines that lack E-cadherin expression [47,48].
The study by Hazan et al. [49] showed that breast cancer
expressing N-cadherin grew slower, on average, and the
two clones with the highest levels of N-cadherin formed
liver metastases in almost all mice injected with breast
cancer cells. In addition, N-cadherin activates a metastatic
signaling pathway coordinated by fibroblast growth factor
receptor (FGFR) and matrix metalloproteinase-9 (MMP-9)
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to overcome the suppressive effects regulated by E-cadherin.
Thus, these studies provide a basis for N-cadherin-mediated
liver metastasis of breast cancer, whereas E-cadherin
suppresses liver metastases, and offer new insights into
the diagnostic or therapeutic applications for BCLM.
Integrin complexes
Heterodimeric transmembrane receptors of the integrins
family are important components of the ECM. Eighteen
α-subunits and 8 β-subunits have been characterized
and form 24 different integrins [50], including laminin
(LN), collagen (Col), fibrinogen, and vitronectin (VN)
[51]. Each integrin heterodimer binds to a specific ligand
within the ECM. By using bidirectional “outside-in” and
“inside-out” signaling, integrin complexes regulate multiple
biological processes, such as adhesion, apoptosis, prolifera-
tion, differentiation, migration, invasion, and metastasis
[52]. It has been reported that use of an antagonist of α2β1
complexes can reduce the extravasation of colorectal
and hepatocellular carcinoma cell lines into the liver
and micrometastic sites [53]. Moreover, the functional
integrin complexes (fibronectin and collagen IV receptors)
are recruited, assembled, and thus increased on the cell
surface in liver metastatic breast cancer cells. Neutralizing
antibody targeting α5β1 or α2β1 complexes can block
claudin-2-mediated adhesion to fibronectin and type IV
collagen, and reduce the ability of breast cancer cells to
metastasize to the liver [54]. Therefore, α2β1 or α5β1
complexes can promote the ability of breast cancer
cells to metastasize to the liver, at least partially, via the
claudin-2 signaling pathway.
Ig-SF
Epithelial cell adhesion molecule (EpCAM/CD326), also
a transmembrane protein, plays a variety of roles in cell
proliferation, adhesion, migration, and tissue maintenance
[55,56]. EpCAM is expressed at low levels in luminal
epithelial cells of benign breast tissues. Nevertheless,
EpCAM is overexpressed in many carcinomas, including
breast cancer; a recent study suggested that p53 dysfunc-
tion may serve to explain this phenomenon [57]. In
patients with node-positive primary breast cancer, elevated
EpCAM expression correlates with diminished overall
survival [58,59], suggesting that overexpression of EpCAM
promotes cancer progression and metastasis. Litvinov et al.
[60,61] also found that EpCAM can act as an antagonist
impairing E-cadherin function via disruption of the
α-catenin/F-actin link, and loosening tight cell-cell
adhesions. In addition, EpCAM is highly expressed in
MBCs, including the sites of liver metastases, compared
to unmatched, surgically resected primary breast cancers
[61]. Therefore, EpCAM might serve as a promising
therapeutic target for BCLM.
CD44
It has been reported that cancer stem cells (CSCs)
within tumors have cancer-initiating potential and
metastatic capability [62]. High levels of CD44 expressed
by CSCs are believed to be involved in adhesion, invasion,
apoptosis resistance, and metastasis [63-65]. Moreover,
breast cancer cells expressing high levels of CD44 and low
levels of CD24 maintain stemness properties [62,66]. Erin
et al. [67] found that CD44 expression was highest in cells
that metastasized to the liver, and liver tropism of
breast cancer is driven by CSCs. In addition, it has
been demonstrated that serum CD44 v5 and v6 are
released by breast cancer cells and increased CD44 v6
serum levels are preferentially detected in patients
with liver metastases [68,69]. Furthermore, Ouhtit
et al. [70] showed that CD44 promotes breast tumor
invasion and metastasis to the liver. Together, high
levels of CD44 expressed by CSCs and breast cancer
cells are significantly correlated with BCLM.
Based on the above results, it appears that cell adhesion

molecules play important roles in BCLM (Table 1);
however, studies involving cell adhesion molecules
that effect BCLM is still limited, and uncovering the
mechanisms would provide novel therapeutic approaches
in drug design and cancer therapy.

Role of claudins
In normal epithelia, claudins are key transmembrane
proteins within the tight junction complex that participate
in homo- and hetero-typic interactions between adjacent
cells [71]. The roles of claudin proteins in breast cancer
progression are complicated, and claudin-2 expression is
down-regulated compared with normal tissues. Moreover,
decreased levels of claudin-2 are observed in high-grade
breast cancer, suggesting that claudin-2 plays a suppres-
sive role in breast cancer [72]. Moreover, Kimbung et al.
[73] reported that claudin-2 is a prognostic biomarker that
not only predicts the likelihood of a breast cancer recur-
rence, but more interestingly, the metastatic potential of
breast cancer to the liver. Furthermore, Tabariès et al.
[54,74] demonstrated that elevated levels of claudin-2
expression, or selection for pre-existing claudin-2-positive
breast cancer cells within liver metastases may serve to
enhance the survival of breast cancer cells by promoting
interactions between the tumor cell and resident hepato-
cytes. Claudin-2 mediates breast cancer metastasis to the
liver, at least partially, by enhancing adhesion to ECM
proteins, such as fibronectin and type IV collagen, which
are abundant in the liver. Immunohistochemical analyses
have shown that claudin-2 is detected in all liver metastases
and weakly expressed in primary human breast cancers.
Take together, these results revealed novel roles of
claudin-2 in promoting breast cancer adhesion to the
ECM and breast cancer metastasis to the liver.



