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Abstract

Background: Metastatic non-small-cell lung cancer (NSCLC) has a dismal prognosis. EGFR is overexpressed or
mutated in a large proportion of cases. Downstream components of the EGFR pathway and crosstalk with the NF-
kB pathway have not been examined at the clinical level. We explored the prognostic significance of the mRNA

determined.

those with EGFR mutations.

expression of nine genes in the EGFR and NF-xB pathways and of BRCA1 and RAP80 in patients in whom EGFR
and K-ras gene status had previously been determined. In addition, NFKBIA and DUSP22 gene status was also

Methods: mRNA expression of the eleven genes was determined by QPCR in 60 metastatic NSCLC patients and in
nine lung cancer cell lines. Exon 3 of NFKBIA and exon 6 of DUSP22 were analyzed by direct sequencing. Results
were correlated with outcome to platinum-based chemotherapy in patients with wild-type EGFR and to erlotinib in

Results: BRCAT mRNA expression was correlated with EZH2, AEG-1, Musashi-2, CYLD and TRAF6 expression. In
patients with low levels of both BRCAT and AEG-1, PFS was 13.02 months, compared to 5.4 months in those with
high levels of both genes and 7.7 months for those with other combinations (P = 0.025). The multivariate analysis
for PFS confirmed the prognostic role of high BRCA1/AEG-1 expression (HR, 3.1; P = 0.01). Neither NFKBIA nor
DUSP22 mutations were found in any of the tumour samples or cell lines.

Conclusions: The present study provides a better understanding of the behaviour of metastatic NSCLC and
identifies the combination of BRCAT and AEG-1 expression as a potential prognostic model.

Background

Metastatic non-small-cell lung cancer (NSCLC) is cur-
rently considered an incurable disease; median overall
survival is 12 months with platinum-based chemother-
apy [1,2] and only 3.5% of patients survive five years
after diagnosis [3]. Therapies targeting EGFR mutations
have revolutionized the treatment of NSCLC; however,
additional targeted therapies are lacking. More than half
of NSCLCs have excessive activation of the epidermal
growth factor receptor (EGFR) signaling pathway due to
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gene amplification or EGFR mutations [4,5]. The acti-
vated EGER receptor may phosphorylate a wide array of
intracellular signaling cascades, such as the RAS-RAF-
MEK-ERK and the phosphatidylinositol 3-kinase (PI3K)-
AKT pathways [3] (Figure 1). Nuclear factor kappa B
(NF-£B) is a transcription factor activated by the EGFR
pathway [6]. NF-xB inhibitor alpha (NFKBIA), a gate-
keeper for EGFR signaling that represses NF-xB, is a
major downstream node in the NF-xB and EGFR path-
ways [6] (Figure 1). We recently observed that increased
NFKBIA expression predicted improved progression-free
(PFS) and overall survival in EGFR-mutant NSCLC
patients treated with erlotinib [7]. However, the func-
tional and clinical impact of crosstalk between the
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Figure 1 Inter-relationship and crosstalk among genes. The eleven genes analyzed in the present study are shown in pink. Red stars indicate
mutations that were examined as part of routine clinical practice. Black stars indicate potential mutations that were examined as part of the
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multiple pathways radiating from growth factor recep-
tors remains obscure [8]. The present study sought to
elucidate the influence of the genetic status and expres-
sion of several genes involved in the NF-xB and EGFR
pathways in metastatic NSCLC patients treated with pla-
tinum-based chemotherapy (Figure 1).

