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Abstract
Background: Ischaemic preconditioning (IPC) has emerged as a method of reducing ischaemia-reperfusion injury. 
However, the complex mechanism through which IPC elicits this protection is not fully understood. The aim of this 
study was to investigate the genomic response induced by IPC in muscle biopsies taken from the operative leg of total 
knee arthroplasty patients in order to gain insight into the IPC mechanism.

Methods: Twenty patients, undergoing primary total knee arthroplasty, were randomly assigned to IPC (n = 10) and 
control (n = 10) groups. Patients in the IPC group received ischaemic preconditioning immediately prior to surgery. IPC 
was induced by three five-minute cycles of tourniquet insufflation interrupted by five-minute cycles of reperfusion. A 
muscle biopsy was taken from the operative knee of control and IPC-treated patients at the onset of surgery and, again, 
at one hour into surgery. The gene expression profile of muscle biopsies was determined using the Affymetrix Human 
U113 2.0 microarray system and validated using real-time polymerase chain reaction (RT-PCR). Measurements of C-
reactive protein (CRP), erythrocyte sedimentation (ESR), white cell count (WCC), cytokines and haemoglobin were also 
made pre- and post-operatively.

Results: Microarray analysis revealed a significant increase in the expression of important oxidative stress defence 
genes, immediate early response genes and mitochondrial genes. Upregulation of pro-survival genes was also 
observed and correlated with a downregulation of pro-apoptotic gene expression. CRP, ESR, WCC, cytokine and 
haemoglobin levels were not significantly different between control and IPC patients.

Conclusions: The findings of this study suggest that IPC of the lower limb in total knee arthroplasty patients induces a 
protective genomic response, which results in increased expression of immediate early response genes, oxidative 
stress defence genes and pro-survival genes. These findings indicate that ischaemic preconditioning may be of 
potential benefit in knee arthroplasty and other musculoskeletal conditions.

Background
Ischaemic preconditioning has emerged as an extremely
powerful method of protecting tissue against ischaemia-
reperfusion injury [1]. It is an innate protective mecha-
nism that increases a tissue's tolerance to prolonged

ischaemia when it is first subjected to short bursts of
ischaemia and reperfusion. It is thought to provide this
protection by increasing the tissue's tolerance to ischae-
mia, thereby reducing oxidative stress, inflammation and
apoptosis in the preconditioned tissue. The protective
effects of ischaemic preconditioning have been demon-
strated in animal models [2,3] and are now being investi-
gated in human trials [4-8].
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The complex mechanism through which IPC provides
protection has only been partially elucidated. Studies
have shown that IPC triggers the release of signalling
molecules such as adenosine [3], bradykinin [9] and reac-
tive oxygen species (ROS) [10]. The release of these mole-
cules then activates protective signalling pathways
involving kinases such as protein kinase C [11], PI-3K
[12], tyrosine kinase [13] and MAPK kinases. This culmi-
nates in protection through reduced energy consump-
tion, reduced oxidative stress, upregulation of heat shock
proteins and inhibition of apoptosis with a resultant
reduction in tissue injury.

Relatively little data describing the genomic response to
ischaemic preconditioning in humans has been reported.
Accordingly, we sought to investigate the effect of IPC in
patients undergoing total knee arthroplasty. The primary
objective of this study was to investigate the genomic
response induced by IPC in muscle biopsies taken from
the operative leg of total knee arthroplasty patients using
microarray analysis. A secondary objective was to evalu-
ate the effects of IPC on the systemic inflammatory
response.

Methods
Study design and patient selection
Ethical approval for this study was granted by the ethics
committee of the Cappagh National Orthopaedic Hospi-
tal, Dublin, Ireland. Informed consent was obtained from
each patient before enrolment in the study. Patients
undergoing primary knee arthroplasty (n = 20) were ran-
domised to IPC (n = 10) and control (n = 10) groups, and
patients were unaware of whether they were in the con-
trol or study group. Excluded from the study were (1)
patients with abnormal ankle brachial indexes indicating
poor vascular supply to the limb (2) patients with inflam-
matory arthropathies and (3) diabetic patients as there
has been some correlation between oral sulphonurea
therapy and preconditioning [14]. One patient was diag-
nosed with rheumatoid arthritis following recruitment
and, therefore, was excluded from the study.