Table 1 Cell adhesion molecules (CAMs) involved in breast cancer liver metastasis

CAM family Expression in primary cancer Role Expression in BCLM Role

Cadherins

E-cadherin ↓Breast cancer cells Adhesion, invasion, EMT ↑Breast cancer cells [9,43,45,46] MET

N-cadherin ↑Breast cancer cells, Angiogenesis, EMT ↑Breast cancer cells [49] MET

↑Endothelium cells

Integrin complexes

α2β1 ↓Breast cancer cells, Adhesion, migration,
invasion, angiogenesis

↑Breast cancer cells [54] liver metastasis,
tumor angiogenesis

↑Endothelium cells

α5β1 ↑Breast cancer cells, Adhesion, migration, invasion ↑Breast cancer cells [54] liver metastasis,
tumor angiogenesis

↑Endothelium cells

Ig-SF

EpCAM ↑Breast cancer cells Migration, invasion ↑Breast cancer cells [61] liver metastasis

CD44 ↓Breast cancer cells (CD44s); adhesion, invasion ↑Breast cancer cells [67,68] Liver metastasis

↑Breast cancer cells (CD44v3,
CD44v4, CD44v5, CD44v6)

Note: ↑, up-regulation; ↓, down-regulation; EMT, epithelial to mesenchymal transition; MET, mesenchymal to epithelial reverting transition.
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The up-regulation of claudin-3 and −4 is correlated
with poor prognosis and the breast cancer basal-like
subtype [75-77]. A recent study demonstrated that the
loss of claudin-4 and −7 promoted liver metastasis of
breast cancer cells in Balb-c mice [78]. We speculate
that the discrepant roles of claudin-4 with poor prognosis
in different studies might be due to different subtypes or
species. Intriguingly, a ‘claudin-low’ subtype of breast
cancer has recently been identified in primary human
breast cancers. This subtype possesses features similar to,
but distinct from the breast cancer basal subtype defined
previously [79]; the breast cancer claudin-low and basal
subtypes are functionally coupled by EMT characteristics,
enhanced cancer stem cell–like features, and resistance to
chemotherapy [80-84]. Nevertheless, the patterns of
expression of claudins in the claudin-low subtype of breast
cancer have not been described.
In summary, the above findings imply that claudin-2, −4,

and −7 are all necessary and sufficient for the ability of
breast cancer cells to colonize and grow in the liver.
It is important to delineate the mechanism underlying
preferential metastasis of breast cancer to the liver.

Breast cancer subtypes
It has been reported that five major subtypes of breast
cancer have different abilities to metastasize to distant
organs, and share pathways with the preferred metastatic
sites. Patients with bone relapses have the luminal
subtypes of breast cancer most frequently. The HER-2
subtype may metastasize to bone via processes that
differ from the luminal subtypes. Moreover, the basal
subtype often metastasizes to the brain and lungs.
However, it fails to reach statistical significance in patients
with liver relapse [85]. Rodriguez-Pinilla et al. [86] reported
that the basal-like subtype metastasizes more frequently to
the lungs and other visceral organs, such as the brain and
liver, but no bone metastases were detected. Moreover,
recent studies [87-89] in patients from eastern Europe,
Asia, and the US have suggested a high incidence of brain
metastases arising from basal-like tumors (ER-/PR-/HER2-,
and usually identified as “triple-negative” breast cancer
[TNBC]) [90], but it has been reported that p53-negative
TNBC has an increased tendency to develop lung metasta-
ses [91]. Furthermore, Duan et al. [92] showed that the
breast cancer subtype is an independent prognostic
predictor for patients with breast cancer metastases to the
liver. Survival after liver metastases arising from TNBC is
21 months compared to 30, 32, and 41 months for patients
with the HER-2, luminal B, and luminal A subtypes; liver
metastases from TNBC has the worst prognosis. Therefore,
novel agents controlling liver metastases in patients with
TNBC are needed. Taken together, different subtypes of
breast cancer have preferred metastatic organs; however,
no conclusive evidence exists to mechanistically link any
specific subtype to BCLM development.

Factors associated with the liver
microenvironment
Hypoxia-inducible factor-regulated genes
Hypoxia-inducible factors (HIFs) activate the transcrip-
tion of target genes that are involved in many aspects
of breast cancer progression, such as angiogenesis,
metabolic reprogramming, local tissue invasion, and
metastasis [12,93]. It has been reported that HIFs not
only activate lysyl oxidase (LOX) directly to inhibit
liver metastases, but osteopontin (OPN), vascular
endothelial growth factor (VEGF), and TWIST promote
BCLM (Table 2). It has been suggested that some of the



Table 2 Hypoxia-inducible factor (HIF)-regulated genes in
breast cancer liver metastasis

Gene HIF regulation Role in BCLM

LOX [94] HIF-1 and HIF-2 Inhibition

OPN [37,69] HIF-1 (HIF-2 not tested) Promotion

Twist [95,116] HIF-1 (HIF-2 not tested) Promotion

VEGF [95] HIF-1 and HIF-2 Promotion
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hypoxia-inducible factor-regulated genes contribute to
BCLM [37,69,94,95].

LOX
LOX is an amine oxidase that contributes to the forma-
tion of the ECM. LOX is secreted by fibrinogenic cells
and residues in collagen and elastin to maintain the
structural stabilization of the ECM [96]. Of note, LOX
expression has paradoxical roles in tumor suppression
and tumor progression, depending on cellular location,
type, and transformation status [96-101]. Erler et al. [94]
proposed that hypoxia-induced LOX has a key function
in the metastasis of breast cancer cells. Although no
marked inhibition effects of LOX on primary breast
cancer growth was observed, Erler et al. [94] found
significant effects on growth in metastatic sites within
the liver. These data indicate that the effects of LOX on
cell adhesion, migration, invasion, and three-dimensional
growth are more crucial for liver metastatic growth
than primary breast cancers. This study may provide
mechanistic evidence for hypoxia-driven liver metastases
and support the therapeutic target of LOX in the preven-
tion and treatment of BCLM.