In lung cancer cells with mutated K-ras, NF-«B is acti-
vated by the non-canonical TBK1/IxB kinase (IKK) inter-
action [9]; blocking IKK activity reduced tumor growth in
a mouse lung adenocarcinoma model [10]. In T cell leuke-
mia, the Notch/Hesl pathway sustains NF-xB activation
through repression of cylindromatosis tumor suppressor
(CYLD) [11]. CYLD and A20 negatively regulate the NF-
kB pathway [12] (Figure 1). High-throughput DNA
sequencing analysis of a cancer cell genome of a lung ade-
nocarcinoma patient revealed somatic mutations in K-ras,
NFKBIA and DUSP22. DUSP22 is a negative regulator of

p38. Active p38 signal transduction plus loss of NFKBIA
could lead to aberrant activation of transcription factors
via MYC and NF-xB [13] (Figure 1). Outlier expression of
Musashi-2 was identified in acute and chronic myeloid
leukemias and correlated with shorter survival [14,15].
Musashi-2 inhibits translation of Numb mRNA, which
inhibits the Notch pathway, and a significant inverse cor-
relation between Hesl mRNA levels and Numb status has
been observed in NSCLC [16] (Figure 1). Enhancer of
zeste homolog 2 (EZH2) activates Ras and p65/RelA (a
measure of NF-xB activity) [17], and high EZH2 expres-
sion has been correlated with poor prognosis in several
tumors, including gastric cancer [18]. Tumor necrosis fac-
tor receptor-associated factor 6 (TRAF6) facilitates AKT
membrane recruitment and subsequent AKT phosphory-
lation and activation [19]. TRAF6 influences innate
immune response and apoptosis by regulating Toll-like
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Table 1 Characteristics of metastatic NSCLC patients

N (%)

Age (yrs) 58 years (range 29-76) 100
Gender
Male 36 60
Female 24 40
Performance status
0 14 233
1 41 683
2 5 8.3
Histology
Large-cell carcinoma 8 133
Adenocarcinoma 39 65
Squamous cell carcinoma 13 217

Smoking history

Current smoker 22 36.7
Never smoked 7 11.7
Former smoker 20 333
Unknown Il 183

Number of chemotherapy lines

1 18 30
>2 42 70
Metastatic site
Lung 25 41.7
Bone 23 383
Brain 10 10
Liver 4 6.7
Pleura 8 133
Adrenal 8 133
Skin 1 1,7
Others 4 6.7
EGFR mutations (51 patients screened)
del 19 7 137
L858R 2 39
Total 9 176
K-ras mutations (56 patients screened) 10 17.8
First-line therapy
Chemotherapy 52
Erlotinib 7
Chemotherapy + erlotinib 1
Response
Complete response 5 89
Partial response 28 50
Stable disease 5 89
Progressive disease 13 23.2
Not measurable 9 89

receptor and transforming growth factor- (TGF-) sig-
naling, which are involved in NF-xB activation and p38
activation, respectively [20]. BRCA1 also interacts with
AKT and promotes its ubiquitination and degradation
[21].
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Intriguingly, MYC induces expression of BRCA1 [22]
and also of astrocyte elevated gene-1 (AEG-1) [23] (Fig-
ure 1). Ha-ras activates the PI3K signaling cascade,
resulting in increased AEG-1 expression, and AEG-1 in
turn activates the NF-xB pathway that regulates expres-
sion of genes involved in migration and invasion. The
AEG-1-activated PI3K-AKT pathway inhibits apoptosis
through phosphorylation of anti-apoptotic AKT sub-
strates [23]. RAP8O is required for optimal accumulation
of BRCA1 on damaged DNA foci in response to ionizing
radiation. The RAP80/Abraxas complex facilitates the
recruitment of BRCA1 to DNA-damaged sites [24] (Fig-
ure 1). In a BRCA1l-customized study in metastatic
NSCLC, PES and overall survival was influenced by
RAPS80 expression; in the most favorable subgroup of
patients - those with low levels of both BRCA1 and
RAPS0 - PFS was 14 months [25].

In order to shed light on the clinical impact of the
multiple interconnections and crosstalk between these
components of the NF-xB and the EGFR pathways, we
examined the expression of eleven genes (Figure 1) and
the mutational status of two genes (Figure 1) and corre-
lated our findings with outcomes in metastatic NSCLC
patients in whom EGFR and K-ras genetic status had
previously been determined.