Preconditioning protocol
All patients had a tourniquet placed on the upper thigh of
the operative limb after the administration of spinal
anaesthesia as per normal protocol for knee arthroplasty
surgery in our unit. The ischaemic preconditioning stim-
ulus consisted of three five-minute periods of tourniquet
insufflation on the upper thigh of the operative limb,
interrupted by five minute periods of reperfusion. The
pressure to which the tourniquet was insufflated for pre-
conditioning was determined in relation to systolic blood
pressure for each patient. The tourniquet was set 100 mm
Hg above the patient's systolic BP to ensure ischaemic

conditions. The control group simply had tourniquet
insufflation as normal at the start of surgery. This precon-
ditioning protocol has been used previously in human tri-
als involving the upper and lower limb [15,16]. An
overview of the experimental approach is provided in Fig-
ure 1.

Blood sampling and serological analysis
Pre-operative blood samples were collected as per rou-
tine protocol. Peripheral blood samples were obtained
from the antecubital fossa of the upper limb at the initia-
tion of surgery and at 1 hour of ischaemia to coincide
with the muscle sampling. Blood was then obtained 30
min, 1 hour and 24 hours following tourniquet release to
investigate the effect of reperfusion (Figure 1). Blood
samples were centrifuged at 2000 × g for 15 min and the
resulting serum samples were stored at -80°C. Serum
samples were analysed for cytokine expression using the
MSD Human Pro-Inflammatory 9-Plex Ultra-Sensitive
Kit (Meso Scale Discovery, USA), according to the manu-
facturer's instructions. Blood samples were also analysed
for haemoglobin, ESR, CRP and white cell count.

Muscle sampling and RNA extraction
Intra-operative sampling was used to obtain muscle biop-
sies from the quadriceps muscle. Muscle biopsies were
taken from the operative knee at the immediate onset of
surgery (t = 0), and again, at one hour into the surgery (t =
1). Biopsies were rapidly frozen in liquid nitrogen and
stored at -80°C. For extraction of total RNA, muscle biop-
sies (~100 mg) were added directly to a ceramic mortar
containing liquid nitrogen and ground to a fine powder
using a pestle. An aliquot of ice-cold TRI reagent (Sigma,
Ireland) was added to the ground muscle powder, mixed
using a vortex, and immediately homogenised on ice
using a Polytron homogeniser (Kinematica, USA). Total
RNA was isolated from the homogenised solution
according to the manufacturer's instructions (Sigma, Ire-
land). RNA integrity was assessed using an Agilent 2100
Bioanalyser (Agilent Technologies, Germany).

Affymetrix GeneChip hybridization, scanning and data 
analysis
The gene expression profile of muscle biopsies taken
from four control and four IPC-treated patients was
determined using the Affymetrix Human U113 2.0
microarray system (Affymetrix, Santa Clara, CA). Sample
amplification, labelling, hybridisation and detection were
carried out by Almac Diagnostics, Craigavon, N. Ireland.
Briefly, 2 μg total RNA was reversed transcribed to
cDNA, subjected to amplification and labelling followed
by hybridisation to an array for 16-18 hours at 45°C. The
array was then washed and stained with streptavidin-
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phycoerythrin on the GeneChip® Fluidics Station 450, and
scanned using the GeneChip® Scanner 3000. The Rosetta
Error Model was applied to the raw data to generate
intensity values. Gene filtering was then applied to iden-
tify significantly differentially regulated genes. Filters
included: intensity p-value filter, background filter, fold
change filter and signature p-value filter. Gene lists were
analysed using DAVID 2.0 [17] and Ingenuity Pathway
Analysis (Ingenuity® Systems, http://www.ingenu-
ity.com). The results of microarray analysis were vali-
dated by real-time PCR. The following 5 genes were
validated by real-time PCR: early growth response 1
(egr1), cellular oncogene c-fos (fos), jun oncogene (jun),
pyruvate dehydrogenase kinase 4 (pdk4) and heat shock

22 kDa protein 8 (hspb8). The nucleotide sequences of
the primers used for real-time PCR are given in Table 1.

Complementary DNA synthesis and real-time PCR
Genomic DNA was removed from RNA samples using a
DNA-free™ kit (Applied Biosystems, UK). RNA was then
converted to complementary DNA (cDNA) using
Enhanced Avian Reverse Transcriptase (Sigma). cDNA
then served as template for Real-Time PCR, which was
conducted using QIAGEN QuantiTect SYBR Green PCR
kit. Gene expression was measured using absolute quan-
tification, normalised to control and glyceraldehyde 3-
phosphate dehydrogenase (gapdh) expression resulting in
mean fold change.