OPN
HIF-induced OPN is a secreted phosphoprotein func-
tioning as a cell attachment protein by binding two cell
adhesion molecules (αvβ3 integrin and CD44) [102-104].
It has been reported that OPN is overexpressed in
tumors and elevated serum OPN levels are associated
with advanced metastatic cancer [105-108]. Gain- and
loss-of-function assays have demonstrated the critical
role for OPN in tumor metastases of colon, liver, and
breast cancers [69]. Mi et al. [37] revealed that MSCs
extracted from metastatic sites exhibit significantly
increased expression of cancer-associated fibroblast
(CAF) markers, such as α-smooth muscle actin (α-SMA),
tenascin-c, CXCL12, and fibroblast-specific protein (FSP)-1.
OPN expression promotes tumor growth and metastasis by
activating the expression of CCL5, MMPs, and CAF in
MSCs. Thus, the transformation of MSCs to CAF can be
mediated by OPN in the tumor microenvironment. In
addition, the current study showed that the expression of
CAF markers was also significantly increased in the liver
metastases sites. These findings suggest a novel mechanism
by which OPN affects BCLM by transforming MSCs
into a CAF.

VEGF and TWIST
Cancer cells express a number of angiogenic factors.
VEGFs are the key mediator of neovascularization in
tumors [109]. Inhibition of VEGF-A/VEGFR-2 and
VEGF-C/VEGFR-3 signals has been shown to suppress
breast cancer progression and lung metastases [110].
Chien et al. [111] found that inhibition of VEGFR/FGFR
kinases drastically reduce the formation of liver metastases
and decreased primary breast cancer growth. TWIST is a
basic helix-loop-helix transcription factor. TWIST
mainly regulates gastrulation and mesoderm specification
[112,113]. Recently, TWIST has been shown to play an
important role in mediating cancer metastasis [114,115].
TWIST is a downstream target of HIF-1 and has an
important role in metastatic phenotypes induced by
hypoxia or overexpression of HIF-1α in breast cancer
cell lines (MCF-7). HIF-1α promotes hypoxia-induced
breast cancer progression and metastasis through the
direct activation of TWIST expression [116].
In a previous report, inhibition of HIF-1α by 2-benzoyl-

3-phenyl-6, 7-dichloroquinoxaline 1, 4-dioxide (DCQ) was
shown to block VEGF secretion and invasion in MCF-7 and
led to the inhibition of TWIST expression in MDA-MB-
231. DCQ exhibits robust anti-tumor activity in MDA-MB-
231 breast cancer mouse xenografts. Also, DCQ reduces
metastatic dissemination to the liver, leading to prolonged
animal survival [95]. Therefore, HIF-1α can promote BCLM
throughVEGF and TWIST signaling pathways.

Role of the vasculature might be essential for liver
metastasis
Vermeulen et al. [117] reported that colorectal cancer
metastases to the liver grow according to three different
histologic patterns, termed ‘pushing’, ‘replacement’, and
‘desmoplastic’ growth patterns. The results of subse-
quent studies [118,119] involving liver metastases of
colorectal and breast cancers showed that the different
grow patterns have different angiogenic properties. The
replacement pattern grows by co-opting the stroma,
without induction of hypoxia or angiogenesis and thus
minimal perturbation of the liver architecture; however, the
pushing and desmoplastic patterns grow in an angio-
genic fashion, which is at least in part hypoxia-driven.
Furthermore, the pattern of replacement growth in a
non-angiogenic process is even more prevalent in breast
cancer than colorectal cancer, and the process induces
neither hypoxia nor vascular leakage.
Martin et al. [120] has shown that the majority of early

metastatic foci in the liver contain few cells, even 12 days
after breast cancer cell injection. Only a few foci were able
to develop into micrometastatic lesions with a patent



Figure 1 A model for breast cancer liver metastasis. (i) intravasation: invasive breast cancer cell invades through the endothelium of a tumor
blood vessel into circulation; (ii) circulation: breast cancer cell survives in the blood vessels without any attachment; (iii) margination: circulating
breast cancer cell arrests at the site of liver by adhering to the sinusoidal endothelial cell via specific sets of adhesion molecules; (iv) extravasation:
the migrated breast cancer cell invades through the endothelial wall of sinusoidal endothelial cell, migrates and finally proliferates in the liver;
and (v) colonization: breast cancer cells survive and form a life-threatening focus in liver.
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vasculature, thus suggesting that lesions that utilize
an existent patent blood supply can thrive in the liver
microenvironment, while the remaining foci without a
vascular supply remain dormant in the liver. Naumov et al.
[121] suggested that tumors are dependent on angiogenesis
for progressive growth and remain harmless to the organ-
ism at the non-angiogenic dormant stage. Furthermore, the
expansion of tumor mass is associated with recruiting
endothelial cells after the cancer tissues undergo a
switch from a non-angiogenic dormant phenotype to
the angiogenic phenotype [122].
Therefore, we speculate that breast cancer metastases

to the liver grow mainly by the replacement pattern with
a non-angiogenic process in the initial stage, and the
vasculature is crucial for thriving in the sites of liver
metastases in the late stage.

Role of sinusoidal capillaries
Previous studies have reported that the initial arrest of
cancer cells in the sinusoids of the liver is restricted
by the sizes of cancer cells [123,124]. Haier et al. [125] has
determined that tumor cells adhere to sinusoidal capillaries,
the internal diameter of which is larger than the tumor
cells. Unique structural features of liver, including the exist-
ence of a fenestrated endothelium (sinusoidal endothelium)
and lack of an organized sub-endothelial basement mem-
brane, have a great impact on the interactions between
breast cancer cells and the liver microenvironment. Of
great interest, the fenestrated endothelium controls liver-
specific microvascular exchange and impacts the ability of
cells to transmigrate through the vessels into the liver
[126]. Moreover, previous studies have revealed that breast
cancer cells extend cellular projections through the fenes-
trated endothelium into the space of Disse on seeding the
liver, which makes direct contact with hepatocytes [127].
In addition, Martin et al. [120] has found that breast
cancer cells are bound to vessels with clear vascular
labeling in the sites of liver metastases. Thus, sinusoidal
capillaries play a significant role in the initial arrest of
breast cancer.