Methods

Study population

A total of 60 metastatic NSCLC patients who were vis-
ited at the Medical Oncology Service of the USP Dexeus
University Institute (Barcelona, Spain) were assessed for
mRNA expression of eleven genes (CYLD, A20, EZH2,
AEG-1, TRAF6, NFKBIA, p65/RelA, Musashi-2, Hesl,
BRCA1, RAP80) and mutational status of NFKBIA and
DUSP22 (Figure 1). EGFR and K-ras mutational status
had previously been determined in all 60 patients as
part of routine clinical practice. Patients were predomi-
nantly males; 39 patients had adenocarcinoma, 13 squa-
mous cell carcinoma and 8 large cell carcinoma. Fifty-
two patients received first-line platinum-based che-
motherapy, seven patients - all with EGFR mutations -
received first-line erlotinib, and one received chemother-
apy plus erlotinib. Table 1 displays patient characteris-
tics, including the number of chemotherapy lines, the
metastatic sites and EGFR and K-ras mutations. All
patients provided written informed consent. Approval
was obtained from the institutional review board and
the ethics committee.

Cell culture and viability

CYLD, A20, EZH2, AEG-1, TRAF6, NFKBIA, p65/RelA,
Musashi-2, Hesl, BRCA1 and RAP80 mRNA expression
levels were also analyzed in nine lung cancer cell lines:
four K-ras-mutated cell lines (A549, NCI-H23, H460,
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Calu-6); two EGFR-mutated cell lines (PC9, H1975); and
three K-ras-and EGFR-wild type cell lines (NCI-H510,
SK-MES-1, HCC-827WT).

All tissue culture materials were obtained from Biolo-
gical Industries (Kibbutz Beit Haemek, Israel) or Invitro-
gen (Paisley, Scotland, UK). H460, Calu-6, A549, H23,
H1975 and SK-MES-1 human lung tumor cell lines
were provided by the American Type Culture Collec-
tion. The H510 and HCC-827WT'T cell line were pro-
vided by the University of Pamplona; HCC-827W'T was
derived from HCC-827 but lost the original EGFR exon
19 deletion upon prolonged culture. PC-9 was provided
by Roche Inc. (Basel, Switzerland) with the authorization
of Dr. Mayumi Ono. All cell lines were maintained in
RPMI medium supplemented with 10% FBS, 50 pg/mL
penicillin-streptomycin and 2 mM L-Glutamine. All
cells were grown in a humidified atmosphere with 5%
CO2 at 37°C.

Cell viability was assessed by the Thiazolyl Blue Tetra-
zolium Bromide (MTT) (Sigma, St. Louis, MO) assay.
Cells from each cell line were seeded at 8000 to 10000
per well (except for H209, where 50000 cells were used)
in 96-well plates. The concentration of drug required
for 50% growth inhibition (ICs) for cisplatin and erloti-
nib upon 24 h exposure was assessed by standard proce-
dures. After treatment, cells were incubated with
medium containing MTT (0.75 mg/mL in medium) for
1-2 h at 37°C. Culture medium with MTT was removed
and formazan crystals reabsorbed in 100 pL DMSO
(Sigma, St. Louis, MO). Cell viability was determined by
measuring the absorbance at 590 nm, using a microplate
reader (BioWhittaker, Walkersville, MD).

Microdissection

All specimens were formalin-fixed, paraffin-embedded
tumor tissues (FFPET) and were stained with haematox-
ilin/eosin and assessed by the pathologist of the Labora-
tory of Molecular Biology of the USP Dexeus University
Institute (Barcelona, Spain). Microdissection was then
performed as previously described [26].