Statistical Analysis
Data are given as a mean +/- standard deviation. Real-
time PCR data were analysed by an unpaired t-test to
determine a significant difference between sample
means. Serological data were analysed by a one-sample t-
test and a paired two-sample t-test. Differences were con-
sidered significant if P < 0.05.

Results
To uncover the genomic response induced by ischaemic
preconditioning, we analysed global gene expression lev-
els in muscle biopsies taken from total knee arthroplasty
patients using the Affymetrix Human U113 2.0 microar-
ray system. Using RNA isolated from muscle biopsies
taken from the operative leg at the immediate onset of
surgery (t = 0), and again, at one hour into the surgery (t =
1), the gene expression profiles of control and precondi-
tioned patients were compared. The analysis of gene
expression patterns at the onset of surgery allowed for the
identification of changes resulting from the precondition-

Table 1: Forward and reverse primers used for real-time 
PCR validation of microarray results

Gene Primer Sequence

EGR1 F: 5'-AGCCCTACGAGCACCTGAC-3'

R: 5'-AGCGGCCAGTATAGGTGATG-3'

PDK4 F: 5'-GTCCCTACAATGGCACAAGG-3'

R: 5'-GGTTCATCAGCATCCGAGTAG-3'

JUN F: 5'-GAGCGGACCTTATGGCTACA-3'

R: 5'-TGAGGAGGTCCGAGTTCTTG-3'

FOS F: 5'-CAAGCGGAGACAGACCAAC-3'

R: 5'-GAGCTGCCAGGATGAACTC-3'

HSPB8 F: 5'-AGCCAGAGGAGTTGATGGTG-3'

R: 5'-TGCAGGAAGCTGGATTTTCT-3'

GAPDH F: 5'-GAGTCAACGGATTTGGTCGT-3'

R: 5'-TTGATTTTGGAGGGATCTCG-3'

* F, forward; R, reverse.

Figure 1 An overview of the study timeline and experimental approach.

http://www.ingenuity.com
http://www.ingenuity.com
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ing stimulus, which was performed immediately prior to
surgery. The analysis of gene expression patterns at one
hour into surgery permitted the identification of protec-
tive signalling, induced by IPC, which occurred at 1 hour
into surgery.

All patients had an uneventful surgery and there were
no adverse complications noted in the immediate post-
operative period. There was no significant difference
found between the two groups regarding patient demo-
graphics (Table 2). All patients underwent primary elec-
tive knee arthroplasty. None of the patients had any
severe deformity or complicating clinical scenarios which
required prolonged procedures to obtain good surgical
outcome. The duration of tourniquet application time in
all patients ranged from 68 to 87 minutes.

Differential gene expression at the onset of surgery (t = 0)
Firstly, the changes in gene expression which occurred at
the onset of surgery (t = 0) were analysed. This analysis
revealed that 257 genes were significantly differentially
regulated >1.5 fold in the IPC group as compared to the

control group. Of these 257 genes, 162 genes were up-
regulated >1.5 fold while 95 genes were downregulated
>1.5 fold (Figure 2). Gene ontology (GO) analysis was
performed to gain a comprehensive understanding of the
gene classes that were differentially regulated in the IPC
group. Genes were analyzed by their GO annotations,
including biological process, molecular function and cel-
lular component categories. Ontology analysis, pre-
formed using DAVID 2.0 revealed an upregulation of
genes relating to metabolic processes, mitochondrial bio-
genesis/organisation and response to stress at this time-
point (Figure 3 and Table 3).

Differential gene expression at 1 hour into surgery (t = 1)
We next analysed those genes that were differentially reg-
ulated at 1 hour into surgery (t = 1). These data revealed a
significantly higher number of differentially regulated
genes compared to the onset of surgery (Figure 2). A total
of 786 genes were differentially expressed >1.5 fold at this
time point, 519 genes were downregulated while 267
genes were up-regulated (Figure 2). Ontology analysis
revealed a downregulation in genes related to cell com-
munication, developmental processes, cell adhesion and
cell proliferation (Figure 3). An upregulation in the
expression of genes related to the regulation of metabolic
processes, biological processes and gene expression was
observed (Figure 3). Increased expression of genes
involved in the response to stress including oxidative
stress, and the regulation of cell death was also observed
(Table 4).

Validation of microarray analysis using real-time PCR
The results of microarray analysis were validated by real-
time PCR in an additional 4 patients. Real-time PCR was
performed on five selected genes (egr1, fos, pdk4, jun, and
hspb8), a number of which have previously been associ-
ated with the ischaemic preconditioning mechanism, i.e.
egr1, fos and jun. Expression analysis of the five chosen
genes by real-time PCR correlated with our array data,
and showed that the expression levels of egr1, fos and
pdk4 in control and preconditioned samples were signifi-
cantly different when analysed by both methods (Figure
4).