Changes in hormonal receptor status and HER-2
ER, PR, and HER-2 status is essential in determining the
use and evaluating the effect of adjuvant hormone therapy,
molecular targeted therapy, and even chemotherapy.
Koo et al. [128] conducted a study to assess the status of
ER, PR, and HER-2 in primary and metastatic breast
cancers and determined the relationship between ER,
PR, and HER-2 and organ-specific metastases of breast
cancer. The data showed that ER+ or PR+/HER-2-
(luminal A) subtypes were predominant in the sites of
liver metastases (75.0%). Increased phosphorylation of
HER-2 appears to be extremely important for the estab-
lishment of breast cancer liver metastases [129]. Moreover,
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a high serum HER2 level or lack of ERs independently
doubles the relative risk of progression and mortality [130].
Nevertheless, the ER, PR, and HER-2 status between

primary breast cancers and liver metastatic foci can be
changed after treatment, but are stable in most cases
during the liver metastatic process [131]. Botteri et al.
[132] conducted a retrospective study of patients with
BCLM and found a positive relationship between liver
biopsy findings and survival in patients with early
metastases. Moreover, another study showed that biopsies
of metastases are useful for the reassessment of the
metastatic sites to define a more effective treatment
strategy for patients with BCLM [133]. Thus, the ER, PR,
and HER-2 status needs to be reassessed by biopsy when
liver metastases occur.
A model for breast cancer liver metastasis
An increasingly sophisticated understanding of breast
cancer liver metastasis is emerging. It appears that
BCLM is mainly associated with specific subtypes in
patients with breast cancer [85,86,92]; however, no
direct correlation between subtypes and BCLM has
been found. By combining the knowledge from the
extant research, we propose a model for breast cancer
liver metastasis (Figure 1), as follows: (i) intravasation:
invasive breast cancer cells invade via the endothelium of
a tumor blood vessel into the circulation; (ii) circulation:
breast cancer cells survive in the blood vessels and lack of
cell-cell or cell-matrix attachments; (iii) margination:
CTCs arrest at the liver site by adhering to the sinusoidal
endothelial cell via specific sets of adhesion molecules,
such as cadherins, integrins, Ig-SF, and CD44; (iv) extrava-
sation: the migrated breast cancer cells invade through the
endothelial wall of sinusoidal endothelial cells, migrates,
and finally proliferates in the liver (in this process, the
diameter of the sinusoidal endothelium and the lack of an
organized sub-endothelial basement membrane have a
great impact on breast cancer cell migration); and (v)
colonization: breast cancer cells survive and form a
life-threatening macrometastatic focus in the liver
microenvironment by mediating hypoxia-inducible factor-
regulated genes (LOX, OPN, VEGF, and TWIST), the
status of ER, PR, and HER-2 expression, and angiogenesis
for breast cancer cells.
Conclusions
The process of BCLM includes several steps and is influ-
enced by various factors. Although major breakthroughs
have been achieved recently in understanding of BCLM,
no effective therapies have been developed. Further under-
standing of the roles of breast cancer cells and the liver
microenvironment will open a new window to guide future
work in clinical treatments.
Abbreviations
BCLM: Breast cancer liver metastasis; CAF: cancer-associated fibroblast;
CCL2: CC chemokine ligand 2; Col: Collagen; CSCs: Cancer stem cells;
CXCR4: C-X-C Chemokine Receptor type 4; DCQ: 2-benzoyl-3-phenyl-6,
7-dichloroquinoxaline 1, 4-dioxide; ECM: Extracellular matrix; EMT: Epithelial
to mesenchymal transition; EpCAM: Epithelial cell adhesion molecule;
ER: Estrogen receptor; FGFR: Fibroblast growth factor receptor;
FSP: Fibroblast-specific protein; HER2: Human epidermal growth factor
receptor-2; HIF: Hypoxia-inducible factor; LN: Laminin; LOX: Lysyl oxidase;
MET: Mesenchymal to epithelial transition; MMP-9: Matrix metalloproteinases
9; MSC: Mesenchymal stromal cell; OPN: Osteopontin; PR: Progesterone
receptor; TAM: Tumor-associated macrophage; TNBC: “triple-negative” breast
cancer; VEGF: Vascular endothelial growth factor; VN: Vitronectin; α-SMA:
α-smooth muscle actin.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RM, SL and JC contributed to collection of information, analysis and
interpretation of data and writing of the manuscript. YLF and HL contributed
to revision of the manuscript. HMZ, XL and XJC contributed to design and
revision of the manuscript. All authors read and approved the final
manuscript.

Acknowledgments
This work was supported by International scientific and technological
cooperation projects (2012DFA30410). We thank Dean Scott and Xian Wang
for English language support.

Author details
1Department of Surgery, Zhejiang University Hospital, Zhejiang University,
Hangzhou, Zhejiang 310027, China. 2Department of General Surgery, Institute
of Minimally Invasive Surgery, Sir Run Run Shaw Hospital, College of
Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.

Received: 3 November 2014 Accepted: 30 January 2015

References
1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer

incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev.
2010;19:1893–907.

2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.
Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin.
2012;62:10–29.

4. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al.
Metastatic patterns in adenocarcinoma. Cancer. 2006;106:1624–33.

5. Adam R, Aloia T, Krissat J, Bralet MP, Paule B, Giacchetti S, et al. Is liver
resection justified for patients with hepatic metastases from breast cancer?
Ann Surg. 2006;244:897–907.

6. Diamond JR, Finlayson CA, Borges VF. Hepatic complications of breast
cancer. Lancet Oncol. 2009;10:615–21.

7. Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N Engl J
Med. 2005;353(16):1734–6.

8. Miller WR. Aromatase inhibitors: prediction of response and nature of
resistance. Expert Opin Pharmacother. 2010;11:1873–87.

9. Chao Y, Wu Q, Shepard C, Wells A. Hepatocyte induced re-expression of
E-cadherin in breast and prostate cancer cells increases chemoresistance.
Clin Exp Metastasis. 2012;29:39–50.