Gene expression

Gene expression profiling was performed on RNA iso-
lated from the tumor tissue specimens. RNA extraction,
retrotranscription analysis and real-time PCR were per-
formed as previously described [26]. Primers and probes
for gene expression characterization of B-actin, CYLD,
A20, AEG-1, TRAF6, NFKBIA, p65/RelA, Musashi-2,
Hesl, BRCAI, and RAP80 were designed according to
their Ref Seq in http://www.ncbi.nlm.nih.gov/sites/
entrez?db=gene (Additional File 1, Table S1). EZH2
gene expression was analyzed with the Hs01016789_m1
assay from Applied Biosystems (AB; Foster City, CA,
USA).
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Gene mutations

EGFR, K-ras, NFKBIA and DUSP22 mutations were
assessed. Tumor cells were resuspended in 20 pL of
PCR buffer (Ecogen, Barcelona, Spain) plus proteinase K
and incubated from 4 hours to overnight at 60°C. Pro-
teinase was inactivated at 95°C for 10 min, and the cell
extract submitted to PCRs.

EGFR mutations in exons 19 and 21 were determined
as previously described [27]. Mutations in codons 12
and 13 of K-ras were analyzed by a single round of PCR
followed by sequencing. Primers for exon 2 of K-ras
were designed according to its Ref Seq in http://www.
ensembl.org/index.html, using the www primer tool
(http://biotools.umassmed.edu/bioapps/primer3_www.
cgi). Primers were as follows: forward 5-ACATGTTC-
TAATATAGTCACATTTTCA-3’, and reverse 5’-
GGTCCTGCACCAGTAATATGCA-3". PCR was per-
formed in 25-pL volumes adding 3 pL of sample, 1 U of
HotStart Taq Polymerase (Qiagen, Hilden, Germany),
2.5 puL of PCR buffer x10, 250 uM dNTPs, 3.5 mM
MgCl, and 0.4 pM of each primer. Amplification was as
follows: 45 cycles of 30 sec at 95°C, 30 sec at 51°C and
one min at 72°C. PCR products were visualized on a 2%
agarose gel. Sequencing was performed by standard pro-
cedures using forward and reverse nested primers with
the ABI Prism 3100 DNA Analyzer (AB).

In lung tumor cell lines and in 30 NSCLC patients
with sufficient tumor DNA, somatic mutations in exon
3 of NFKBIA and exon 6 of DUSP22 were also analyzed.
Primers for NFKBIA and DUSP22 were designed
according to their Ref Seq in http://www.ensembl.org/
index.html, using the www primer tool (http://biotools.
umassmed.edu/bioapps/primer3_www.cgi) and flanking
the mutational sites previously reported [13]. Primers
were as follows: DUSP22 forward 5-TCTGAA
ACTGCCCTCACACA-3’, and reverse 5-TGCATCTCT-
GATGTCCCCTA -3’; NFKBIA forward 5-TCTGGT
CTCTCTTGCATTCG-3’, reverse 1 5-GGCAGG-
GAGGCAGACATAC-3’ and reverse 2 (for PCR sequen-
cing) 5-GGCAGACATACCATTGT-3". PCR was
performed in 25-pL volumes adding 3 pL of sample, 1
U of HotStart Taq Polimerase (Qiagen), 2.5 pL of PCR
buffer x10, 250 uM dNTPs, 1.5 (NFKBIA) or 3.5 mM
MgCl, (DUSP22) and 0.4 pM of each primer. Amplifica-
tion was as follows: 45 cycles of 30 sec at 95°C, 30 sec
at 54°C (DUSP22) or 57°C (NFKBIA) and one min at
72°C. PCR products were visualized on a 2% agarose gel.
Sequencing was performed by standard procedures
using forward and reverse nested primers with the ABI
Prism 3100 DNA Analyzer (AB).

Statistical analyses
This was a retrospective analysis exploring whether the
altered expression of genes involved in the EGFR and
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NE-xB pathways correlated with clinical features and
outcome in NSCLC. Gene expression levels were exam-
ined as continuous variables or dichotomized at the
median value.