Table 2: Patient demographics

Control (n = 9) IPC (n = 10) P

Age (years) 70.8 (+/- 7.3) 66.4 (+/- 9.6) 0.28

Sex ratio (M:F) 2:7 6:4 0.61

Figure 2 Analysis of microarray data. (A) Venn diagram depicting 
the overlap of differentially expressed genes at the onset of surgery (t 
= 0) and at 1 hour into surgery (t = 1). (B) Numbers of genes demon-
strating a minimum of 1.5 fold-change in expression at the two time-
points studied.
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Systemic effects of IPC
No statistically significant difference was found between
the control and treatment groups with regard to circulat-
ing levels of CRP, ESR and white blood cell count (Figure
5A, B, C). There was a reduction in haemoglobin loss in
the treatment group at 24 hours post-reperfusion but this
reduction was not statistically significant (p < 0.081; Fig-
ure 5D). Mean levels of the pro-inflammatory cytokines

IL-8, TNF-alpha, INF-gamma, IL-1-beta, IL-2, IL-10, IL-
12p70, GM-CSF were also measured and again no statis-
tically significant differences were demonstrated. IL-6
levels were significantly increased at 30 min (1.35 pg/ml ±
1.7, p < 0.037) and 1 hour (3.11 pg/ml ± 3.25, p < 0.014)
post-reperfusion in the control group, and at 24 hours
post-reperfusion in both groups (control 95.1 pg/ml ±
56.4, 95%, p < 0.0005; treatment 67.5 pg/ml ± 37.8, p <

Figure 3 Annotation of microarray data using Gene Ontology. A bar chart representing the numbers of genes differentially expressed at the im-
mediate onset of surgery (A) and at 1 hour into surgery (B) classified according to biological process. Genes that were found to be upregulated are 
shown in black and genes found to be downregulated are shown in white.
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0.0005). The mean IL-6 level in the control group at 24
hours of reperfusion was higher than that of the IPC
group (95.1 pg/ml ± 56.4 v 67.5 pg/ml ± 37.8), however,
this difference was not statistically significant (Figure 5E).

Discussion
Ischaemic preconditioning has been shown to protect
against ischaemia-reperfusion injury in both animal
models and human studies [1,3,15,18], however, the sig-
nalling mechanisms responsible remain unclear. To date,
relatively little data describing the genomic response to
ischaemic preconditioning in humans has been reported.
Therefore, to identify the genomic response induced by
ischaemic preconditioning, we analysed gene expression
patterns in a cohort of total knee arthroplasty patients
using the Affymetrix Human U113 2.0 microarray sys-
tem.

While such a cohort of patients is unlikely to develop
serious complications of ischaemia-reperfusion, this
study provided a model for investigating the local and
systemic effects of ischaemic preconditioning, as stan-
dard practice for total knee arthroplasty in our institution
already involves the application of a tourniquet for the
duration of the operation. In this study, ischaemic pre-
conditioning was induced by three five-minute cycles of
tourniquet insufflation on the operative lower limb inter-
rupted by five-minute cycles of reperfusion; this precon-

ditioning protocol has previously been shown to be
effective in other clinical studies [15,16].

We investigated the mechanism of local IPC by com-
paring the gene expression profile of muscle biopsies
taken from the operative leg of control and IPC-treated
patients using microarray analysis. IPC was found to
induce a gene expression profile which was indicative of a
protective genomic response in muscle biopsies taken
from IPC-treated patients. A comparison of the gene
expression profiles of the control and IPC groups indi-
cated that the effect of ischaemic preconditioning was
correlated with increased expression of genes involved in
immediate early response, defence against oxidative
stress, pro-survival functions, and a decrease in gene
expression associated with cell death.