10. Paget S. The distribution of secondary growths in cancer of the breast.
1889. Cancer Metastasis Rev. 1989;8:98–101.

11. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’
hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

12. Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible
factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene.
2013;32:4057–63.

13. Chiu HW, Yeh YL, Wang YC, Huang WJ, Chen YA, Chiou YS, et al.
Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase,



Ma et al. Journal of Translational Medicine  (2015) 13:64 Page 8 of 10
enhances radiosensitivity and suppresses lung metastasis in breast cancer
in vitro and in vivo. PLoS One. 2013;8:e76340.

14. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, et al. The
BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites.
Cell. 2012;150:764–79.

15. Jiang J, Thyagarajan-Sahu A, Loganathan J, Eliaz I, Terry C, Sandusky GE, et al.
BreastDefend prevents breast-to-lung cancer metastases in an orthotopic animal
model of triple-negative human breast cancer. Oncol Rep. 2012;28:1139–45.

16. Loganathan J, Jiang J, Smith A, Jedinak A, Thyagarajan-Sahu A, Sandusky GE,
et al. The mushroom Ganoderma lucidum suppresses breast-to-lung cancer
metastasis through the inhibition of pro-invasive genes. Int J Oncol.
2014;44:2009–15.

17. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that
mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

18. Akhtari M, Mansuri J, Newman KA, Guise TM, Seth P. Biology of breast
cancer bone metastasis. Cancer Biol Ther. 2008;7:3–9.

19. Suva LJ, Griffin RJ, Makhoul I. Mechanisms of bone metastases of breast
cancer. Endocr Relat Cancer. 2009;16:703–13.

20. Zhang Y, Ma B, Fan Q. Mechanisms of breast cancer bone metastasis.
Cancer Lett. 2010;292:1–7.

21. Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland
Biol Neoplasia. 2007;12:153–62.

22. Price JE, Naito S, Fidler IJ. Growth in an organ microenvironment as a
selective process in metastasis. Clin Exp Metastasis. 1988;6:91–102.

23. St Hill CA. Interactions between endothelial selectins and cancer cells
regulate metastasis. Front Biosci. 2011;16:3233–51.

24. Khatib AM, Fallavollita L, Wancewicz EV, Monia BP, Brodt P. Inhibition of
hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides
blocks colorectal carcinoma liver metastasis. Cancer Res. 2002;62:5393–8.

25. Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A, Brodt P. The host
inflammatory response promotes liver metastasis by increasing tumor cell
arrest and extravasation. Am J Pathol. 2007;170:1781–92.

26. Brodt P, Fallavollita L, Bresalier RS, Meterissian S, Norton CR, Wolitzky BA.
Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes
liver metastasis. Int J Cancer. 1997;71:612–9.

27. Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M,
et al. Characterization of the host proinflammatory response to tumor cells
during the initial stages of liver metastasis. Am J Pathol. 2005;167:749–59.

28. Eichbaum C, Meyer AS, Wang N, Bischofs E, Steinborn A, Bruckner T, et al.
Breast cancer cell-derived cytokines, macrophages and cell adhesion:
implications for metastasis. Anticancer Res. 2011;31:3219–27.

29. Asgeirsson KS, Olafsdottir K, Jonasson JG, Ogmundsdottir HM. The effects of
IL-6 on cell adhesion and e-cadherin expression in breast cancer.
Cytokine+. 1998;10:720–8.

30. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al.
Involvement of chemokine receptors in breast cancer metastasis. Nature.
2001;410:50–6.

31. Furusato B, Mohamed A, Uhlen M, Rhim JS. CXCR4 and cancer. Pathol Int.
2010;60:497–505.

32. Wendel C, Hemping-Bovenkerk A, Krasnyanska J, Mees ST, Kochetkova M,
Stoeppeler S, et al. CXCR4/CXCL12 participate in extravasation of metastasizing
breast cancer cells within the liver in a rat model. PLoS One. 2012;7:e30046.

33. Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A, et al.
Expression of chemokine receptors predicts the site of metastatic relapse in
patients with axillary node positive primary breast cancer. Ann Oncol.
2006;17:945–51.

34. Hembruff SL, Jokar I, Yang L, Cheng N. Loss of transforming growth
factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to
promote mammary tumor progression through macrophage-dependent
and -independent mechanisms. Neoplasia. 2010;12:425–33.

35. Stormes KA, Lemken CA, Lepre JV, Marinucci MN, Kurt RA. Inhibition of
metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res Treat.
2005;89:209–12.

36. Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in
breast cancer. Cancer Lett. 2008;267:271–85.

37. Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC. Osteopontin
promotes CCL5-mesenchymal stromal cell-mediated breast cancer
metastasis. Carcinogenesis. 2011;32:477–87.

38. Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, et al. A SAGE
(serial analysis of gene expression) view of breast tumor progression.
Cancer Res. 2001;61:5697–702.
39. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al.
Epithelial–mesenchymal and mesenchymal–epithelial transitions in
carcinoma progression. J Cell Physiol. 2007;213:374–83.

40. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable
beta-catenin expression in colorectal cancers indicates tumor progression driven
by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.

41. Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED.
Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis:
role of fibroblast growth factor receptor-2. Cancer Res. 2006;66:11271–8.

42. Hudson LG, Zeineldin R, Stack MS. Phenotypic plasticity of neoplastic
ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp
Metastasis. 2008;25:643–55.

43. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transi-
tions in development and disease. Cell. 2009;139:871–90.

44. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states:
acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.

45. Lou Y, Preobrazhenska O, auf dem Keller U, Sutcliffe M, Barclay L, McDonald PC,
et al. Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous
murine breast cancer metastasis. Dev Dyn. 2008;237:2755–68.

46. Wang HH, McIntosh AR, Hasinoff BB, Rector ES, Ahmed N, Nance DM, et al.
B16 melanoma cell arrest in the mouse liver induces nitric oxide release
and sinusoidal cytotoxicity: a natural hepatic defense against metastasis.
Cancer Res. 2000;60:5862–9.