All efficacy results were assessed in all 60 patients.
Objective responses were recorded according to the
RECIST criteria. Patients achieving a complete or partial
response were considered “responders”, and all other
patients were considered “non-responders”. PFS was cal-
culated from the time of diagnosis of metastatic disease
until radiographic progression or death. Median overall
survival was calculated from the time of diagnosis of
metastatic disease until death or loss to follow-up or
last available date. Survival curves were drawn with the
Kaplan-Meier method and compared with a two-sided
log-rank test.

In order to asses correlation between clinical and
genetic characteristics, the Fisher exact test was used for
2-by-2 tables and the Chi-square test in tables of higher
order when categorical variables were compared, while
ANOVA or Kruskall-Wallis was used to assess differ-
ences of continuous variables. Normality of continuous
variables was checked by means of the Kolmogorov-
Smirnov test. The Pearson correlation coefficient analy-
sis was used to determine the correlation between dif-
ferent genes.

A univariate Cox regression analysis was used to
assess the association between each potential prognostic
factor and PFS or overall survival with HRs and their
95% CIs. A multivariate Cox proportional hazards
regression model was estimated with gender, age, East-
ern Cooperative Oncology Group (ECOG) performance
status (PS), histology (adenocarcinoma versus non-ade-
nocarcinoma), smoking status (current smoker versus
former smoker and never smoked), EGFR mutations, K-
ras mutations, and BRCA1/AEG-1 risk groups as covari-
ates. Stepwise analysis (forward and backward) was used
to determine the improvement of the fit. In addition,
the number of treatment lines, number of metastatic
sites, and the presence of bone or brain metastases were
included as covariates to estimate HRs of death.

The level of significance was set at < 0.05. All analyses
were performed using Statistical Package for the Social
Sciences (SPSS) for Windows version 17.0 (SPSS Inc,
Chicago, IL, USA).

Results

Gene expression

Gene expression of the eleven genes was successfully
analyzed in all cell lines. Significant correlations were
found between the expression levels of several genes:
BRCALI correlated significantly with AEG-1 (r*: 0.76; P
= 0.002); RAP80 correlated with A20 (r*: 0.83; P =
0.001); and NFKBIA correlated with p65/RelA (r*: 0.71;
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P = 0.006). A significant correlation was also observed
between the presence of K-ras mutations and high
AEG-1 and NFKBIA expression (r%: 0.99; P = 0.001).
BRCA1 expression showed a significant correlation with
sensitivity to cisplatin (ICso) (r*: 0.65; P = 0.008). No
other significant correlation was observed.

Gene expression of the eleven genes was also success-
fully analyzed in all 60 tumor samples. The median
values of gene expression are shown in Additional File
1, Table S2.

Significant correlations were found between several
genes; for example, BRCA1 expression correlated signifi-
cantly with EZH2 (Additional File 1, Figure S1), AEG-1,
Musashi-2, CYLD and TRAF6, and AEG-1 expression
correlated with NFKBIA, Musashi-2, p65/RelA and
TRAF6 (Additional File 1, Table S3). In the lung cancer
cell lines, a similar correlation was found, including a
strong association between BRCA1 and AEG-1
expression.

A significant correlation was observed between the
presence of K-ras mutations and high AEG-1 expression
(P = 0.04) and high NFKBIA expression (P = 0.04)
(Additional File 1, Table S4); in the lung cancer cell
lines, a similar correlation was found. However, there
was no correlation between EGFR mutational status and
expression levels of any of the genes analyzed (Addi-
tional File 1, Table S5). A correlation was observed
between a higher number of metastatic sites and high
Hesl expression levels (P = 0.002) (Additional File 1,
Table S6). No other correlation between gene expression
levels and clinical features, including response rate, was
observed.