IPC triggers the expression of early response genes
In the present study, increased expression of immediate
early response genes was shown to be associated with the
protective response induced by IPC. This was exempli-
fied by an upregulation in the expression of egr1, ier2, c-
fos, c-jun and myc. Immediate early response genes are a
group of genes that are activated transiently and rapidly
in response to a wide variety of cellular stimuli. Further-
more, a number of these genes have previously been
reported to be involved in the adaptation to ischaemia
and in the IPC mechanism [19,20]. In a rat model of IPC,

Table 3: Genes up-regulated in IPC patients compared to control patients at the onset of surgery (t = 0)

Gene name Symbol Public ID Fold change P

Mitochondrial

COX18 cytochrome c 
oxidase assembly 
homolog

COX18 AI769476 1.71 0.036

COX11 cytochrome c 
oxidase assembly 
homolog

COX11 AI376724 1.87 0.008

Uncoupling protein 3 UCP3 NM_003356 1.99 0.037

Translocase of inner 
mitochondrial 
membrane 10

TIMM10 AF152354 1.54 0.001

Mitochondrial ribosomal 
protein L43

MRPL43 N74662 1.90 0.007

Pyruvate dehydrogenase 
kinase 4

PDK4 AL832708 3.57 0.022

Other

BCL2/adenovirus E1B 19 
kDa interacting protein1

BNIP1 NM_013979 1.55 0.001

* A positive number indicates elevated expression (fold change) in skeletal muscle tissue of IPC-treated patient compared to skeletal muscle 
tissue of control patient.
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increased expression of c-fos and myc was found to be
associated with cardioprotection as evidenced by
improved ventricular function and reduced infarct size
[19]. More recently, increased expression of egr1 was
associated with a predicted cardioprotective phenotype
induced by intraoperative ischaemia-reperfusion [21].
The high incidence of early response gene expression
indicates that the induction of these genes may be an
important element of the protective response induced by
IPC.

IPC induces stress response and prosurvival gene 
expression
The cytoprotective abilities of anti-oxidant proteins
induced by IPC are well documented in in vitro and ani-
mal models [19,22,23]. In the present study, microarray
analysis revealed increased expression of anti-oxidant
genes in IPC-treated patients following one hour of
ischaemia, including catalase and glutathione S-trans-
ferase theta 1. Increased ROS generation occurs in
ischaemic tissue upon reperfusion. An important element
of the cellular defence against ROS is the induction of

Table 4: Genes up- or down-regulated in IPC patients compared to control patients at 1 hour into surgery (t = 1)

Gene name Gene symbol Public ID Fold change P

Immediate early genes

Early growth response 1 EGR1 AV733950 2.84 0.001

Myc proto oncogene 
protein

MYC NM_002467 2.58 0.038

Cellular oncogene c-fos FOS BC004490 2.11 0.018

Immediate early response 2 IER2 NM_004907 1.58 0.034

Jun oncogene JUN BC002646 1.43 0.001

Oxidative stress defence

Catalase CAT AU147084 2.14 0.017

Glutathione S-transferase 
theta 1

GSTT1 AL359937 2.69 0.025

Sequestosome 1 SQSTM1 AW293441 2.04 0.018

Chaperone/Survival

DnaJ (Hsp40) homolog, 
subfamily B, member 6

DNAJB6 AF080569 1.45 0.042

Heat shock 22 kDa protein 8 HSPB8 BF109740 1.83 0.001

BCL2/adenovirus E1 B 19 
kDa interacting protein 1

BNIP1 NM_013979 1.50 0.004

BCL6 co-repressor BCOR AF317391 1.74 0.047

Anti-apoptotic

Caspase 8 CASP8 BF439983 -2.00 0.045

Caspase 7 CASP7 NM_001227 -1.31 0.026

Mitochondrial

Uncoupling protein 3 UCP3 NM_003356 2.41 0.001

Pyruvate dehydrogenase 
kinase 4

PDK4 AL832708 2.99 0.009

* A positive number indicates elevated expression (fold change) in skeletal muscle tissue of IPC-treated patient compared to skeletal muscle 
tissue of control patient. A negative number indicates decreased expression (fold change) in skeletal muscle tissue of IPC-treated patient 
compared to skeletal muscle tissue of control patient.
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antioxidant enzymes and detoxifying enzymes such as
catalase and glutathione S-transferase. Catalase functions
in the decomposition of hydrogen peroxide to water and
oxygen while glutathione S-transferases catalyze the con-
jugation of reduced glutathione to a variety of electro-
philic and hydrophobic compounds. Nuclear factor-
erythroid 2-related factor 2 (Nrf2) is a transcription fac-
tor and an important regulator of the cells response to
oxidative stress [24]. It regulates the expression of a net-
work of cytoprotective enzymes and has recently been
shown to be involved in the ischaemic preconditioning
mechanism [25,26]. Pathway analysis revealed induction
of a number genes involved in Nrf2 signalling in IPC-
treated patients, including catalase, glutathione S-trans-
ferase, sequestosome 1, jun and fos. Nrft2 signalling has
recently been shown to protect against ischaemia-reper-
fusion injury in both a kidney cell line and in liver biop-
sies [25,26]. Results of our study give further support to
the idea that Nrf2 signalling is an important protective
signalling pathway activated by IPC.