47. Hazan RB, Kang L, Whooley BP, Borgen PI. N-cadherin promotes adhesion
between invasive breast cancer cells and the stroma. Cell Adhes Commun.
1997;4:399–411.

48. Kern FG, McLeskey SW, Zhang L, Kurebayashi J, Liu Y, Ding IY, et al.
Transfected MCF-7 cells as a model for breast-cancer progression. Breast
Cancer Res Treat. 1994;31:153–65.

49. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous
expression of N-cadherin in breast cancer cells induces cell migration,
invasion, and metastasis. J Cell Biol. 2000;148:779–90.

50. van der Flier A, Sonnenberg A. Function and interactions of integrins.
Cell Tissue Res. 2001;305:285–98.

51. Rathinam R, Alahari SK. Important role of integrins in the cancer biology.
Cancer Metastasis Rev. 2010;29:223–37.

52. Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci.
2009;122:159–63.

53. Rosenow F, Ossig R, Thormeyer D, Gasmann P, Schluter K, Brunner G, et al.
Integrins as antimetastatic targets of RGD-independent snake venom
components in liver metastasis [corrected]. Neoplasia. 2008;10:168–76.

54. Tabaries S, Dong Z, Annis MG, Omeroglu A, Pepin F, Ouellet V, et al.
Claudin-2 is selectively enriched in and promotes the formation of breast
cancer liver metastases through engagement of integrin complexes.
Oncogene. 2011;30:1318–28.

55. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC. Epithelial cell adhesion
molecule: more than a carcinoma marker and adhesion molecule. Am J
Pathol. 2007;171:386–95.

56. Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer.
2007;96:417–23.

57. Sankpal NV, Willman MW, Fleming TP, Mayfield JD, Gillanders WE.
Transcriptional repression of epithelial cell adhesion molecule contributes to
p53 control of breast cancer invasion. Cancer Res. 2009;69:753–7.

58. Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G. Ep-CAM overexpression in
breast cancer as a predictor of survival. Lancet. 2000;356(9246):1981–2.

59. Spizzo G, Went P, Dirnhofer S, Obrist P, Simon R, Spichtin H, et al. High
Ep-CAM expression is associated with poor prognosis in node-positive
breast cancer. Breast Cancer Res Treat. 2004;86:207–13.

60. Litvinov SV, Balzar M, Winter MJ, Bakker HA, Briaire-de Bruijn IH, Prins F, et al.
Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions
mediated by classic cadherins. J Cell Biol. 1997;139:1337–48.

61. Cimino A, Halushka M, Illei P, Wu X, Sukumar S, Argani P. Epithelial cell
adhesion molecule (EpCAM) is overexpressed in breast cancer metastases.
Breast Cancer Res Treat. 2010;123:701–8.

62. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective
identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A.
2003;100:3983–8.

63. Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA,
Manseau EJ, et al. Expression and distribution of osteopontin in human
tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell.
1992;3:1169–80.



Ma et al. Journal of Translational Medicine  (2015) 13:64 Page 9 of 10
64. Zoller M. CD44: can a cancer-initiating cell profit from an abundantly
expressed molecule? Nat Rev Cancer. 2011;11:254–67.

65. Sun H, Jia J, Wang X, Ma B, Di L, Song G, et al. CD44+/CD24- breast cancer
cells isolated from MCF-7 cultures exhibit enhanced angiogenic properties.
Clin Transl Oncol. 2013;15:46–54.

66. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The
epithelial-mesenchymal transition generates cells with properties of stem
cells. Cell. 2008;133:704–15.

67. Erin N, Kale S, Tanriover G, Koksoy S, Duymus O, Korcum AF. Differential
characteristics of heart, liver, and brain metastatic subsets of murine breast
carcinoma. Breast Cancer Res Treat. 2013;139:677–89.

68. Lackner C, Moser R, Bauernhofer T, Wilders-Truschnig M, Samonigg H,
Berghold A, et al. Soluble CD44 v5 and v6 in serum of patients with breast
cancer. Correlation with expression of CD44 v5 and v6 variants in primary
tumors and location of distant metastasis. Breast Cancer Res Treat.
1998;47:29–40.

69. Wai PY, Kuo PC. The role of Osteopontin in tumor metastasis. J Surg Res.
2004;121:228–41.

70. Ouhtit A, Abd Elmageed ZY, Abdraboh ME, Lioe TF, Raj MH. In vivo
evidence for the role of CD44s in promoting breast cancer metastasis to
the liver. Am J Pathol. 2007;171:2033–9.

71. Turksen K, Troy TC. Barriers built on claudins. J Cell Sci. 2004;117:2435–47.
72. Kim TH, Huh JH, Lee S, Kang H, Kim GI, An HJ. Down-regulation of claudin-2

in breast carcinomas is associated with advanced disease. Histopathology.
2008;53:48–55.

73. Kimbung S, Kovacs A, Bendahl PO, Malmstrom P, Ferno M, Hatschek T, et al.
Claudin-2 is an independent negative prognostic factor in breast cancer
and specifically predicts early liver recurrences. Mol Oncol. 2014;8:119–28.

74. Tabaries S, Dupuy F, Dong Z, Monast A, Annis MG, Spicer J, et al. Claudin-2
promotes breast cancer liver metastasis by facilitating tumor cell interactions
with hepatocytes. Mol Cell Biol. 2012;32:2979–91.

75. Blanchard AA, Skliris GP, Watson PH, Murphy LC, Penner C, Tomes L, et al.
Claudins 1, 3, and 4 protein expression in ER negative breast cancer
correlates with markers of the basal phenotype. Virchows Arch.
2009;454:647–56.

76. Kulka J, Szasz AM, Nemeth Z, Madaras L, Schaff Z, Molnar IA, et al.
Expression of tight junction protein claudin-4 in basal-like breast carcinomas.
Pathol Oncol Res. 2009;15:59–64.