PFS and overall survival

With a median follow-up of 17.62 months (range, 2.04-
152.17 months), median PFS was 7.43 months (95%
confidence interval [CI], 5.76-9.10 months), and median
overall survival was 28.16 months (95% CI, 18.98-37.33
months) (Additional File 1, Figure S2A). For the sub-
group of 51 patients with wild-type EGFR, who were
treated with chemotherapy, median overall survival was
26.45 months (95% CI, 16.57-36.33 months) (Additional
File 1, Figure S2B).

In a univariate analysis for PFS, where only gene
expression levels were included, only AEG-1 expression
surfaced as a significant prognostic marker (hazard ratio
[HR], 1.43; P = 0.006) (Additional File 1, Table S7).
When AEG-1 expression was analyzed by terciles,
patients in the lowest tercile had a PFS of 12.3 months,
compared to 9.3 months for those in the intermediate
tercile and 4.8 months for those in the highest tercile (P
= 0.002) (Additional File 1, Figure S3). Based on the
correlation observed between BRCA1l and AEG-1
expression in the cell lines and on our previous
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experience of the role of BRCA1 as a predictive marker
of PES to erlotinib [26], we further investigated the
combined effect of BRCA1 and AEG-1 expression on
PES in this series of patients. In patients with low levels
of both BRCA1 and AEG-1, PFS was 13.02 months,
compared to 5.4 months in those with high levels of
both genes and 7.7 months for those with other combi-
nations (P = 0.025) (Figure 2). In the final univariate
analysis, including all clinical and molecular variables,
only this two-gene combination was significantly asso-
ciated with PFS. The HR for high expression of both
BRCA1 and AEG-1 was 3.08 (95% CI, 1.3-7.1; P =
0.009) (Table 2). The multivariate analysis for PFS con-
firmed the prognostic role of high BRCA1/AEG-1
expression (HR, 3.1; 95% CI, 1.3-7.4; P = 0.01) (Table 2).
Overall survival for the three subgroups was similar,
though the differences were not significant (Additional
File 1, Figure S4).

Only histology and the presence of bone metastases
were significant factors in both the univariate and multi-
variate analyses for survival, while in the multivariate
analysis, the number of chemotherapy lines was also
associated with survival (Table 3).

Gene mutations

EGEFR and K-ras mutations were examined as part of
routine clinical assessment (Table 1). Somatic mutations
in exon 3 of NFKBIA and exon 6 of DUSP22 gene were

1,0
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] "
E-
E low AEG1 & BRCA1
s
Other
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high AEG1 & BRCA1
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Figure 2 PFS according to expression levels of BRCA1 and
AEG-1. In patients with low levels of both BRCA1 and AEG-1, PFS
was 13.02 months, compared to 54 months in those with high
levels of both genes and 7.7 months for those with other
combinations (P = 0.025).
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not found in any of the tumor samples or in any of the
cell lines analyzed. Only one patient sample harbored a
silent polymorphism (CTC > CTT; Leu), with no amino
acid change.

Discussion

The present study shows that the routine molecular
characterization of NSCLC patients is feasible as part of
daily clinical practice. The findings on gene expression
highlight some of the complex interconnections and
crosstalk between different components of the EGFR
and NF-xB pathways, which has not been previously
explored in lung cancer. BRCA1 mRNA expression was
closely related to that of several oncogenes, including
EZH2, AEG-1 and Musashi-2 (Additional File 1, Table
S3). Interestingly, an integrated 150-gene signature from
multiple transgenic models of tumors intrinsic to the
functions of the Simian virus 40 T/t antigen was asso-
ciated with aggressive breast, prostate and lung carcino-
mas. Both BRCA1 and EZH2 were overexpressed in this
gene signature [28], mirroring our findings in the pre-
sent study (Additional File 1, Figure S1). The T/t-anti-
gen signature was found in all small-cell and squamous
cell carcinomas and in a subset of adenocarcinomas
[28]. In our previous study in resected NSCLC, we
observed that BRCA1 expression was higher in squa-
mous cell than in adenocarcinomas [29]; in addition, in
our experience, the expression of BRCA1 and EZH2 was
significantly higher in small-cell than in NSCLC. BRCA1
overexpression has been related to poor prognosis in
resected NSCLC [29,30] and to shorter PFS to erlotinib
in metastatic EGFR-mutant NSCLC patients [26].
Numerous reports also indicate that EZH2 overexpres-
sion correlates with poor prognosis in several tumors
[17,18,31]. EZH2 activates the Ras and NF-xB pathways
[17].