Analysis of microarray data demonstrated increased
expression of genes with pro-survival or chaperone func-
tions in IPC patients. Increased expression of heat shock
protein 22 kDa protein 8, BCL2/adenovirus E1B 19 kDa
interacting protein 1, and BCL6 co-repressor and DnaJ
(Hsp40) homolog, subfamily B, member 6 was observed
in IPC-treated patients. Studies have shown that heat
shock proteins play a key role in the protection provided
by IPC, in particular HSP70 and HSP27 [27-29]. The
induction of pro-survival gene expression was also asso-
ciated with a reduction in pro-apoptotic gene expression
(caspase 7 and 8) suggesting that IPC may modulate both
cell survival and cell death pathways.

The systemic effect of IPC
Ischaemic preconditioning, induced by transient ischae-
mia of a limb, has been shown to protect remote organs
against the effects of ischaemia-reperfusion injury
[15,18,30]. In a study of children undergoing cardiopul-
monary bypass surgery, patients that received remote IPC
(via transient ischaemia of the leg) had less cardiac and
pulmonary insult [18]. Similarly, in adult patients,
decreased serum troponin levels were detected after car-
diopulmonary bypass surgery in those patients that
received remote IPC via transient ischaemia of the upper
arm [15]. It has also been proposed that remote precondi-
tioning may protect against ischaemia-reperfusion injury
through a potent suppression of inflammatory signals.
Evidence to support this has been demonstrated in
healthy volunteers where ischaemic preconditioning of
the upper arm has been shown to provide remote protec-
tion in the form of reduced inflammatory cell activation
and reduced endothelial dysfunction in the contralateral
arm [31], and to suppress pro-inflammatory gene expres-
sion in circulating leukocytes [32].

In this study, we investigated the effect of ischaemic
preconditioning on the systemic inflammatory response
to ischaemia-reperfusion in our cohort of total knee
arthroplasty patients (n = 20). While the patients in this
cohort were unlikely to suffer serious complications of
ischaemia-reperfusion, a statistically significant increase
in the circulating levels of IL-6 was observed in both
groups at 24 hours post-reperfusion indicating a post-
operative systemic inflammatory response occurred in
both patient groups. While skeletal muscle is relatively
resistant to ischaemic-reperfusion injury, studies have
shown that tourniquet-induced ischaemia-reperfusion
leads to systemic activation of PMNs and T cells [16,30].
In the present study, no significant difference in the mean
levels of circulating cytokines was observed between
patient groups. However, IPC patients had a tendency for
a reduction in IL-6 and ESR at 24 hours post-reperfusion
indicating that IPC may attenuate the post-operative
inflammatory response in these patients. Other studies
have shown that a local IPC stimulus, induced via tran-
sient ischaemia of the lower limb, can modulate the sys-
temic inflammatory response following ischaemic-
reperfusion in a rat model of limb ischaemic-reperfusion
and in patients undergoing cruciate ligament reconstruc-
tion [16,30]. While these studies, and the current study,
have shown that local IPC exerts distant anti-inflamma-
tory effects, it is important to note that local and remote
IPC are two separate forms of preconditioning and that
the signalling mechanisms underlying both forms are not
entirely similar.

Figure 4 Validation of microarray data using RT-PCR. Gene expres-
sion patterns of five selected genes in skeletal muscle biopsies of con-
trol and preconditioned patients as determined by RT-PCR. Values are 
the mean fold difference from control. * = P < 0.05; ** = P < 0.01 for 
control group versus IPC group.



Figure 5 Analysis of serological data. Changes in the level of CRP (A), ESR (B), haemoglobin (C) and WCC (D) in control and ischaemic precondi-
tioned patients at 24 hours post-surgery. Pre-, intra- and post-operative levels of IL-6 in control and preconditioned patients (E). Data are represented 
as means +/- the standard deviation.
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Conclusions
In summary, the findings of this study show that IPC
induces a protective genomic response in total knee
arthroplasty patients. The protective effect of IPC was
associated with increased expression of genes involved in
immediate early response, defence against oxidative
stress and pro-survival functions. This study also served
as a pilot study to demonstrate the safety of this tech-
nique in TKA patients. Results of this study indicate that
IPC may be of potential benefit in this and other muscu-
loskeletal conditions.
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