77. Lanigan F, McKiernan E, Brennan DJ, Hegarty S, Millikan RC, McBryan J, et al.
Increased claudin-4 expression is associated with poor prognosis and high
tumour grade in breast cancer. Int J Cancer. 2009;124:2088–97.

78. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, et al. Altered gene
expression in breast cancer liver metastases. Int J Cancer. 2009;124:1503–16.

79. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al.
Identification of conserved gene expression features between murine mammary
carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.

80. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al.
Residual breast cancers after conventional therapy display mesenchymal as
well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106:13820–5.

81. Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT)
in tumor-initiating cells and its clinical implications in breast cancer.
J Mammary Gland Biol Neoplasia. 2010;15:253–60.

82. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ,
Krishnamurthy S, Lee JS, et al. Characterization of a naturally occurring
breast cancer subset enriched in epithelial-to-mesenchymal transition and
stem cell characteristics. Cancer Res. 2009;69:4116–24.

83. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al.
Phenotypic and molecular characterization of the claudin-low intrinsic
subtype of breast cancer. Breast Cancer Res. 2010;12:2.

84. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al. Core
epithelial-to-mesenchymal transition interactome gene-expression signature
is associated with claudin-low and metaplastic breast cancer subtypes.
Proc Natl Acad Sci U S A. 2010;107:15449–54.

85. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, et al. Subtypes of
breast cancer show preferential site of relapse. Cancer Res. 2008;68:3108–14.

86. Rodriguez-Pinilla SM, Sarrio D, Honrado E, Hardisson D, Calero F, Benitez J, et al.
Prognostic significance of basal-like phenotype and fascin expression in
node-negative invasive breast carcinomas. Clin Cancer Res. 2006;12:1533–9.

87. Nam BH, Kim SY, Han HS, Kwon Y, Lee KS, Kim TH, et al. Breast cancer
subtypes and survival in patients with brain metastases. Breast Cancer Res.
2008;10:28.
88. Heitz F, Harter P, Lueck HJ, Fissler-Eckhoff A, Lorenz-Salehi F, Scheil-Bertram S,
et al. Triple-negative and HER2-overexpressing breast cancers exhibit an elevated
risk and an earlier occurrence of cerebral metastases. Eur J Cancer.
2009;45:2792–8.

89. Niwinska A, Murawska M, Pogoda K. Breast cancer brain metastases:
differences in survival depending on biological subtype, RPA RTOG
prognostic class and systemic treatment after whole-brain radiotherapy
(WBRT). Ann Oncol. 2010;21:942–8.

90. Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP. Sites of distant
recurrence and clinical outcomes in patients with metastatic triple-negative
breast cancer: high incidence of central nervous system metastases.
Cancer. 2008;113:2638–45.

91. Gao D, Du J, Cong L, Liu Q. Risk factors for initial lung metastasis from
breast invasive ductal carcinoma in stages I-III of operable patients. Jpn J
Clin Oncol. 2009;39:97–104.

92. Duan XF, Dong NN, Zhang T, Li Q. The prognostic analysis of clinical breast
cancer subtypes among patients with liver metastases from breast cancer.
Int J Clin Oncol. 2013;18:26–32.

93. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia
and oncogenic mutations. J Clin Invest. 2013;123:3664–71.

94. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, et al. Lysyl
oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440:1222–6.

95. Ghattass K, El-Sitt S, Zibara K, Rayes S, Haddadin MJ, El-Sabban M, et al. The
quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and
in vivo by targeting the hypoxia inducible factor-1 pathway. Mol Cancer.
2014;13:1476–4598.

96. Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles
inside and outside of the cell. J Cell Biochem. 2003;88:660–72.

97. Csiszar K, Fong SF, Ujfalusi A, Krawetz SA, Salvati EP, Mackenzie JW, et al.
Somatic mutations of the lysyl oxidase gene on chromosome 5q23.1 in
colorectal tumors. Int J Cancer. 2002;97:636–42.

98. Kirschmann DA, Seftor EA, Fong SF, Nieva DR, Sullivan CM, Edwards EM,
et al. A molecular role for lysyl oxidase in breast cancer invasion.
Cancer Res. 2002;62:4478–83.

99. Kaneda A, Wakazono K, Tsukamoto T, Watanabe N, Yagi Y, Tatematsu M,
et al. Lysyl oxidase is a tumor suppressor gene inactivated by methylation
and loss of heterozygosity in human gastric cancers. Cancer Res.
2004;64:6410–5.

100. Palamakumbura AH, Jeay S, Guo Y, Pischon N, Sommer P, Sonenshein GE,
et al. The propeptide domain of lysyl oxidase induces phenotypic reversion
of ras-transformed cells. J Biol Chem. 2004;279:40593–600.

101. Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF, et al. Lysyl
oxidase regulates breast cancer cell migration and adhesion through a
hydrogen peroxide-mediated mechanism. Cancer Res. 2005;65:11429–36.

102. Denhardt DT, Lopez CA, Rollo EE, Hwang SM, An XR, Walther SE.
Osteopontin-induced modifications of cellular functions. Ann N Y Acad Sci.
1995;760:127–42.

103. Denhardt DT, Giachelli CM, Rittling SR. Role of osteopontin in cellular
signaling and toxicant injury. Annu Rev Pharmacol Toxicol. 2001;41:723–49.

104. Weber GF, Ashkar S, Cantor H. Interaction between CD44 and osteopontin
as a potential basis for metastasis formation. Proc Assoc Am Physicians.
1997;109:1–9.

105. Das R, Mahabeleshwar GH, Kundu GC. Osteopontin stimulates cell motility
and nuclear factor kappaB-mediated secretion of urokinase type plasmino-
gen activator through phosphatidylinositol 3-kinase/Akt signaling pathways
in breast cancer cells. J Biol Chem. 2003;278:28593–606.

106. Fedarko NS, Jain A, Karadag A, Van Eman MR, Fisher LW. Elevated serum
bone sialoprotein and osteopontin in colon, breast, prostate, and lung
cancer. Clin Cancer Res. 2001;7:4060–6.