We had previously found that low levels of NFKBIA
expression hamper the efficacy of erlotinib in NSCLC
patients harboring EGFR mutations. However, in the
present study, neither NFKBIA expression nor that of
other active components of the NF-xB pathway was
associated with outcome. This could be due to the lim-
ited number of patients examined. However, AEG-1
expression was associated with outcome. Overexpression
of AEG-1 leads to activation of the NF-xB pathway.
Although neither NFKBIA nor p65/Rel A was associated
with outcome, both were closely correlated with the
expression of AEG-1 (Additional File 1, Table S3). We
can thus infer that AEG-1 mRNA expression could be a
useful biomarker that could be a surrogate of the NF-xB
function. AEG-1 is a multifunction oncogene activated
via the PI3K-AKT pathway that inhibits apoptosis
through the phosphorylation of anti-apoptotic AKT sub-
strates [23]. AEG-1 overexpression correlates with
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Table 2 Univariate and multivariate analyses of PFS
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Univariate Analysis

N HR (95% CI) p

Age (years) 60 1.01 (0.98-1.04) 0.63
PS O 14 1.03 (0.52-2.04) 094
PS 1-2 46 1 Ref.

Male 36 148 (0.81-2.70) 021
Female 24 1 Ref.

Adenocarcinoma 39 1 Ref. 0.05
Non-adenocarcinoma 21 1.84 (1.01-3.33)

Smoker 22 1.26 (0.64-2.49) 051
Non- smoker 27 1 Ref.

EGFR mutated 9 1 Ref. 032
EGFR wild-type 41 1.55 (0.65-3.73)

K-ras mutated 10 1.21 (0.58-2.53) 062
K-ras wild-type 46 1 Ref.

Low BRCAT&AEGT expression 18 1 Ref.

High BRCAT&AEG1 expression 17 3.08 (1.33-7.15) 0.009
Other combinations of BRCAT&AEGT expression 25 1.70 (0.82-3.53) 0.15

Multivariate Analysis

Low BRCAT&AEG1 expression 18 1 Ref.

High BRCAT&AEG1 expression 17 3.11 (1.30-747) 0.01
Other combinations of BRCAT&AEGT expression 25 2.18 (0.99-4.78) 0.05
Adenocarcinoma 39 1 Ref.

Non-adenocarcinoma 21 1.52 (0.79-2.91) 0.21
Male 36 1.60 (0.84-3.07) 0.16
Female 24 1 Ref.

chemoresistance in breast cancer [32]and poor prog-
nosis in NSCLC [33].

In the present study, the median survival of EGFR
wild-type patients was 26.45 months, which is higher
than the reported median survival of 8-11 months for
stage IV chemotherapy-treated NSCLC patients. Overall
survival can be influenced by the number of chemother-
apy lines after disease progression. In the present study,
the majority of patients received more than two lines of
treatment for metastatic disease, and the multivariate
analysis showed that a higher number of treatment lines
was significantly associated with a longer survival (P =
0.003). We can speculate that the higher median survival
rates may have led to correlations with gene expression
that may not extend to other EGFR-wild-type patients;
this issue can be clarified in future studies focusing on
patients who do not receive more than two lines of
treatment. However, in our previous phase II BRCA1-
based customized chemotherapy study of NSCLC
patients with wild-type EGFR, a subgroup of patients
attained a median survival exceeding 26 months [25]. In
the majority of patients in the present study, the

second- or third-line treatment was also based on
BRCA1 mRNA expression levels.