107. Gotoh M, Sakamoto M, Kanetaka K, Chuuma M, Hirohashi S. Overexpression
of osteopontin in hepatocellular carcinoma. Pathol Int. 2002;52:19–24.

108. Grano M, Mori G, Minielli V, Colucci S, Vaira S, Giannelli G, et al. HGF and
M-CSF modulate adhesion of MDA-231 breast cancer cell by increasing
osteopontin secretion. J Biol Regul Homeost Agents. 2002;16:190–5.

109. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor.
Endocr Rev. 1997;18:4–25.

110. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M.
Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases
of human mammary breast tumor MDA-MB-231 via inhibition of vascular
endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase.
Clin Cancer Res. 2008;14:5459–65.



Ma et al. Journal of Translational Medicine  (2015) 13:64 Page 10 of 10
111. Chien MH, Lee LM, Hsiao M, Wei LH, Chen CH, Lai TC, et al. Inhibition of
Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting
VEGFRs and FGFRs. Evid Based Complement Alternat Med. 2013;718380:3.

112. Castanon I, Baylies MK. A Twist in fate: evolutionary comparison of Twist
structure and function. Gene. 2002;287:11–22.

113. Furlong EE, Andersen EC, Null B, White KP, Scott MP. Patterns of gene expression
during Drosophila mesoderm development. Science. 2001;293:1629–33.

114. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al.
Twist, a master regulator of morphogenesis, plays an essential role in tumor
metastasis. Cell. 2004;117:927–39.

115. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, et al. Twist
overexpression correlates with hepatocellular carcinoma metastasis through
induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006;12:5369–76.

116. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, et al. Direct regulation
of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10:295–305.

117. Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E,
et al. Liver metastases from colorectal adenocarcinomas grow in three patterns
with different angiogenesis and desmoplasia. J Pathol. 2001;195:336–42.

118. Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel
E, Harris AL, et al. Breast adenocarcinoma liver metastases, in contrast to
colorectal cancer liver metastases, display a non-angiogenic growth pattern
that preserves the stroma and lacks hypoxia. Br J Cancer. 2004;90:1429–36.

119. Van den Eynden GG, Bird NC, Majeed AW, Van Laere S, Dirix LY, Vermeulen
PB. The histological growth pattern of colorectal cancer liver metastases has
prognostic value. Clin Exp Metastasis. 2012;29:541–9.

120. Martin MD, Kremers GJ, Short KW, Rocheleau JV, Xu L, Piston DW, et al.
Rapid extravasation and establishment of breast cancer micrometastases in
the liver microenvironment. Mol Cancer Res. 2010;8:1319–27.

121. Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in human tumor
dormancy: animal models of the angiogenic switch. Cell Cycle. 2006;5:1779–87.

122. Hanahan D, Folkman J. Patterns and emerging mechanisms of the
angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

123. Morris VL, MacDonald IC, Koop S, Schmidt EE, Chambers AF, Groom AC.
Early interactions of cancer cells with the microvasculature in mouse liver
and muscle during hematogenous metastasis: videomicroscopic analysis.
Clin Exp Metastasis. 1993;11:377–90.

124. Mook OR, Van Marle J, Vreeling-Sindelarova H, Jonges R, Frederiks WM,
Van Noorden CJ. Visualization of early events in tumor formation of
eGFP-transfected rat colon cancer cells in liver. Hepatology. 2003;38:295–304.

125. Haier J, Korb T, Hotz B, Spiegel HU, Senninger N. An intravital model to
monitor steps of metastatic tumor cell adhesion within the hepatic
microcirculation. J Gastrointest Surg. 2003;7:507–14.

126. Reichen J. The Role of the Sinusoidal Endothelium in Liver Function. News
Physiol Sci. 1999;14:117–21.

127. Roos E, Dingemans KP, Van de Pavert IV, Van den Bergh-Weerman MA.
Mammary-carcinoma cells in mouse liver: infiltration of liver tissue and inter-
action with Kupffer cells. Br J Cancer. 1978;38:88–99.

128. Koo JS, Jung W, Jeong J. Metastatic breast cancer shows different
immunohistochemical phenotype according to metastatic site. Tumori.
2010;96:424–32.

129. Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V, Deng J, et al.
Multiplexed cell signaling analysis of human breast cancer applications for
personalized therapy. J Proteome Res. 2008;7:1508–17.

130. Jensen BV, Johansen JS, Price PA. High levels of serum HER-2/neu and YKL-40
independently reflect aggressiveness of metastatic breast cancer. Clin Cancer
Res. 2003;9:4423–34.

131. Liu J, Deng H, Jia W, Zeng Y, Rao N, Li S, et al. Comparison of ER/PR and HER2
statuses in primary and paired liver metastatic sites of breast carcinoma in
patients with or without treatment. J Cancer Res Clin Oncol. 2012;31:31.

132. Botteri E, Disalvatore D, Curigliano G, Brollo J, Bagnardi V, Viale G, et al.
Biopsy of liver metastasis for women with breast cancer: impact on survival.
Breast. 2012;21:284–8.

133. Curigliano G, Bagnardi V, Viale G, Fumagalli L, Rotmensz N, Aurilio G, et al.
Should liver metastases of breast cancer be biopsied to improve treatment
choice? Ann Oncol. 2011;22:2227–33.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Introduction
	Factors associated with breast cancer cell metastasis to the liver
	Inflammatory factors
	Chemokines and chemokine receptors
	Cell adhesion molecules
	Cadherins
	Integrin complexes
	Ig-SF
	CD44

	Role of claudins
	Breast cancer subtypes

	Factors associated with the liver microenvironment
	Hypoxia-inducible factor-regulated genes
	LOX
	OPN
	VEGF and TWIST

	Role of the vasculature might be essential for liver metastasis
	Role of sinusoidal capillaries
	Changes in hormonal receptor status and HER-2

	A model for breast cancer liver metastasis
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