In the present study, low AEG-1 expression was asso-
ciated with longer PFS, and the combination of low
BRCA1 and AEG-1 expression further identified a favor-
able subgroup of patients in whom PFS was 13 months.
In future studies, it could be of great interest to examine
BRCA1 and related DNA repair genes in conjunction
with AEG-1.

Conclusions

This study has provided a better understanding of the
behavior of metastatic NSCLC and has identified the com-
bination of BRCA1 and AEG-1 expression as a potential
model that can determine prognosis to platinum-based
chemotherapy in patients with wild-type EGFR and to
erlotinib treatment in patients with EGFR mutations. This
study is the first of its kind to analyze the multiple genes
involved in the NF-xB and EGFR pathways; as such, it has
demonstrated the feasibility of performing these analyses
in the context of daily clinical practice and has paved the
way for further research in this field.
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Table 3 Univariate and multivariate analyses of overall survival

Univariate Analysis

N HR (95% CI) p

Age (years) 60 1.04 (0.99-1.10) 0.16
PS O 14 0.89 (0.32-2.44) 0.81
PS 1-2 46 1 Ref.

Male 36 1.09 (045-261)

Female 24 1 Ref. 0.85
Adenocarcinoma 39 1 Ref.

Non-adenocarcinoma 21 2.88 (1.21-6.87) 0.02
Smoker 22 0.96 (0.34-2.68)

Non-smoker 27 1 Ref. 093
EGFR mutated 9 1 Ref.

EGFR wild-type 41 1.19 (0.38-3.68) 0.77
K-ras mutated 10 0.81 (0.24-2.78) 0.73
K-ras wild-type 46 1 Ref.

Low BRCAT&AEG1 expression 18 1 Ref.

High BRCAT&AEG1 expression 17 2.80 (0.84-9.32) 0.10
Other combinations of BRCAT&AEG1 expression 25 1.84 (0.62-5.41) 027
1 treatment line 18 1 Ref.

> 2 treatment lines 42 044 (0.16-1.22) 0.12
1 metastatic site 30 1 Ref.

> 2 metastatic sites 24 146 (0.57-3.72) 043
Bone metastases 23 3.06 (1.15-8.16) 0.03
No bone metastases 31 1 Ref.

Brain metastases 10 1 Ref.

No brain metastases 44 1.86 (0.54-6.48) 033

Multivariate Analysis

Adenocarcinoma 36 1 Ref.
Non-adenocarcinoma 18 317 (1.21-831) 0.02
1 treatment line 14 7.22 (1.96-26.64) 0.003
> 2 treatment lines 40 1 Ref.
Bone metastases 23 4.73 (1.58-14.17) 0.005
No bone metastases 31 1 Ref.

Additional material

Additional file 1: supplementary figures and tables. A pdf file
including the following figures and tables: Figure S1. Correlation
between expression levels of BRCA1 and EZH2. Figure S2. Median
overall survival for all 60 patients (2A) and for 51 patients with wild-type
EGFR treated with chemotherapy (2B). Figure S3. PFS according to AEG-
1 expression by terciles. Figure S4. Overall survival according to levels of
BRCA1 and AEG-1 expression (low levels of both genes versus high levels
of both genes versus other combinations). Table S1. Primers and probes
used for each of the genes analyzed. Table S2. Median expression values
of each of the genes analyzed. Table S3. Correlation of the expression
levels of the 11 genes analyzed. Table S4. Gene expression levels
according to the presence or absence of K-ras mutations. Table S5.
Gene expression levels according to the presence or absence of EGFR
mutations (deletion in exon 19 or L858R in exon 21). Table S6.
Correlation between gene expression levels and number of metastatic
sites. Table S7. Cox regression model for PFS including only gene
expression levels.
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